VirtualBox

source: vbox/trunk/src/recompiler_new/VBoxRecompiler.c@ 15009

Last change on this file since 15009 was 15009, checked in by vboxsync, 16 years ago

new_recompiler: cleanup, optimization, compile with the right tool - gets rid of the nasty bug with bootmenu

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 156.1 KB
Line 
1/* $Id: VBoxRecompiler.c 15009 2008-12-04 23:27:46Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.215389.xyz. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "osdep.h"
29#include "exec-all.h"
30#include "config.h"
31#include "cpu-all.h"
32
33void cpu_exec_init_all(unsigned long tb_size);
34
35#include <VBox/rem.h>
36#include <VBox/vmapi.h>
37#include <VBox/tm.h>
38#include <VBox/ssm.h>
39#include <VBox/em.h>
40#include <VBox/trpm.h>
41#include <VBox/iom.h>
42#include <VBox/mm.h>
43#include <VBox/pgm.h>
44#include <VBox/pdm.h>
45#include <VBox/dbgf.h>
46#include <VBox/dbg.h>
47#include <VBox/hwaccm.h>
48#include <VBox/patm.h>
49#include <VBox/csam.h>
50#include "REMInternal.h"
51#include <VBox/vm.h>
52#include <VBox/param.h>
53#include <VBox/err.h>
54
55#include <VBox/log.h>
56#include <iprt/semaphore.h>
57#include <iprt/asm.h>
58#include <iprt/assert.h>
59#include <iprt/thread.h>
60#include <iprt/string.h>
61
62/* Don't wanna include everything. */
63extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
64extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
65extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
66extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
67extern void tlb_flush(CPUState *env, int flush_global);
68extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
69extern void sync_ldtr(CPUX86State *env1, int selector);
70extern int sync_tr(CPUX86State *env1, int selector);
71
72#ifdef VBOX_STRICT
73unsigned long get_phys_page_offset(target_ulong addr);
74#endif
75
76/*******************************************************************************
77* Defined Constants And Macros *
78*******************************************************************************/
79
80/** Copy 80-bit fpu register at pSrc to pDst.
81 * This is probably faster than *calling* memcpy.
82 */
83#define REM_COPY_FPU_REG(pDst, pSrc) \
84 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
85
86
87/*******************************************************************************
88* Internal Functions *
89*******************************************************************************/
90static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
91static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
92static void remR3StateUpdate(PVM pVM);
93
94static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
95static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
96static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
97static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
98static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
99static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
100
101static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
102static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
103static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
104static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
105static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
106static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
107
108
109/*******************************************************************************
110* Global Variables *
111*******************************************************************************/
112
113/** @todo Move stats to REM::s some rainy day we have nothing do to. */
114#ifdef VBOX_WITH_STATISTICS
115static STAMPROFILEADV gStatExecuteSingleInstr;
116static STAMPROFILEADV gStatCompilationQEmu;
117static STAMPROFILEADV gStatRunCodeQEmu;
118static STAMPROFILEADV gStatTotalTimeQEmu;
119static STAMPROFILEADV gStatTimers;
120static STAMPROFILEADV gStatTBLookup;
121static STAMPROFILEADV gStatIRQ;
122static STAMPROFILEADV gStatRawCheck;
123static STAMPROFILEADV gStatMemRead;
124static STAMPROFILEADV gStatMemWrite;
125static STAMPROFILE gStatGCPhys2HCVirt;
126static STAMPROFILE gStatHCVirt2GCPhys;
127static STAMCOUNTER gStatCpuGetTSC;
128static STAMCOUNTER gStatRefuseTFInhibit;
129static STAMCOUNTER gStatRefuseVM86;
130static STAMCOUNTER gStatRefusePaging;
131static STAMCOUNTER gStatRefusePAE;
132static STAMCOUNTER gStatRefuseIOPLNot0;
133static STAMCOUNTER gStatRefuseIF0;
134static STAMCOUNTER gStatRefuseCode16;
135static STAMCOUNTER gStatRefuseWP0;
136static STAMCOUNTER gStatRefuseRing1or2;
137static STAMCOUNTER gStatRefuseCanExecute;
138static STAMCOUNTER gStatREMGDTChange;
139static STAMCOUNTER gStatREMIDTChange;
140static STAMCOUNTER gStatREMLDTRChange;
141static STAMCOUNTER gStatREMTRChange;
142static STAMCOUNTER gStatSelOutOfSync[6];
143static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
144static STAMCOUNTER gStatFlushTBs;
145#endif
146
147/*
148 * Global stuff.
149 */
150
151/** MMIO read callbacks. */
152CPUReadMemoryFunc *g_apfnMMIORead[3] =
153{
154 remR3MMIOReadU8,
155 remR3MMIOReadU16,
156 remR3MMIOReadU32
157};
158
159/** MMIO write callbacks. */
160CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
161{
162 remR3MMIOWriteU8,
163 remR3MMIOWriteU16,
164 remR3MMIOWriteU32
165};
166
167/** Handler read callbacks. */
168CPUReadMemoryFunc *g_apfnHandlerRead[3] =
169{
170 remR3HandlerReadU8,
171 remR3HandlerReadU16,
172 remR3HandlerReadU32
173};
174
175/** Handler write callbacks. */
176CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
177{
178 remR3HandlerWriteU8,
179 remR3HandlerWriteU16,
180 remR3HandlerWriteU32
181};
182
183
184#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
185/*
186 * Debugger commands.
187 */
188static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
189
190/** '.remstep' arguments. */
191static const DBGCVARDESC g_aArgRemStep[] =
192{
193 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
194 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
195};
196
197/** Command descriptors. */
198static const DBGCCMD g_aCmds[] =
199{
200 {
201 .pszCmd ="remstep",
202 .cArgsMin = 0,
203 .cArgsMax = 1,
204 .paArgDescs = &g_aArgRemStep[0],
205 .cArgDescs = RT_ELEMENTS(g_aArgRemStep),
206 .pResultDesc = NULL,
207 .fFlags = 0,
208 .pfnHandler = remR3CmdDisasEnableStepping,
209 .pszSyntax = "[on/off]",
210 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
211 "If no arguments show the current state."
212 }
213};
214#endif
215
216
217/*******************************************************************************
218* Internal Functions *
219*******************************************************************************/
220void remAbort(int rc, const char *pszTip);
221extern int testmath(void);
222
223/* Put them here to avoid unused variable warning. */
224AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
225#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
226//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
227/* Why did this have to be identical?? */
228AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
229#else
230AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
231#endif
232
233
234/* Prologue code, must be in lower 4G to simplify jumps to/from generated code */
235uint8_t* code_gen_prologue;
236
237/**
238 * Initializes the REM.
239 *
240 * @returns VBox status code.
241 * @param pVM The VM to operate on.
242 */
243REMR3DECL(int) REMR3Init(PVM pVM)
244{
245 uint32_t u32Dummy;
246 unsigned i;
247 int rc;
248
249 /*
250 * Assert sanity.
251 */
252 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
253 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
254 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
255#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
256 Assert(!testmath());
257#endif
258 /*
259 * Init some internal data members.
260 */
261 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
262 pVM->rem.s.Env.pVM = pVM;
263#ifdef CPU_RAW_MODE_INIT
264 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
265#endif
266
267 /* ctx. */
268 pVM->rem.s.pCtx = CPUMQueryGuestCtxPtr(pVM);
269 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
270
271 /* ignore all notifications */
272 pVM->rem.s.fIgnoreAll = true;
273
274 code_gen_prologue = RTMemExecAlloc(_1K);
275
276 cpu_exec_init_all(0);
277
278 /*
279 * Init the recompiler.
280 */
281 if (!cpu_x86_init(&pVM->rem.s.Env, "vbox"))
282 {
283 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
284 return VERR_GENERAL_FAILURE;
285 }
286 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
287 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
288
289 /* allocate code buffer for single instruction emulation. */
290 pVM->rem.s.Env.cbCodeBuffer = 4096;
291 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
292 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
293
294 /* finally, set the cpu_single_env global. */
295 cpu_single_env = &pVM->rem.s.Env;
296
297 /* Nothing is pending by default */
298 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
299
300 /*
301 * Register ram types.
302 */
303 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
304 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
305 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
306 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
307 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
308
309 /* stop ignoring. */
310 pVM->rem.s.fIgnoreAll = false;
311
312 /*
313 * Register the saved state data unit.
314 */
315 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
316 NULL, remR3Save, NULL,
317 NULL, remR3Load, NULL);
318 if (RT_FAILURE(rc))
319 return rc;
320
321#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
322 /*
323 * Debugger commands.
324 */
325 static bool fRegisteredCmds = false;
326 if (!fRegisteredCmds)
327 {
328 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
329 if (RT_SUCCESS(rc))
330 fRegisteredCmds = true;
331 }
332#endif
333
334#ifdef VBOX_WITH_STATISTICS
335 /*
336 * Statistics.
337 */
338 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
339 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
340 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
341 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
342 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
343 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
344 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
345 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
346 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
347 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
348 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
349 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
350
351 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
352
353 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
354 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
355 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
356 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
357 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
358 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
359 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
360 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
361 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
362 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
363 STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
364
365 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
366 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
367 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
368 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
369
370 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
371 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
372 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
373 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
374 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
375 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
376
377 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
378 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
379 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
380 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
381 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
382 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
383
384
385#endif
386
387#ifdef DEBUG_ALL_LOGGING
388 loglevel = ~0;
389 logfile = fopen("/tmp/vbox-qemu.log", "w");
390#endif
391
392 return rc;
393}
394
395
396/**
397 * Terminates the REM.
398 *
399 * Termination means cleaning up and freeing all resources,
400 * the VM it self is at this point powered off or suspended.
401 *
402 * @returns VBox status code.
403 * @param pVM The VM to operate on.
404 */
405REMR3DECL(int) REMR3Term(PVM pVM)
406{
407 return VINF_SUCCESS;
408}
409
410
411/**
412 * The VM is being reset.
413 *
414 * For the REM component this means to call the cpu_reset() and
415 * reinitialize some state variables.
416 *
417 * @param pVM VM handle.
418 */
419REMR3DECL(void) REMR3Reset(PVM pVM)
420{
421 /*
422 * Reset the REM cpu.
423 */
424 pVM->rem.s.fIgnoreAll = true;
425 cpu_reset(&pVM->rem.s.Env);
426 pVM->rem.s.cInvalidatedPages = 0;
427 pVM->rem.s.fIgnoreAll = false;
428
429 /* Clear raw ring 0 init state */
430 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
431
432 /* Flush the TBs the next time we execute code here. */
433 pVM->rem.s.fFlushTBs = true;
434}
435
436
437/**
438 * Execute state save operation.
439 *
440 * @returns VBox status code.
441 * @param pVM VM Handle.
442 * @param pSSM SSM operation handle.
443 */
444static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
445{
446 /*
447 * Save the required CPU Env bits.
448 * (Not much because we're never in REM when doing the save.)
449 */
450 PREM pRem = &pVM->rem.s;
451 LogFlow(("remR3Save:\n"));
452 Assert(!pRem->fInREM);
453 SSMR3PutU32(pSSM, pRem->Env.hflags);
454 SSMR3PutU32(pSSM, ~0); /* separator */
455
456 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
457 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
458 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
459
460 return SSMR3PutU32(pSSM, ~0); /* terminator */
461}
462
463
464/**
465 * Execute state load operation.
466 *
467 * @returns VBox status code.
468 * @param pVM VM Handle.
469 * @param pSSM SSM operation handle.
470 * @param u32Version Data layout version.
471 */
472static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
473{
474 uint32_t u32Dummy;
475 uint32_t fRawRing0 = false;
476 uint32_t u32Sep;
477 int rc;
478 PREM pRem;
479 LogFlow(("remR3Load:\n"));
480
481 /*
482 * Validate version.
483 */
484 if ( u32Version != REM_SAVED_STATE_VERSION
485 && u32Version != REM_SAVED_STATE_VERSION_VER1_6)
486 {
487 AssertMsgFailed(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
488 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
489 }
490
491 /*
492 * Do a reset to be on the safe side...
493 */
494 REMR3Reset(pVM);
495
496 /*
497 * Ignore all ignorable notifications.
498 * (Not doing this will cause serious trouble.)
499 */
500 pVM->rem.s.fIgnoreAll = true;
501
502 /*
503 * Load the required CPU Env bits.
504 * (Not much because we're never in REM when doing the save.)
505 */
506 pRem = &pVM->rem.s;
507 Assert(!pRem->fInREM);
508 SSMR3GetU32(pSSM, &pRem->Env.hflags);
509 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
510 {
511 /* Redundant REM CPU state has to be loaded, but can be ignored. */
512 CPUX86State_Ver16 temp;
513 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
514 }
515
516 rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
517 if (RT_FAILURE(rc))
518 return rc;
519 if (u32Sep != ~0U)
520 {
521 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
522 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
523 }
524
525 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
526 SSMR3GetUInt(pSSM, &fRawRing0);
527 if (fRawRing0)
528 pRem->Env.state |= CPU_RAW_RING0;
529
530 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
531 {
532 unsigned i;
533
534 /*
535 * Load the REM stuff.
536 */
537 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
538 if (RT_FAILURE(rc))
539 return rc;
540 if (pRem->cInvalidatedPages > RT_ELEMENTS(pRem->aGCPtrInvalidatedPages))
541 {
542 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
543 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
544 }
545 for (i = 0; i < pRem->cInvalidatedPages; i++)
546 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
547 }
548
549 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
550 if (RT_FAILURE(rc))
551 return rc;
552
553 /* check the terminator. */
554 rc = SSMR3GetU32(pSSM, &u32Sep);
555 if (RT_FAILURE(rc))
556 return rc;
557 if (u32Sep != ~0U)
558 {
559 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
560 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
561 }
562
563 /*
564 * Get the CPUID features.
565 */
566 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
567 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
568
569 /*
570 * Sync the Load Flush the TLB
571 */
572 tlb_flush(&pRem->Env, 1);
573
574 /*
575 * Stop ignoring ignornable notifications.
576 */
577 pVM->rem.s.fIgnoreAll = false;
578
579 /*
580 * Sync the whole CPU state when executing code in the recompiler.
581 */
582 CPUMSetChangedFlags(pVM, CPUM_CHANGED_ALL);
583 return VINF_SUCCESS;
584}
585
586
587
588#undef LOG_GROUP
589#define LOG_GROUP LOG_GROUP_REM_RUN
590
591/**
592 * Single steps an instruction in recompiled mode.
593 *
594 * Before calling this function the REM state needs to be in sync with
595 * the VM. Call REMR3State() to perform the sync. It's only necessary
596 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
597 * and after calling REMR3StateBack().
598 *
599 * @returns VBox status code.
600 *
601 * @param pVM VM Handle.
602 */
603REMR3DECL(int) REMR3Step(PVM pVM)
604{
605 int rc, interrupt_request;
606 RTGCPTR GCPtrPC;
607 bool fBp;
608
609 /*
610 * Lock the REM - we don't wanna have anyone interrupting us
611 * while stepping - and enabled single stepping. We also ignore
612 * pending interrupts and suchlike.
613 */
614 interrupt_request = pVM->rem.s.Env.interrupt_request;
615 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
616 pVM->rem.s.Env.interrupt_request = 0;
617 cpu_single_step(&pVM->rem.s.Env, 1);
618
619 /*
620 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
621 */
622 GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
623 fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
624
625 /*
626 * Execute and handle the return code.
627 * We execute without enabling the cpu tick, so on success we'll
628 * just flip it on and off to make sure it moves
629 */
630 rc = cpu_exec(&pVM->rem.s.Env);
631 if (rc == EXCP_DEBUG)
632 {
633 TMCpuTickResume(pVM);
634 TMCpuTickPause(pVM);
635 TMVirtualResume(pVM);
636 TMVirtualPause(pVM);
637 rc = VINF_EM_DBG_STEPPED;
638 }
639 else
640 {
641 switch (rc)
642 {
643 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
644 case EXCP_HLT:
645 case EXCP_HALTED: rc = VINF_EM_HALT; break;
646 case EXCP_RC:
647 rc = pVM->rem.s.rc;
648 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
649 break;
650 default:
651 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
652 rc = VERR_INTERNAL_ERROR;
653 break;
654 }
655 }
656
657 /*
658 * Restore the stuff we changed to prevent interruption.
659 * Unlock the REM.
660 */
661 if (fBp)
662 {
663 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
664 Assert(rc2 == 0); NOREF(rc2);
665 }
666 cpu_single_step(&pVM->rem.s.Env, 0);
667 pVM->rem.s.Env.interrupt_request = interrupt_request;
668
669 return rc;
670}
671
672
673/**
674 * Set a breakpoint using the REM facilities.
675 *
676 * @returns VBox status code.
677 * @param pVM The VM handle.
678 * @param Address The breakpoint address.
679 * @thread The emulation thread.
680 */
681REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
682{
683 VM_ASSERT_EMT(pVM);
684 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
685 {
686 LogFlow(("REMR3BreakpointSet: Address=%RGv\n", Address));
687 return VINF_SUCCESS;
688 }
689 LogFlow(("REMR3BreakpointSet: Address=%RGv - failed!\n", Address));
690 return VERR_REM_NO_MORE_BP_SLOTS;
691}
692
693
694/**
695 * Clears a breakpoint set by REMR3BreakpointSet().
696 *
697 * @returns VBox status code.
698 * @param pVM The VM handle.
699 * @param Address The breakpoint address.
700 * @thread The emulation thread.
701 */
702REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
703{
704 VM_ASSERT_EMT(pVM);
705 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
706 {
707 LogFlow(("REMR3BreakpointClear: Address=%RGv\n", Address));
708 return VINF_SUCCESS;
709 }
710 LogFlow(("REMR3BreakpointClear: Address=%RGv - not found!\n", Address));
711 return VERR_REM_BP_NOT_FOUND;
712}
713
714
715/**
716 * Emulate an instruction.
717 *
718 * This function executes one instruction without letting anyone
719 * interrupt it. This is intended for being called while being in
720 * raw mode and thus will take care of all the state syncing between
721 * REM and the rest.
722 *
723 * @returns VBox status code.
724 * @param pVM VM handle.
725 */
726REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
727{
728 bool fFlushTBs;
729
730 int rc, rc2;
731 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
732
733 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
734 * CPU_RAW_HWACC makes sure we never execute interrupt handlers in the recompiler.
735 */
736 if (HWACCMIsEnabled(pVM))
737 pVM->rem.s.Env.state |= CPU_RAW_HWACC;
738
739 /* Skip the TB flush as that's rather expensive and not necessary for single instruction emulation. */
740 fFlushTBs = pVM->rem.s.fFlushTBs;
741 pVM->rem.s.fFlushTBs = false;
742
743 /*
744 * Sync the state and enable single instruction / single stepping.
745 */
746 rc = REMR3State(pVM);
747 pVM->rem.s.fFlushTBs = fFlushTBs;
748 if (RT_SUCCESS(rc))
749 {
750 int interrupt_request = pVM->rem.s.Env.interrupt_request;
751 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
752 Assert(!pVM->rem.s.Env.singlestep_enabled);
753 /*
754 * Now we set the execute single instruction flag and enter the cpu_exec loop.
755 */
756 TMNotifyStartOfExecution(pVM);
757 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
758 rc = cpu_exec(&pVM->rem.s.Env);
759 TMNotifyEndOfExecution(pVM);
760 switch (rc)
761 {
762 /*
763 * Executed without anything out of the way happening.
764 */
765 case EXCP_SINGLE_INSTR:
766 rc = VINF_EM_RESCHEDULE;
767 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
768 break;
769
770 /*
771 * If we take a trap or start servicing a pending interrupt, we might end up here.
772 * (Timer thread or some other thread wishing EMT's attention.)
773 */
774 case EXCP_INTERRUPT:
775 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
776 rc = VINF_EM_RESCHEDULE;
777 break;
778
779 /*
780 * Single step, we assume!
781 * If there was a breakpoint there we're fucked now.
782 */
783 case EXCP_DEBUG:
784 {
785 /* breakpoint or single step? */
786 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
787 int iBP;
788 rc = VINF_EM_DBG_STEPPED;
789 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
790 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
791 {
792 rc = VINF_EM_DBG_BREAKPOINT;
793 break;
794 }
795 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Rrc iBP=%d GCPtrPC=%RGv\n", rc, iBP, GCPtrPC));
796 break;
797 }
798
799 /*
800 * hlt instruction.
801 */
802 case EXCP_HLT:
803 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
804 rc = VINF_EM_HALT;
805 break;
806
807 /*
808 * The VM has halted.
809 */
810 case EXCP_HALTED:
811 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
812 rc = VINF_EM_HALT;
813 break;
814
815 /*
816 * Switch to RAW-mode.
817 */
818 case EXCP_EXECUTE_RAW:
819 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
820 rc = VINF_EM_RESCHEDULE_RAW;
821 break;
822
823 /*
824 * Switch to hardware accelerated RAW-mode.
825 */
826 case EXCP_EXECUTE_HWACC:
827 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
828 rc = VINF_EM_RESCHEDULE_HWACC;
829 break;
830
831 /*
832 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
833 */
834 case EXCP_RC:
835 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
836 rc = pVM->rem.s.rc;
837 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
838 break;
839
840 /*
841 * Figure out the rest when they arrive....
842 */
843 default:
844 AssertMsgFailed(("rc=%d\n", rc));
845 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
846 rc = VINF_EM_RESCHEDULE;
847 break;
848 }
849
850 /*
851 * Switch back the state.
852 */
853 pVM->rem.s.Env.interrupt_request = interrupt_request;
854 rc2 = REMR3StateBack(pVM);
855 AssertRC(rc2);
856 }
857
858 Log2(("REMR3EmulateInstruction: returns %Rrc (cs:eip=%04x:%RGv)\n",
859 rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
860 return rc;
861}
862
863
864/**
865 * Runs code in recompiled mode.
866 *
867 * Before calling this function the REM state needs to be in sync with
868 * the VM. Call REMR3State() to perform the sync. It's only necessary
869 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
870 * and after calling REMR3StateBack().
871 *
872 * @returns VBox status code.
873 *
874 * @param pVM VM Handle.
875 */
876REMR3DECL(int) REMR3Run(PVM pVM)
877{
878 int rc;
879 Log2(("REMR3Run: (cs:eip=%04x:%RGv)\n", pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
880 Assert(pVM->rem.s.fInREM);
881
882 TMNotifyStartOfExecution(pVM);
883 rc = cpu_exec(&pVM->rem.s.Env);
884 TMNotifyEndOfExecution(pVM);
885 switch (rc)
886 {
887 /*
888 * This happens when the execution was interrupted
889 * by an external event, like pending timers.
890 */
891 case EXCP_INTERRUPT:
892 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
893 rc = VINF_SUCCESS;
894 break;
895
896 /*
897 * hlt instruction.
898 */
899 case EXCP_HLT:
900 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
901 rc = VINF_EM_HALT;
902 break;
903
904 /*
905 * The VM has halted.
906 */
907 case EXCP_HALTED:
908 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
909 rc = VINF_EM_HALT;
910 break;
911
912 /*
913 * Breakpoint/single step.
914 */
915 case EXCP_DEBUG:
916 {
917#if 0//def DEBUG_bird
918 static int iBP = 0;
919 printf("howdy, breakpoint! iBP=%d\n", iBP);
920 switch (iBP)
921 {
922 case 0:
923 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
924 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
925 //pVM->rem.s.Env.interrupt_request = 0;
926 //pVM->rem.s.Env.exception_index = -1;
927 //g_fInterruptDisabled = 1;
928 rc = VINF_SUCCESS;
929 asm("int3");
930 break;
931 default:
932 asm("int3");
933 break;
934 }
935 iBP++;
936#else
937 /* breakpoint or single step? */
938 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
939 int iBP;
940 rc = VINF_EM_DBG_STEPPED;
941 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
942 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
943 {
944 rc = VINF_EM_DBG_BREAKPOINT;
945 break;
946 }
947 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Rrc iBP=%d GCPtrPC=%RGv\n", rc, iBP, GCPtrPC));
948#endif
949 break;
950 }
951
952 /*
953 * Switch to RAW-mode.
954 */
955 case EXCP_EXECUTE_RAW:
956 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
957 rc = VINF_EM_RESCHEDULE_RAW;
958 break;
959
960 /*
961 * Switch to hardware accelerated RAW-mode.
962 */
963 case EXCP_EXECUTE_HWACC:
964 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
965 rc = VINF_EM_RESCHEDULE_HWACC;
966 break;
967
968 /*
969 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
970 */
971 case EXCP_RC:
972 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc));
973 rc = pVM->rem.s.rc;
974 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
975 break;
976
977 /*
978 * Figure out the rest when they arrive....
979 */
980 default:
981 AssertMsgFailed(("rc=%d\n", rc));
982 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
983 rc = VINF_SUCCESS;
984 break;
985 }
986
987 Log2(("REMR3Run: returns %Rrc (cs:eip=%04x:%RGv)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
988 return rc;
989}
990
991
992/**
993 * Check if the cpu state is suitable for Raw execution.
994 *
995 * @returns boolean
996 * @param env The CPU env struct.
997 * @param eip The EIP to check this for (might differ from env->eip).
998 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
999 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1000 *
1001 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1002 */
1003bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1004{
1005 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1006 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1007 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1008 uint32_t u32CR0;
1009
1010 /* Update counter. */
1011 env->pVM->rem.s.cCanExecuteRaw++;
1012
1013 if (HWACCMIsEnabled(env->pVM))
1014 {
1015 CPUMCTX Ctx;
1016
1017 env->state |= CPU_RAW_HWACC;
1018
1019 /*
1020 * Create partial context for HWACCMR3CanExecuteGuest
1021 */
1022 Ctx.cr0 = env->cr[0];
1023 Ctx.cr3 = env->cr[3];
1024 Ctx.cr4 = env->cr[4];
1025
1026 Ctx.tr = env->tr.selector;
1027 Ctx.trHid.u64Base = env->tr.base;
1028 Ctx.trHid.u32Limit = env->tr.limit;
1029 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1030
1031 Ctx.idtr.cbIdt = env->idt.limit;
1032 Ctx.idtr.pIdt = env->idt.base;
1033
1034 Ctx.eflags.u32 = env->eflags;
1035
1036 Ctx.cs = env->segs[R_CS].selector;
1037 Ctx.csHid.u64Base = env->segs[R_CS].base;
1038 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1039 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1040
1041 Ctx.ds = env->segs[R_DS].selector;
1042 Ctx.dsHid.u64Base = env->segs[R_DS].base;
1043 Ctx.dsHid.u32Limit = env->segs[R_DS].limit;
1044 Ctx.dsHid.Attr.u = (env->segs[R_DS].flags >> 8) & 0xF0FF;
1045
1046 Ctx.es = env->segs[R_ES].selector;
1047 Ctx.esHid.u64Base = env->segs[R_ES].base;
1048 Ctx.esHid.u32Limit = env->segs[R_ES].limit;
1049 Ctx.esHid.Attr.u = (env->segs[R_ES].flags >> 8) & 0xF0FF;
1050
1051 Ctx.fs = env->segs[R_FS].selector;
1052 Ctx.fsHid.u64Base = env->segs[R_FS].base;
1053 Ctx.fsHid.u32Limit = env->segs[R_FS].limit;
1054 Ctx.fsHid.Attr.u = (env->segs[R_FS].flags >> 8) & 0xF0FF;
1055
1056 Ctx.gs = env->segs[R_GS].selector;
1057 Ctx.gsHid.u64Base = env->segs[R_GS].base;
1058 Ctx.gsHid.u32Limit = env->segs[R_GS].limit;
1059 Ctx.gsHid.Attr.u = (env->segs[R_GS].flags >> 8) & 0xF0FF;
1060
1061 Ctx.ss = env->segs[R_SS].selector;
1062 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1063 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1064 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1065
1066 Ctx.msrEFER = env->efer;
1067
1068 /* Hardware accelerated raw-mode:
1069 *
1070 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1071 */
1072 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1073 {
1074 *piException = EXCP_EXECUTE_HWACC;
1075 return true;
1076 }
1077 return false;
1078 }
1079
1080 /*
1081 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1082 * or 32 bits protected mode ring 0 code
1083 *
1084 * The tests are ordered by the likelyhood of being true during normal execution.
1085 */
1086 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1087 {
1088 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1089 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1090 return false;
1091 }
1092
1093#ifndef VBOX_RAW_V86
1094 if (fFlags & VM_MASK) {
1095 STAM_COUNTER_INC(&gStatRefuseVM86);
1096 Log2(("raw mode refused: VM_MASK\n"));
1097 return false;
1098 }
1099#endif
1100
1101 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1102 {
1103#ifndef DEBUG_bird
1104 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1105#endif
1106 return false;
1107 }
1108
1109 if (env->singlestep_enabled)
1110 {
1111 //Log2(("raw mode refused: Single step\n"));
1112 return false;
1113 }
1114
1115 if (env->nb_breakpoints > 0)
1116 {
1117 //Log2(("raw mode refused: Breakpoints\n"));
1118 return false;
1119 }
1120
1121 u32CR0 = env->cr[0];
1122 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1123 {
1124 STAM_COUNTER_INC(&gStatRefusePaging);
1125 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1126 return false;
1127 }
1128
1129 if (env->cr[4] & CR4_PAE_MASK)
1130 {
1131 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1132 {
1133 STAM_COUNTER_INC(&gStatRefusePAE);
1134 return false;
1135 }
1136 }
1137
1138 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1139 {
1140 if (!EMIsRawRing3Enabled(env->pVM))
1141 return false;
1142
1143 if (!(env->eflags & IF_MASK))
1144 {
1145 STAM_COUNTER_INC(&gStatRefuseIF0);
1146 Log2(("raw mode refused: IF (RawR3)\n"));
1147 return false;
1148 }
1149
1150 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1151 {
1152 STAM_COUNTER_INC(&gStatRefuseWP0);
1153 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1154 return false;
1155 }
1156 }
1157 else
1158 {
1159 if (!EMIsRawRing0Enabled(env->pVM))
1160 return false;
1161
1162 // Let's start with pure 32 bits ring 0 code first
1163 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1164 {
1165 STAM_COUNTER_INC(&gStatRefuseCode16);
1166 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1167 return false;
1168 }
1169
1170 // Only R0
1171 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1172 {
1173 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1174 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1175 return false;
1176 }
1177
1178 if (!(u32CR0 & CR0_WP_MASK))
1179 {
1180 STAM_COUNTER_INC(&gStatRefuseWP0);
1181 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1182 return false;
1183 }
1184
1185 if (PATMIsPatchGCAddr(env->pVM, eip))
1186 {
1187 Log2(("raw r0 mode forced: patch code\n"));
1188 *piException = EXCP_EXECUTE_RAW;
1189 return true;
1190 }
1191
1192#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1193 if (!(env->eflags & IF_MASK))
1194 {
1195 STAM_COUNTER_INC(&gStatRefuseIF0);
1196 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1197 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1198 return false;
1199 }
1200#endif
1201
1202 env->state |= CPU_RAW_RING0;
1203 }
1204
1205 /*
1206 * Don't reschedule the first time we're called, because there might be
1207 * special reasons why we're here that is not covered by the above checks.
1208 */
1209 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1210 {
1211 Log2(("raw mode refused: first scheduling\n"));
1212 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1213 return false;
1214 }
1215
1216 Assert(PGMPhysIsA20Enabled(env->pVM));
1217 *piException = EXCP_EXECUTE_RAW;
1218 return true;
1219}
1220
1221
1222/**
1223 * Fetches a code byte.
1224 *
1225 * @returns Success indicator (bool) for ease of use.
1226 * @param env The CPU environment structure.
1227 * @param GCPtrInstr Where to fetch code.
1228 * @param pu8Byte Where to store the byte on success
1229 */
1230bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1231{
1232 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1233 if (RT_SUCCESS(rc))
1234 return true;
1235 return false;
1236}
1237
1238
1239/**
1240 * Flush (or invalidate if you like) page table/dir entry.
1241 *
1242 * (invlpg instruction; tlb_flush_page)
1243 *
1244 * @param env Pointer to cpu environment.
1245 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1246 */
1247void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1248{
1249 PVM pVM = env->pVM;
1250 PCPUMCTX pCtx;
1251 int rc;
1252
1253 /*
1254 * When we're replaying invlpg instructions or restoring a saved
1255 * state we disable this path.
1256 */
1257 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1258 return;
1259 Log(("remR3FlushPage: GCPtr=%RGv\n", GCPtr));
1260 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1261
1262 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1263
1264 /*
1265 * Update the control registers before calling PGMFlushPage.
1266 */
1267 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1268 pCtx->cr0 = env->cr[0];
1269 pCtx->cr3 = env->cr[3];
1270 pCtx->cr4 = env->cr[4];
1271
1272 /*
1273 * Let PGM do the rest.
1274 */
1275 rc = PGMInvalidatePage(pVM, GCPtr);
1276 if (RT_FAILURE(rc))
1277 {
1278 AssertMsgFailed(("remR3FlushPage %RGv failed with %d!!\n", GCPtr, rc));
1279 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1280 }
1281 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1282}
1283
1284
1285#ifndef REM_PHYS_ADDR_IN_TLB
1286void* remR3GCPhys2HCVirt(CPUState *env1, target_ulong physAddr, target_ulong virtAddr)
1287{
1288 void* rv = NULL;
1289 int rc;
1290 uint32_t flags = PGMPHYS_TRANSLATION_FLAG_CHECK_PHYS_MONITORED;
1291
1292 if (virtAddr != (target_ulong)-1)
1293 flags |= PGMPHYS_TRANSLATION_FLAG_CHECK_VIRT_MONITORED;
1294
1295 rc = PGMPhysGCPhys2R3PtrEx(env1->pVM, (RTGCPHYS)physAddr, (RTGCPTR)virtAddr,
1296 flags, &rv);
1297
1298 if (rc == VERR_PGM_PHYS_PAGE_RESERVED)
1299 {
1300 rv = (void*)((uintptr_t)rv | 1);
1301 rc = 0;
1302 }
1303 Assert (RT_SUCCESS(rc));
1304
1305 return rv;
1306}
1307
1308target_ulong remR3HCVirt2GCPhys(CPUState *env1, void *addr)
1309{
1310 RTGCPHYS rv = 0;
1311 int rc;
1312
1313 rc = PGMR3DbgR3Ptr2GCPhys(env1->pVM, (RTR3PTR)addr, &rv);
1314 Assert (RT_SUCCESS(rc));
1315
1316 return (target_ulong)rv;
1317}
1318#endif
1319
1320/**
1321 * Called from tlb_protect_code in order to write monitor a code page.
1322 *
1323 * @param env Pointer to the CPU environment.
1324 * @param GCPtr Code page to monitor
1325 */
1326void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1327{
1328#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1329 Assert(env->pVM->rem.s.fInREM);
1330 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1331 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1332 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1333 && !(env->eflags & VM_MASK) /* no V86 mode */
1334 && !HWACCMIsEnabled(env->pVM))
1335 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1336#endif
1337}
1338
1339/**
1340 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1341 *
1342 * @param env Pointer to the CPU environment.
1343 * @param GCPtr Code page to monitor
1344 */
1345void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1346{
1347 Assert(env->pVM->rem.s.fInREM);
1348#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1349 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1350 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1351 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1352 && !(env->eflags & VM_MASK) /* no V86 mode */
1353 && !HWACCMIsEnabled(env->pVM))
1354 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1355#endif
1356}
1357
1358/**
1359 * Called when the CPU is initialized, any of the CRx registers are changed or
1360 * when the A20 line is modified.
1361 *
1362 * @param env Pointer to the CPU environment.
1363 * @param fGlobal Set if the flush is global.
1364 */
1365void remR3FlushTLB(CPUState *env, bool fGlobal)
1366{
1367 PVM pVM = env->pVM;
1368 PCPUMCTX pCtx;
1369
1370 /*
1371 * When we're replaying invlpg instructions or restoring a saved
1372 * state we disable this path.
1373 */
1374 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1375 return;
1376 Assert(pVM->rem.s.fInREM);
1377
1378 /*
1379 * The caller doesn't check cr4, so we have to do that for ourselves.
1380 */
1381 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1382 fGlobal = true;
1383 Log(("remR3FlushTLB: CR0=%RGr CR3=%RGr CR4=%RGr %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1384
1385 /*
1386 * Update the control registers before calling PGMR3FlushTLB.
1387 */
1388 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1389 pCtx->cr0 = env->cr[0];
1390 pCtx->cr3 = env->cr[3];
1391 pCtx->cr4 = env->cr[4];
1392
1393 /*
1394 * Let PGM do the rest.
1395 */
1396 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1397}
1398
1399
1400/**
1401 * Called when any of the cr0, cr4 or efer registers is updated.
1402 *
1403 * @param env Pointer to the CPU environment.
1404 */
1405void remR3ChangeCpuMode(CPUState *env)
1406{
1407 int rc;
1408 PVM pVM = env->pVM;
1409 PCPUMCTX pCtx;
1410
1411 /*
1412 * When we're replaying loads or restoring a saved
1413 * state this path is disabled.
1414 */
1415 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1416 return;
1417 Assert(pVM->rem.s.fInREM);
1418
1419 /*
1420 * Update the control registers before calling PGMChangeMode()
1421 * as it may need to map whatever cr3 is pointing to.
1422 */
1423 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1424 pCtx->cr0 = env->cr[0];
1425 pCtx->cr3 = env->cr[3];
1426 pCtx->cr4 = env->cr[4];
1427
1428#ifdef TARGET_X86_64
1429 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1430 if (rc != VINF_SUCCESS)
1431 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], env->efer, rc);
1432#else
1433 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1434 if (rc != VINF_SUCCESS)
1435 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], 0LL, rc);
1436#endif
1437}
1438
1439
1440/**
1441 * Called from compiled code to run dma.
1442 *
1443 * @param env Pointer to the CPU environment.
1444 */
1445void remR3DmaRun(CPUState *env)
1446{
1447 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1448 PDMR3DmaRun(env->pVM);
1449 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1450}
1451
1452
1453/**
1454 * Called from compiled code to schedule pending timers in VMM
1455 *
1456 * @param env Pointer to the CPU environment.
1457 */
1458void remR3TimersRun(CPUState *env)
1459{
1460 LogFlow(("remR3TimersRun:\n"));
1461 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1462 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1463 TMR3TimerQueuesDo(env->pVM);
1464 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1465 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1466}
1467
1468
1469/**
1470 * Record trap occurance
1471 *
1472 * @returns VBox status code
1473 * @param env Pointer to the CPU environment.
1474 * @param uTrap Trap nr
1475 * @param uErrorCode Error code
1476 * @param pvNextEIP Next EIP
1477 */
1478int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, RTGCPTR pvNextEIP)
1479{
1480 PVM pVM = env->pVM;
1481#ifdef VBOX_WITH_STATISTICS
1482 static STAMCOUNTER s_aStatTrap[255];
1483 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1484#endif
1485
1486#ifdef VBOX_WITH_STATISTICS
1487 if (uTrap < 255)
1488 {
1489 if (!s_aRegisters[uTrap])
1490 {
1491 char szStatName[64];
1492 s_aRegisters[uTrap] = true;
1493 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1494 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1495 }
1496 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1497 }
1498#endif
1499 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
1500 if( uTrap < 0x20
1501 && (env->cr[0] & X86_CR0_PE)
1502 && !(env->eflags & X86_EFL_VM))
1503 {
1504#ifdef DEBUG
1505 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1506#endif
1507 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1508 {
1509 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
1510 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1511 return VERR_REM_TOO_MANY_TRAPS;
1512 }
1513 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1514 pVM->rem.s.cPendingExceptions = 1;
1515 pVM->rem.s.uPendingException = uTrap;
1516 pVM->rem.s.uPendingExcptEIP = env->eip;
1517 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1518 }
1519 else
1520 {
1521 pVM->rem.s.cPendingExceptions = 0;
1522 pVM->rem.s.uPendingException = uTrap;
1523 pVM->rem.s.uPendingExcptEIP = env->eip;
1524 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1525 }
1526 return VINF_SUCCESS;
1527}
1528
1529
1530/*
1531 * Clear current active trap
1532 *
1533 * @param pVM VM Handle.
1534 */
1535void remR3TrapClear(PVM pVM)
1536{
1537 pVM->rem.s.cPendingExceptions = 0;
1538 pVM->rem.s.uPendingException = 0;
1539 pVM->rem.s.uPendingExcptEIP = 0;
1540 pVM->rem.s.uPendingExcptCR2 = 0;
1541}
1542
1543
1544/*
1545 * Record previous call instruction addresses
1546 *
1547 * @param env Pointer to the CPU environment.
1548 */
1549void remR3RecordCall(CPUState *env)
1550{
1551 CSAMR3RecordCallAddress(env->pVM, env->eip);
1552}
1553
1554
1555/**
1556 * Syncs the internal REM state with the VM.
1557 *
1558 * This must be called before REMR3Run() is invoked whenever when the REM
1559 * state is not up to date. Calling it several times in a row is not
1560 * permitted.
1561 *
1562 * @returns VBox status code.
1563 *
1564 * @param pVM VM Handle.
1565 * @param fFlushTBs Flush all translation blocks before executing code
1566 *
1567 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1568 * no do this since the majority of the callers don't want any unnecessary of events
1569 * pending that would immediatly interrupt execution.
1570 */
1571REMR3DECL(int) REMR3State(PVM pVM)
1572{
1573 register const CPUMCTX *pCtx;
1574 register unsigned fFlags;
1575 bool fHiddenSelRegsValid;
1576 unsigned i;
1577 TRPMEVENT enmType;
1578 uint8_t u8TrapNo;
1579 int rc;
1580
1581 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1582 Log2(("REMR3State:\n"));
1583
1584 pCtx = pVM->rem.s.pCtx;
1585 fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1586
1587 Assert(!pVM->rem.s.fInREM);
1588 pVM->rem.s.fInStateSync = true;
1589
1590 /*
1591 * If we have to flush TBs, do that immediately.
1592 */
1593 if (pVM->rem.s.fFlushTBs)
1594 {
1595 STAM_COUNTER_INC(&gStatFlushTBs);
1596 tb_flush(&pVM->rem.s.Env);
1597 pVM->rem.s.fFlushTBs = false;
1598 }
1599
1600 /*
1601 * Copy the registers which require no special handling.
1602 */
1603#ifdef TARGET_X86_64
1604 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
1605 Assert(R_EAX == 0);
1606 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1607 Assert(R_ECX == 1);
1608 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1609 Assert(R_EDX == 2);
1610 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1611 Assert(R_EBX == 3);
1612 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1613 Assert(R_ESP == 4);
1614 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1615 Assert(R_EBP == 5);
1616 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1617 Assert(R_ESI == 6);
1618 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1619 Assert(R_EDI == 7);
1620 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1621 pVM->rem.s.Env.regs[8] = pCtx->r8;
1622 pVM->rem.s.Env.regs[9] = pCtx->r9;
1623 pVM->rem.s.Env.regs[10] = pCtx->r10;
1624 pVM->rem.s.Env.regs[11] = pCtx->r11;
1625 pVM->rem.s.Env.regs[12] = pCtx->r12;
1626 pVM->rem.s.Env.regs[13] = pCtx->r13;
1627 pVM->rem.s.Env.regs[14] = pCtx->r14;
1628 pVM->rem.s.Env.regs[15] = pCtx->r15;
1629
1630 pVM->rem.s.Env.eip = pCtx->rip;
1631
1632 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1633#else
1634 Assert(R_EAX == 0);
1635 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1636 Assert(R_ECX == 1);
1637 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1638 Assert(R_EDX == 2);
1639 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1640 Assert(R_EBX == 3);
1641 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1642 Assert(R_ESP == 4);
1643 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1644 Assert(R_EBP == 5);
1645 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1646 Assert(R_ESI == 6);
1647 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1648 Assert(R_EDI == 7);
1649 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1650 pVM->rem.s.Env.eip = pCtx->eip;
1651
1652 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1653#endif
1654
1655 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1656
1657 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1658 for (i=0;i<8;i++)
1659 pVM->rem.s.Env.dr[i] = pCtx->dr[i];
1660
1661 /*
1662 * Clear the halted hidden flag (the interrupt waking up the CPU can
1663 * have been dispatched in raw mode).
1664 */
1665 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1666
1667 /*
1668 * Replay invlpg?
1669 */
1670 if (pVM->rem.s.cInvalidatedPages)
1671 {
1672 RTUINT i;
1673
1674 pVM->rem.s.fIgnoreInvlPg = true;
1675 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1676 {
1677 Log2(("REMR3State: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1678 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1679 }
1680 pVM->rem.s.fIgnoreInvlPg = false;
1681 pVM->rem.s.cInvalidatedPages = 0;
1682 }
1683
1684 /* Replay notification changes? */
1685 if (pVM->rem.s.cHandlerNotifications)
1686 REMR3ReplayHandlerNotifications(pVM);
1687
1688 /* Update MSRs; before CRx registers! */
1689 pVM->rem.s.Env.efer = pCtx->msrEFER;
1690 pVM->rem.s.Env.star = pCtx->msrSTAR;
1691 pVM->rem.s.Env.pat = pCtx->msrPAT;
1692#ifdef TARGET_X86_64
1693 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1694 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1695 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1696 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1697
1698 /* Update the internal long mode activate flag according to the new EFER value. */
1699 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1700 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
1701 else
1702 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
1703#endif
1704
1705
1706 /*
1707 * Registers which are rarely changed and require special handling / order when changed.
1708 */
1709 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1710 LogFlow(("CPUMGetAndClearChangedFlagsREM %x\n", fFlags));
1711 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1712 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1713 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1714 {
1715 if (fFlags & CPUM_CHANGED_FPU_REM)
1716 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1717
1718 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1719 {
1720 pVM->rem.s.fIgnoreCR3Load = true;
1721 tlb_flush(&pVM->rem.s.Env, true);
1722 pVM->rem.s.fIgnoreCR3Load = false;
1723 }
1724
1725 /* CR4 before CR0! */
1726 if (fFlags & CPUM_CHANGED_CR4)
1727 {
1728 pVM->rem.s.fIgnoreCR3Load = true;
1729 pVM->rem.s.fIgnoreCpuMode = true;
1730 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1731 pVM->rem.s.fIgnoreCpuMode = false;
1732 pVM->rem.s.fIgnoreCR3Load = false;
1733 }
1734
1735 if (fFlags & CPUM_CHANGED_CR0)
1736 {
1737 pVM->rem.s.fIgnoreCR3Load = true;
1738 pVM->rem.s.fIgnoreCpuMode = true;
1739 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1740 pVM->rem.s.fIgnoreCpuMode = false;
1741 pVM->rem.s.fIgnoreCR3Load = false;
1742 }
1743
1744 if (fFlags & CPUM_CHANGED_CR3)
1745 {
1746 pVM->rem.s.fIgnoreCR3Load = true;
1747 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1748 pVM->rem.s.fIgnoreCR3Load = false;
1749 }
1750
1751 if (fFlags & CPUM_CHANGED_GDTR)
1752 {
1753 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1754 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1755 }
1756
1757 if (fFlags & CPUM_CHANGED_IDTR)
1758 {
1759 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1760 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1761 }
1762
1763 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1764 {
1765 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1766 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1767 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1768 }
1769
1770 if (fFlags & CPUM_CHANGED_LDTR)
1771 {
1772 if (fHiddenSelRegsValid)
1773 {
1774 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1775 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1776 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1777 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1778 }
1779 else
1780 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1781 }
1782
1783 if (fFlags & CPUM_CHANGED_TR)
1784 {
1785 if (fHiddenSelRegsValid)
1786 {
1787 pVM->rem.s.Env.tr.selector = pCtx->tr;
1788 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1789 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1790 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1791 }
1792 else
1793 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1794
1795 /** @note do_interrupt will fault if the busy flag is still set.... */
1796 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1797 }
1798
1799 if (fFlags & CPUM_CHANGED_CPUID)
1800 {
1801 uint32_t u32Dummy;
1802
1803 /*
1804 * Get the CPUID features.
1805 */
1806 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1807 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1808 }
1809 }
1810
1811 /*
1812 * Update selector registers.
1813 * This must be done *after* we've synced gdt, ldt and crX registers
1814 * since we're reading the GDT/LDT om sync_seg. This will happen with
1815 * saved state which takes a quick dip into rawmode for instance.
1816 */
1817 /*
1818 * Stack; Note first check this one as the CPL might have changed. The
1819 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1820 */
1821
1822 if (fHiddenSelRegsValid)
1823 {
1824 /* The hidden selector registers are valid in the CPU context. */
1825 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1826
1827 /* Set current CPL */
1828 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1829
1830 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1831 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1832 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1833 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1834 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1835 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1836 }
1837 else
1838 {
1839 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1840 if (pVM->rem.s.Env.segs[R_SS].selector != pCtx->ss)
1841 {
1842 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1843
1844 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1845 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1846#ifdef VBOX_WITH_STATISTICS
1847 if (pVM->rem.s.Env.segs[R_SS].newselector)
1848 {
1849 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1850 }
1851#endif
1852 }
1853 else
1854 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1855
1856 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1857 {
1858 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1859 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1860#ifdef VBOX_WITH_STATISTICS
1861 if (pVM->rem.s.Env.segs[R_ES].newselector)
1862 {
1863 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1864 }
1865#endif
1866 }
1867 else
1868 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1869
1870 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1871 {
1872 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1873 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1874#ifdef VBOX_WITH_STATISTICS
1875 if (pVM->rem.s.Env.segs[R_CS].newselector)
1876 {
1877 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1878 }
1879#endif
1880 }
1881 else
1882 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1883
1884 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1885 {
1886 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1887 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1888#ifdef VBOX_WITH_STATISTICS
1889 if (pVM->rem.s.Env.segs[R_DS].newselector)
1890 {
1891 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1892 }
1893#endif
1894 }
1895 else
1896 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1897
1898 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1899 * be the same but not the base/limit. */
1900 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1901 {
1902 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1903 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1904#ifdef VBOX_WITH_STATISTICS
1905 if (pVM->rem.s.Env.segs[R_FS].newselector)
1906 {
1907 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1908 }
1909#endif
1910 }
1911 else
1912 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1913
1914 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1915 {
1916 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1917 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1918#ifdef VBOX_WITH_STATISTICS
1919 if (pVM->rem.s.Env.segs[R_GS].newselector)
1920 {
1921 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1922 }
1923#endif
1924 }
1925 else
1926 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1927 }
1928
1929 /*
1930 * Check for traps.
1931 */
1932 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1933 rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1934 if (RT_SUCCESS(rc))
1935 {
1936#ifdef DEBUG
1937 if (u8TrapNo == 0x80)
1938 {
1939 remR3DumpLnxSyscall(pVM);
1940 remR3DumpOBsdSyscall(pVM);
1941 }
1942#endif
1943
1944 pVM->rem.s.Env.exception_index = u8TrapNo;
1945 if (enmType != TRPM_SOFTWARE_INT)
1946 {
1947 pVM->rem.s.Env.exception_is_int = 0;
1948 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1949 }
1950 else
1951 {
1952 /*
1953 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1954 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1955 * for int03 and into.
1956 */
1957 pVM->rem.s.Env.exception_is_int = 1;
1958 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 2;
1959 /* int 3 may be generated by one-byte 0xcc */
1960 if (u8TrapNo == 3)
1961 {
1962 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xcc)
1963 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
1964 }
1965 /* int 4 may be generated by one-byte 0xce */
1966 else if (u8TrapNo == 4)
1967 {
1968 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xce)
1969 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
1970 }
1971 }
1972
1973 /* get error code and cr2 if needed. */
1974 switch (u8TrapNo)
1975 {
1976 case 0x0e:
1977 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
1978 /* fallthru */
1979 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
1980 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
1981 break;
1982
1983 case 0x11: case 0x08:
1984 default:
1985 pVM->rem.s.Env.error_code = 0;
1986 break;
1987 }
1988
1989 /*
1990 * We can now reset the active trap since the recompiler is gonna have a go at it.
1991 */
1992 rc = TRPMResetTrap(pVM);
1993 AssertRC(rc);
1994 Log2(("REMR3State: trap=%02x errcd=%RGv cr2=%RGv nexteip=%RGv%s\n", pVM->rem.s.Env.exception_index, (RTGCPTR)pVM->rem.s.Env.error_code,
1995 (RTGCPTR)pVM->rem.s.Env.cr[2], (RTGCPTR)pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
1996 }
1997
1998 /*
1999 * Clear old interrupt request flags; Check for pending hardware interrupts.
2000 * (See @remark for why we don't check for other FFs.)
2001 */
2002 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2003 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2004 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2005 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2006
2007 /*
2008 * We're now in REM mode.
2009 */
2010 pVM->rem.s.fInREM = true;
2011 pVM->rem.s.fInStateSync = false;
2012 pVM->rem.s.cCanExecuteRaw = 0;
2013 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2014 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2015 return VINF_SUCCESS;
2016}
2017
2018
2019/**
2020 * Syncs back changes in the REM state to the the VM state.
2021 *
2022 * This must be called after invoking REMR3Run().
2023 * Calling it several times in a row is not permitted.
2024 *
2025 * @returns VBox status code.
2026 *
2027 * @param pVM VM Handle.
2028 */
2029REMR3DECL(int) REMR3StateBack(PVM pVM)
2030{
2031 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2032 unsigned i;
2033
2034 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2035 Log2(("REMR3StateBack:\n"));
2036 Assert(pVM->rem.s.fInREM);
2037
2038 /*
2039 * Copy back the registers.
2040 * This is done in the order they are declared in the CPUMCTX structure.
2041 */
2042
2043 /** @todo FOP */
2044 /** @todo FPUIP */
2045 /** @todo CS */
2046 /** @todo FPUDP */
2047 /** @todo DS */
2048 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2049 pCtx->fpu.MXCSR = 0;
2050 pCtx->fpu.MXCSR_MASK = 0;
2051
2052 /** @todo check if FPU/XMM was actually used in the recompiler */
2053 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2054//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2055
2056#ifdef TARGET_X86_64
2057 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2058 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2059 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2060 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2061 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2062 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2063 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2064 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2065 pCtx->r8 = pVM->rem.s.Env.regs[8];
2066 pCtx->r9 = pVM->rem.s.Env.regs[9];
2067 pCtx->r10 = pVM->rem.s.Env.regs[10];
2068 pCtx->r11 = pVM->rem.s.Env.regs[11];
2069 pCtx->r12 = pVM->rem.s.Env.regs[12];
2070 pCtx->r13 = pVM->rem.s.Env.regs[13];
2071 pCtx->r14 = pVM->rem.s.Env.regs[14];
2072 pCtx->r15 = pVM->rem.s.Env.regs[15];
2073
2074 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2075
2076#else
2077 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2078 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2079 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2080 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2081 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2082 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2083 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2084
2085 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2086#endif
2087
2088 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2089
2090#ifdef VBOX_WITH_STATISTICS
2091 if (pVM->rem.s.Env.segs[R_SS].newselector)
2092 {
2093 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2094 }
2095 if (pVM->rem.s.Env.segs[R_GS].newselector)
2096 {
2097 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2098 }
2099 if (pVM->rem.s.Env.segs[R_FS].newselector)
2100 {
2101 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2102 }
2103 if (pVM->rem.s.Env.segs[R_ES].newselector)
2104 {
2105 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2106 }
2107 if (pVM->rem.s.Env.segs[R_DS].newselector)
2108 {
2109 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2110 }
2111 if (pVM->rem.s.Env.segs[R_CS].newselector)
2112 {
2113 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2114 }
2115#endif
2116 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2117 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2118 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2119 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2120 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2121
2122#ifdef TARGET_X86_64
2123 pCtx->rip = pVM->rem.s.Env.eip;
2124 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2125#else
2126 pCtx->eip = pVM->rem.s.Env.eip;
2127 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2128#endif
2129
2130 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2131 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2132 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2133 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2134
2135 for (i=0;i<8;i++)
2136 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2137
2138 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2139 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2140 {
2141 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2142 STAM_COUNTER_INC(&gStatREMGDTChange);
2143 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2144 }
2145
2146 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2147 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2148 {
2149 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2150 STAM_COUNTER_INC(&gStatREMIDTChange);
2151 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2152 }
2153
2154 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2155 {
2156 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2157 STAM_COUNTER_INC(&gStatREMLDTRChange);
2158 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2159 }
2160 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2161 {
2162 pCtx->tr = pVM->rem.s.Env.tr.selector;
2163 STAM_COUNTER_INC(&gStatREMTRChange);
2164 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2165 }
2166
2167 /** @todo These values could still be out of sync! */
2168 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2169 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2170 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2171 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2172
2173 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2174 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2175 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2176
2177 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2178 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2179 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2180
2181 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2182 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2183 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2184
2185 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2186 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2187 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2188
2189 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2190 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2191 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2192
2193 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2194 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2195 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2196
2197 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2198 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2199 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2200
2201 /* Sysenter MSR */
2202 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2203 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2204 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2205
2206 /* System MSRs. */
2207 pCtx->msrEFER = pVM->rem.s.Env.efer;
2208 pCtx->msrSTAR = pVM->rem.s.Env.star;
2209 pCtx->msrPAT = pVM->rem.s.Env.pat;
2210#ifdef TARGET_X86_64
2211 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2212 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2213 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2214 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2215#endif
2216
2217 remR3TrapClear(pVM);
2218
2219 /*
2220 * Check for traps.
2221 */
2222 if ( pVM->rem.s.Env.exception_index >= 0
2223 && pVM->rem.s.Env.exception_index < 256)
2224 {
2225 int rc;
2226
2227 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2228 rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2229 AssertRC(rc);
2230 switch (pVM->rem.s.Env.exception_index)
2231 {
2232 case 0x0e:
2233 TRPMSetFaultAddress(pVM, pCtx->cr2);
2234 /* fallthru */
2235 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2236 case 0x11: case 0x08: /* 0 */
2237 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2238 break;
2239 }
2240
2241 }
2242
2243 /*
2244 * We're not longer in REM mode.
2245 */
2246 pVM->rem.s.fInREM = false;
2247 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2248 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2249 return VINF_SUCCESS;
2250}
2251
2252
2253/**
2254 * This is called by the disassembler when it wants to update the cpu state
2255 * before for instance doing a register dump.
2256 */
2257static void remR3StateUpdate(PVM pVM)
2258{
2259 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2260 unsigned i;
2261
2262 Assert(pVM->rem.s.fInREM);
2263
2264 /*
2265 * Copy back the registers.
2266 * This is done in the order they are declared in the CPUMCTX structure.
2267 */
2268
2269 /** @todo FOP */
2270 /** @todo FPUIP */
2271 /** @todo CS */
2272 /** @todo FPUDP */
2273 /** @todo DS */
2274 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2275 pCtx->fpu.MXCSR = 0;
2276 pCtx->fpu.MXCSR_MASK = 0;
2277
2278 /** @todo check if FPU/XMM was actually used in the recompiler */
2279 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2280//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2281
2282#ifdef TARGET_X86_64
2283 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2284 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2285 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2286 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2287 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2288 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2289 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2290 pCtx->r8 = pVM->rem.s.Env.regs[8];
2291 pCtx->r9 = pVM->rem.s.Env.regs[9];
2292 pCtx->r10 = pVM->rem.s.Env.regs[10];
2293 pCtx->r11 = pVM->rem.s.Env.regs[11];
2294 pCtx->r12 = pVM->rem.s.Env.regs[12];
2295 pCtx->r13 = pVM->rem.s.Env.regs[13];
2296 pCtx->r14 = pVM->rem.s.Env.regs[14];
2297 pCtx->r15 = pVM->rem.s.Env.regs[15];
2298
2299 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2300#else
2301 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2302 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2303 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2304 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2305 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2306 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2307 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2308
2309 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2310#endif
2311
2312 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2313
2314 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2315 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2316 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2317 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2318 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2319
2320#ifdef TARGET_X86_64
2321 pCtx->rip = pVM->rem.s.Env.eip;
2322 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2323#else
2324 pCtx->eip = pVM->rem.s.Env.eip;
2325 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2326#endif
2327
2328 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2329 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2330 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2331 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2332
2333 for (i=0;i<8;i++)
2334 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2335
2336 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2337 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2338 {
2339 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2340 STAM_COUNTER_INC(&gStatREMGDTChange);
2341 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2342 }
2343
2344 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2345 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2346 {
2347 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2348 STAM_COUNTER_INC(&gStatREMIDTChange);
2349 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2350 }
2351
2352 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2353 {
2354 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2355 STAM_COUNTER_INC(&gStatREMLDTRChange);
2356 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2357 }
2358 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2359 {
2360 pCtx->tr = pVM->rem.s.Env.tr.selector;
2361 STAM_COUNTER_INC(&gStatREMTRChange);
2362 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2363 }
2364
2365 /** @todo These values could still be out of sync! */
2366 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2367 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2368 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2369 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2370
2371 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2372 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2373 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2374
2375 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2376 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2377 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2378
2379 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2380 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2381 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2382
2383 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2384 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2385 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2386
2387 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2388 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2389 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2390
2391 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2392 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2393 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2394
2395 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2396 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2397 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2398
2399 /* Sysenter MSR */
2400 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2401 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2402 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2403
2404 /* System MSRs. */
2405 pCtx->msrEFER = pVM->rem.s.Env.efer;
2406 pCtx->msrSTAR = pVM->rem.s.Env.star;
2407 pCtx->msrPAT = pVM->rem.s.Env.pat;
2408#ifdef TARGET_X86_64
2409 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2410 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2411 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2412 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2413#endif
2414
2415}
2416
2417
2418/**
2419 * Update the VMM state information if we're currently in REM.
2420 *
2421 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2422 * we're currently executing in REM and the VMM state is invalid. This method will of
2423 * course check that we're executing in REM before syncing any data over to the VMM.
2424 *
2425 * @param pVM The VM handle.
2426 */
2427REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2428{
2429 if (pVM->rem.s.fInREM)
2430 remR3StateUpdate(pVM);
2431}
2432
2433
2434#undef LOG_GROUP
2435#define LOG_GROUP LOG_GROUP_REM
2436
2437
2438/**
2439 * Notify the recompiler about Address Gate 20 state change.
2440 *
2441 * This notification is required since A20 gate changes are
2442 * initialized from a device driver and the VM might just as
2443 * well be in REM mode as in RAW mode.
2444 *
2445 * @param pVM VM handle.
2446 * @param fEnable True if the gate should be enabled.
2447 * False if the gate should be disabled.
2448 */
2449REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2450{
2451 bool fSaved;
2452
2453 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2454 VM_ASSERT_EMT(pVM);
2455
2456 fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2457 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2458
2459 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2460
2461 pVM->rem.s.fIgnoreAll = fSaved;
2462}
2463
2464
2465/**
2466 * Replays the invalidated recorded pages.
2467 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2468 *
2469 * @param pVM VM handle.
2470 */
2471REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2472{
2473 RTUINT i;
2474
2475 VM_ASSERT_EMT(pVM);
2476
2477 /*
2478 * Sync the required registers.
2479 */
2480 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2481 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2482 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2483 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2484
2485 /*
2486 * Replay the flushes.
2487 */
2488 pVM->rem.s.fIgnoreInvlPg = true;
2489 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2490 {
2491 Log2(("REMR3ReplayInvalidatedPages: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2492 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2493 }
2494 pVM->rem.s.fIgnoreInvlPg = false;
2495 pVM->rem.s.cInvalidatedPages = 0;
2496}
2497
2498
2499/**
2500 * Replays the handler notification changes
2501 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
2502 *
2503 * @param pVM VM handle.
2504 */
2505REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2506{
2507 /*
2508 * Replay the flushes.
2509 */
2510 RTUINT i;
2511 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2512
2513 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2514 VM_ASSERT_EMT(pVM);
2515
2516 pVM->rem.s.cHandlerNotifications = 0;
2517 for (i = 0; i < c; i++)
2518 {
2519 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2520 switch (pRec->enmKind)
2521 {
2522 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2523 REMR3NotifyHandlerPhysicalRegister(pVM,
2524 pRec->u.PhysicalRegister.enmType,
2525 pRec->u.PhysicalRegister.GCPhys,
2526 pRec->u.PhysicalRegister.cb,
2527 pRec->u.PhysicalRegister.fHasHCHandler);
2528 break;
2529
2530 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2531 REMR3NotifyHandlerPhysicalDeregister(pVM,
2532 pRec->u.PhysicalDeregister.enmType,
2533 pRec->u.PhysicalDeregister.GCPhys,
2534 pRec->u.PhysicalDeregister.cb,
2535 pRec->u.PhysicalDeregister.fHasHCHandler,
2536 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2537 break;
2538
2539 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2540 REMR3NotifyHandlerPhysicalModify(pVM,
2541 pRec->u.PhysicalModify.enmType,
2542 pRec->u.PhysicalModify.GCPhysOld,
2543 pRec->u.PhysicalModify.GCPhysNew,
2544 pRec->u.PhysicalModify.cb,
2545 pRec->u.PhysicalModify.fHasHCHandler,
2546 pRec->u.PhysicalModify.fRestoreAsRAM);
2547 break;
2548
2549 default:
2550 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2551 break;
2552 }
2553 }
2554 VM_FF_CLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY);
2555}
2556
2557
2558/**
2559 * Notify REM about changed code page.
2560 *
2561 * @returns VBox status code.
2562 * @param pVM VM handle.
2563 * @param pvCodePage Code page address
2564 */
2565REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2566{
2567#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
2568 int rc;
2569 RTGCPHYS PhysGC;
2570 uint64_t flags;
2571
2572 VM_ASSERT_EMT(pVM);
2573
2574 /*
2575 * Get the physical page address.
2576 */
2577 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2578 if (rc == VINF_SUCCESS)
2579 {
2580 /*
2581 * Sync the required registers and flush the whole page.
2582 * (Easier to do the whole page than notifying it about each physical
2583 * byte that was changed.
2584 */
2585 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2586 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2587 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2588 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2589
2590 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2591 }
2592#endif
2593 return VINF_SUCCESS;
2594}
2595
2596
2597/**
2598 * Notification about a successful MMR3PhysRegister() call.
2599 *
2600 * @param pVM VM handle.
2601 * @param GCPhys The physical address the RAM.
2602 * @param cb Size of the memory.
2603 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2604 */
2605REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2606{
2607 uint32_t cbBitmap;
2608 int rc;
2609 Log(("REMR3NotifyPhysRamRegister: GCPhys=%RGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2610 VM_ASSERT_EMT(pVM);
2611
2612 /*
2613 * Validate input - we trust the caller.
2614 */
2615 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2616 Assert(cb);
2617 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2618
2619 /*
2620 * Base ram?
2621 */
2622 if (!GCPhys)
2623 {
2624 phys_ram_size = cb;
2625 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2626#ifndef VBOX_STRICT
2627 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2628 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2629#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2630 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2631 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2632 cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2633 rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2634 AssertRC(rc);
2635 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2636#endif
2637 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2638 }
2639
2640 /*
2641 * Register the ram.
2642 */
2643 Assert(!pVM->rem.s.fIgnoreAll);
2644 pVM->rem.s.fIgnoreAll = true;
2645
2646#ifdef VBOX_WITH_NEW_PHYS_CODE
2647 if (fFlags & MM_RAM_FLAGS_RESERVED)
2648 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2649 else
2650 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2651#else
2652 if (!GCPhys)
2653 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2654 else
2655 {
2656 if (fFlags & MM_RAM_FLAGS_RESERVED)
2657 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2658 else
2659 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2660 }
2661#endif
2662 Assert(pVM->rem.s.fIgnoreAll);
2663 pVM->rem.s.fIgnoreAll = false;
2664}
2665
2666#ifndef VBOX_WITH_NEW_PHYS_CODE
2667
2668/**
2669 * Notification about a successful PGMR3PhysRegisterChunk() call.
2670 *
2671 * @param pVM VM handle.
2672 * @param GCPhys The physical address the RAM.
2673 * @param cb Size of the memory.
2674 * @param pvRam The HC address of the RAM.
2675 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2676 */
2677REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2678{
2679 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%RGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2680 VM_ASSERT_EMT(pVM);
2681
2682 /*
2683 * Validate input - we trust the caller.
2684 */
2685 Assert(pvRam);
2686 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2687 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2688 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2689 Assert(fFlags == 0 /* normal RAM */);
2690 Assert(!pVM->rem.s.fIgnoreAll);
2691 pVM->rem.s.fIgnoreAll = true;
2692 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2693 Assert(pVM->rem.s.fIgnoreAll);
2694 pVM->rem.s.fIgnoreAll = false;
2695}
2696
2697
2698/**
2699 * Grows dynamically allocated guest RAM.
2700 * Will raise a fatal error if the operation fails.
2701 *
2702 * @param physaddr The physical address.
2703 */
2704void remR3GrowDynRange(unsigned long physaddr) /** @todo Needs fixing for MSC... */
2705{
2706 int rc;
2707 PVM pVM = cpu_single_env->pVM;
2708 const RTGCPHYS GCPhys = physaddr;
2709
2710 LogFlow(("remR3GrowDynRange %RGp\n", (RTGCPTR)physaddr));
2711 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2712 if (RT_SUCCESS(rc))
2713 return;
2714
2715 LogRel(("\nUnable to allocate guest RAM chunk at %RGp\n", (RTGCPTR)physaddr));
2716 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %RGp\n", (RTGCPTR)physaddr);
2717 AssertFatalFailed();
2718}
2719
2720#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2721
2722/**
2723 * Notification about a successful MMR3PhysRomRegister() call.
2724 *
2725 * @param pVM VM handle.
2726 * @param GCPhys The physical address of the ROM.
2727 * @param cb The size of the ROM.
2728 * @param pvCopy Pointer to the ROM copy.
2729 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2730 * This function will be called when ever the protection of the
2731 * shadow ROM changes (at reset and end of POST).
2732 */
2733REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2734{
2735 Log(("REMR3NotifyPhysRomRegister: GCPhys=%RGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2736 VM_ASSERT_EMT(pVM);
2737
2738 /*
2739 * Validate input - we trust the caller.
2740 */
2741 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2742 Assert(cb);
2743 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2744 Assert(pvCopy);
2745 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2746
2747 /*
2748 * Register the rom.
2749 */
2750 Assert(!pVM->rem.s.fIgnoreAll);
2751 pVM->rem.s.fIgnoreAll = true;
2752
2753 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2754
2755 Log2(("%.64Rhxd\n", (char *)pvCopy + cb - 64));
2756
2757 Assert(pVM->rem.s.fIgnoreAll);
2758 pVM->rem.s.fIgnoreAll = false;
2759}
2760
2761
2762/**
2763 * Notification about a successful memory deregistration or reservation.
2764 *
2765 * @param pVM VM Handle.
2766 * @param GCPhys Start physical address.
2767 * @param cb The size of the range.
2768 * @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
2769 * reserve any memory soon.
2770 */
2771REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2772{
2773 Log(("REMR3NotifyPhysReserve: GCPhys=%RGp cb=%d\n", GCPhys, cb));
2774 VM_ASSERT_EMT(pVM);
2775
2776 /*
2777 * Validate input - we trust the caller.
2778 */
2779 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2780 Assert(cb);
2781 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2782
2783 /*
2784 * Unassigning the memory.
2785 */
2786 Assert(!pVM->rem.s.fIgnoreAll);
2787 pVM->rem.s.fIgnoreAll = true;
2788
2789 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2790
2791 Assert(pVM->rem.s.fIgnoreAll);
2792 pVM->rem.s.fIgnoreAll = false;
2793}
2794
2795
2796/**
2797 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2798 *
2799 * @param pVM VM Handle.
2800 * @param enmType Handler type.
2801 * @param GCPhys Handler range address.
2802 * @param cb Size of the handler range.
2803 * @param fHasHCHandler Set if the handler has a HC callback function.
2804 *
2805 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2806 * Handler memory type to memory which has no HC handler.
2807 */
2808REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2809{
2810 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%d\n",
2811 enmType, GCPhys, cb, fHasHCHandler));
2812 VM_ASSERT_EMT(pVM);
2813 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2814 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2815
2816 if (pVM->rem.s.cHandlerNotifications)
2817 REMR3ReplayHandlerNotifications(pVM);
2818
2819 Assert(!pVM->rem.s.fIgnoreAll);
2820 pVM->rem.s.fIgnoreAll = true;
2821
2822 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2823 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2824 else if (fHasHCHandler)
2825 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2826
2827 Assert(pVM->rem.s.fIgnoreAll);
2828 pVM->rem.s.fIgnoreAll = false;
2829}
2830
2831
2832/**
2833 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2834 *
2835 * @param pVM VM Handle.
2836 * @param enmType Handler type.
2837 * @param GCPhys Handler range address.
2838 * @param cb Size of the handler range.
2839 * @param fHasHCHandler Set if the handler has a HC callback function.
2840 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2841 */
2842REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2843{
2844 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2845 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2846 VM_ASSERT_EMT(pVM);
2847
2848 if (pVM->rem.s.cHandlerNotifications)
2849 REMR3ReplayHandlerNotifications(pVM);
2850
2851 Assert(!pVM->rem.s.fIgnoreAll);
2852 pVM->rem.s.fIgnoreAll = true;
2853
2854/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2855 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2856 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2857 else if (fHasHCHandler)
2858 {
2859 if (!fRestoreAsRAM)
2860 {
2861 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2862 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2863 }
2864 else
2865 {
2866 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2867 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2868 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2869 }
2870 }
2871
2872 Assert(pVM->rem.s.fIgnoreAll);
2873 pVM->rem.s.fIgnoreAll = false;
2874}
2875
2876
2877/**
2878 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2879 *
2880 * @param pVM VM Handle.
2881 * @param enmType Handler type.
2882 * @param GCPhysOld Old handler range address.
2883 * @param GCPhysNew New handler range address.
2884 * @param cb Size of the handler range.
2885 * @param fHasHCHandler Set if the handler has a HC callback function.
2886 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2887 */
2888REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2889{
2890 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%RGp GCPhysNew=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2891 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2892 VM_ASSERT_EMT(pVM);
2893 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2894
2895 if (pVM->rem.s.cHandlerNotifications)
2896 REMR3ReplayHandlerNotifications(pVM);
2897
2898 if (fHasHCHandler)
2899 {
2900 Assert(!pVM->rem.s.fIgnoreAll);
2901 pVM->rem.s.fIgnoreAll = true;
2902
2903 /*
2904 * Reset the old page.
2905 */
2906 if (!fRestoreAsRAM)
2907 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2908 else
2909 {
2910 /* This is not perfect, but it'll do for PD monitoring... */
2911 Assert(cb == PAGE_SIZE);
2912 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2913 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2914 }
2915
2916 /*
2917 * Update the new page.
2918 */
2919 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2920 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2921 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2922
2923 Assert(pVM->rem.s.fIgnoreAll);
2924 pVM->rem.s.fIgnoreAll = false;
2925 }
2926}
2927
2928
2929/**
2930 * Checks if we're handling access to this page or not.
2931 *
2932 * @returns true if we're trapping access.
2933 * @returns false if we aren't.
2934 * @param pVM The VM handle.
2935 * @param GCPhys The physical address.
2936 *
2937 * @remark This function will only work correctly in VBOX_STRICT builds!
2938 */
2939REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2940{
2941#ifdef VBOX_STRICT
2942 unsigned long off;
2943 if (pVM->rem.s.cHandlerNotifications)
2944 REMR3ReplayHandlerNotifications(pVM);
2945
2946 off = get_phys_page_offset(GCPhys);
2947 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
2948 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
2949 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
2950#else
2951 return false;
2952#endif
2953}
2954
2955
2956/**
2957 * Deals with a rare case in get_phys_addr_code where the code
2958 * is being monitored.
2959 *
2960 * It could also be an MMIO page, in which case we will raise a fatal error.
2961 *
2962 * @returns The physical address corresponding to addr.
2963 * @param env The cpu environment.
2964 * @param addr The virtual address.
2965 * @param pTLBEntry The TLB entry.
2966 */
2967target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
2968{
2969 PVM pVM = env->pVM;
2970 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
2971 {
2972 target_ulong ret = pTLBEntry->addend + addr;
2973 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%RGv addr_code=%RGv addend=%RGp ret=%RGp\n",
2974 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
2975 return ret;
2976 }
2977 LogRel(("\nTrying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
2978 "*** handlers\n",
2979 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
2980 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
2981 LogRel(("*** mmio\n"));
2982 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
2983 LogRel(("*** phys\n"));
2984 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
2985 cpu_abort(env, "Trying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
2986 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
2987 AssertFatalFailed();
2988}
2989
2990/**
2991 * Read guest RAM and ROM.
2992 *
2993 * @param SrcGCPhys The source address (guest physical).
2994 * @param pvDst The destination address.
2995 * @param cb Number of bytes
2996 */
2997void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
2998{
2999 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3000 VBOX_CHECK_ADDR(SrcGCPhys);
3001 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3002#ifdef VBOX_DEBUG_PHYS
3003 LogRel(("read(%d): %08x\n", cb, (uint32_t)SrcGCPhys));
3004#endif
3005 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3006}
3007
3008
3009/**
3010 * Read guest RAM and ROM, unsigned 8-bit.
3011 *
3012 * @param SrcGCPhys The source address (guest physical).
3013 */
3014RTCCUINTREG remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3015{
3016 uint8_t val;
3017 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3018 VBOX_CHECK_ADDR(SrcGCPhys);
3019 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3020 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3021#ifdef VBOX_DEBUG_PHYS
3022 LogRel(("readu8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3023#endif
3024 return val;
3025}
3026
3027
3028/**
3029 * Read guest RAM and ROM, signed 8-bit.
3030 *
3031 * @param SrcGCPhys The source address (guest physical).
3032 */
3033RTCCINTREG remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3034{
3035 int8_t val;
3036 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3037 VBOX_CHECK_ADDR(SrcGCPhys);
3038 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3039 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3040#ifdef VBOX_DEBUG_PHYS
3041 LogRel(("reads8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3042#endif
3043 return val;
3044}
3045
3046
3047/**
3048 * Read guest RAM and ROM, unsigned 16-bit.
3049 *
3050 * @param SrcGCPhys The source address (guest physical).
3051 */
3052RTCCUINTREG remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3053{
3054 uint16_t val;
3055 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3056 VBOX_CHECK_ADDR(SrcGCPhys);
3057 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3058 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3059#ifdef VBOX_DEBUG_PHYS
3060 LogRel(("readu16: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3061#endif
3062 return val;
3063}
3064
3065
3066/**
3067 * Read guest RAM and ROM, signed 16-bit.
3068 *
3069 * @param SrcGCPhys The source address (guest physical).
3070 */
3071RTCCINTREG remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3072{
3073 int16_t val;
3074 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3075 VBOX_CHECK_ADDR(SrcGCPhys);
3076 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3077 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3078#ifdef VBOX_DEBUG_PHYS
3079 LogRel(("reads16: %x <- %08x\n", (uint16_t)val, (uint32_t)SrcGCPhys));
3080#endif
3081 return val;
3082}
3083
3084
3085/**
3086 * Read guest RAM and ROM, unsigned 32-bit.
3087 *
3088 * @param SrcGCPhys The source address (guest physical).
3089 */
3090RTCCUINTREG remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3091{
3092 uint32_t val;
3093 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3094 VBOX_CHECK_ADDR(SrcGCPhys);
3095 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3096 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3097#ifdef VBOX_DEBUG_PHYS
3098 LogRel(("readu32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3099#endif
3100 return val;
3101}
3102
3103
3104/**
3105 * Read guest RAM and ROM, signed 32-bit.
3106 *
3107 * @param SrcGCPhys The source address (guest physical).
3108 */
3109RTCCINTREG remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3110{
3111 int32_t val;
3112 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3113 VBOX_CHECK_ADDR(SrcGCPhys);
3114 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3115 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3116#ifdef VBOX_DEBUG_PHYS
3117 LogRel(("reads32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3118#endif
3119 return val;
3120}
3121
3122
3123/**
3124 * Read guest RAM and ROM, unsigned 64-bit.
3125 *
3126 * @param SrcGCPhys The source address (guest physical).
3127 */
3128uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3129{
3130 uint64_t val;
3131 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3132 VBOX_CHECK_ADDR(SrcGCPhys);
3133 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3134 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3135#ifdef VBOX_DEBUG_PHYS
3136 LogRel(("readu64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3137#endif
3138 return val;
3139}
3140
3141/**
3142 * Read guest RAM and ROM, signed 64-bit.
3143 *
3144 * @param SrcGCPhys The source address (guest physical).
3145 */
3146int64_t remR3PhysReadS64(RTGCPHYS SrcGCPhys)
3147{
3148 int64_t val;
3149 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3150 VBOX_CHECK_ADDR(SrcGCPhys);
3151 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3152 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3153#ifdef VBOX_DEBUG_PHYS
3154 LogRel(("reads64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3155#endif
3156 return val;
3157}
3158
3159
3160/**
3161 * Write guest RAM.
3162 *
3163 * @param DstGCPhys The destination address (guest physical).
3164 * @param pvSrc The source address.
3165 * @param cb Number of bytes to write
3166 */
3167void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3168{
3169 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3170 VBOX_CHECK_ADDR(DstGCPhys);
3171 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3172 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3173#ifdef VBOX_DEBUG_PHYS
3174 LogRel(("write(%d): %08x\n", cb, (uint32_t)DstGCPhys));
3175#endif
3176}
3177
3178
3179/**
3180 * Write guest RAM, unsigned 8-bit.
3181 *
3182 * @param DstGCPhys The destination address (guest physical).
3183 * @param val Value
3184 */
3185void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3186{
3187 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3188 VBOX_CHECK_ADDR(DstGCPhys);
3189 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3190 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3191#ifdef VBOX_DEBUG_PHYS
3192 LogRel(("writeu8: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3193#endif
3194}
3195
3196
3197/**
3198 * Write guest RAM, unsigned 8-bit.
3199 *
3200 * @param DstGCPhys The destination address (guest physical).
3201 * @param val Value
3202 */
3203void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3204{
3205 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3206 VBOX_CHECK_ADDR(DstGCPhys);
3207 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3208 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3209#ifdef VBOX_DEBUG_PHYS
3210 LogRel(("writeu16: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3211#endif
3212}
3213
3214
3215/**
3216 * Write guest RAM, unsigned 32-bit.
3217 *
3218 * @param DstGCPhys The destination address (guest physical).
3219 * @param val Value
3220 */
3221void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3222{
3223 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3224 VBOX_CHECK_ADDR(DstGCPhys);
3225 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3226 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3227#ifdef VBOX_DEBUG_PHYS
3228 LogRel(("writeu32: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3229#endif
3230}
3231
3232
3233/**
3234 * Write guest RAM, unsigned 64-bit.
3235 *
3236 * @param DstGCPhys The destination address (guest physical).
3237 * @param val Value
3238 */
3239void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3240{
3241 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3242 VBOX_CHECK_ADDR(DstGCPhys);
3243 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3244 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3245#ifdef VBOX_DEBUG_PHYS
3246 LogRel(("writeu64: %llx -> %08x\n", val, (uint32_t)SrcGCPhys));
3247#endif
3248}
3249
3250#undef LOG_GROUP
3251#define LOG_GROUP LOG_GROUP_REM_MMIO
3252
3253/** Read MMIO memory. */
3254static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3255{
3256 uint32_t u32 = 0;
3257 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3258 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3259 Log2(("remR3MMIOReadU8: GCPhys=%RGp -> %02x\n", GCPhys, u32));
3260 return u32;
3261}
3262
3263/** Read MMIO memory. */
3264static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3265{
3266 uint32_t u32 = 0;
3267 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3268 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3269 Log2(("remR3MMIOReadU16: GCPhys=%RGp -> %04x\n", GCPhys, u32));
3270 return u32;
3271}
3272
3273/** Read MMIO memory. */
3274static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3275{
3276 uint32_t u32 = 0;
3277 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3278 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3279 Log2(("remR3MMIOReadU32: GCPhys=%RGp -> %08x\n", GCPhys, u32));
3280 return u32;
3281}
3282
3283/** Write to MMIO memory. */
3284static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3285{
3286 int rc;
3287 Log2(("remR3MMIOWriteU8: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3288 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3289 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3290}
3291
3292/** Write to MMIO memory. */
3293static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3294{
3295 int rc;
3296 Log2(("remR3MMIOWriteU16: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3297 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3298 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3299}
3300
3301/** Write to MMIO memory. */
3302static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3303{
3304 int rc;
3305 Log2(("remR3MMIOWriteU32: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3306 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3307 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3308}
3309
3310
3311#undef LOG_GROUP
3312#define LOG_GROUP LOG_GROUP_REM_HANDLER
3313
3314/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3315
3316static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3317{
3318 uint8_t u8;
3319 Log2(("remR3HandlerReadU8: GCPhys=%RGp\n", GCPhys));
3320 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3321 return u8;
3322}
3323
3324static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3325{
3326 uint16_t u16;
3327 Log2(("remR3HandlerReadU16: GCPhys=%RGp\n", GCPhys));
3328 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3329 return u16;
3330}
3331
3332static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3333{
3334 uint32_t u32;
3335 Log2(("remR3HandlerReadU32: GCPhys=%RGp\n", GCPhys));
3336 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3337 return u32;
3338}
3339
3340static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3341{
3342 Log2(("remR3HandlerWriteU8: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3343 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3344}
3345
3346static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3347{
3348 Log2(("remR3HandlerWriteU16: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3349 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3350}
3351
3352static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3353{
3354 Log2(("remR3HandlerWriteU32: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3355 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3356}
3357
3358/* -+- disassembly -+- */
3359
3360#undef LOG_GROUP
3361#define LOG_GROUP LOG_GROUP_REM_DISAS
3362
3363
3364/**
3365 * Enables or disables singled stepped disassembly.
3366 *
3367 * @returns VBox status code.
3368 * @param pVM VM handle.
3369 * @param fEnable To enable set this flag, to disable clear it.
3370 */
3371static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3372{
3373 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3374 VM_ASSERT_EMT(pVM);
3375
3376 if (fEnable)
3377 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3378 else
3379 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3380 return VINF_SUCCESS;
3381}
3382
3383
3384/**
3385 * Enables or disables singled stepped disassembly.
3386 *
3387 * @returns VBox status code.
3388 * @param pVM VM handle.
3389 * @param fEnable To enable set this flag, to disable clear it.
3390 */
3391REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3392{
3393 PVMREQ pReq;
3394 int rc;
3395
3396 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3397 if (VM_IS_EMT(pVM))
3398 return remR3DisasEnableStepping(pVM, fEnable);
3399
3400 rc = VMR3ReqCall(pVM, VMREQDEST_ANY, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3401 AssertRC(rc);
3402 if (RT_SUCCESS(rc))
3403 rc = pReq->iStatus;
3404 VMR3ReqFree(pReq);
3405 return rc;
3406}
3407
3408
3409#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3410/**
3411 * External Debugger Command: .remstep [on|off|1|0]
3412 */
3413static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3414{
3415 bool fEnable;
3416 int rc;
3417
3418 /* print status */
3419 if (cArgs == 0)
3420 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3421 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3422
3423 /* convert the argument and change the mode. */
3424 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3425 if (RT_FAILURE(rc))
3426 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3427 rc = REMR3DisasEnableStepping(pVM, fEnable);
3428 if (RT_FAILURE(rc))
3429 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3430 return rc;
3431}
3432#endif
3433
3434
3435/**
3436 * Disassembles n instructions and prints them to the log.
3437 *
3438 * @returns Success indicator.
3439 * @param env Pointer to the recompiler CPU structure.
3440 * @param f32BitCode Indicates that whether or not the code should
3441 * be disassembled as 16 or 32 bit. If -1 the CS
3442 * selector will be inspected.
3443 * @param nrInstructions Nr of instructions to disassemble
3444 * @param pszPrefix
3445 * @remark not currently used for anything but ad-hoc debugging.
3446 */
3447bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3448{
3449 int i, rc;
3450 RTGCPTR GCPtrPC;
3451 uint8_t *pvPC;
3452 RTINTPTR off;
3453 DISCPUSTATE Cpu;
3454
3455 /*
3456 * Determin 16/32 bit mode.
3457 */
3458 if (f32BitCode == -1)
3459 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3460
3461 /*
3462 * Convert cs:eip to host context address.
3463 * We don't care to much about cross page correctness presently.
3464 */
3465 GCPtrPC = env->segs[R_CS].base + env->eip;
3466 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3467 {
3468 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3469
3470 /* convert eip to physical address. */
3471 rc = PGMPhysGCPtr2R3PtrByGstCR3(env->pVM,
3472 GCPtrPC,
3473 env->cr[3],
3474 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3475 (void**)&pvPC);
3476 if (RT_FAILURE(rc))
3477 {
3478 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3479 return false;
3480 pvPC = (uint8_t *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3481 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3482 }
3483 }
3484 else
3485 {
3486 /* physical address */
3487 rc = PGMPhysGCPhys2R3Ptr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16,
3488 (void**)&pvPC);
3489 if (RT_FAILURE(rc))
3490 return false;
3491 }
3492
3493 /*
3494 * Disassemble.
3495 */
3496 off = env->eip - (RTGCUINTPTR)pvPC;
3497 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3498 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3499 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3500 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3501 //Cpu.dwUserData[2] = GCPtrPC;
3502
3503 for (i=0;i<nrInstructions;i++)
3504 {
3505 char szOutput[256];
3506 uint32_t cbOp;
3507 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3508 return false;
3509 if (pszPrefix)
3510 Log(("%s: %s", pszPrefix, szOutput));
3511 else
3512 Log(("%s", szOutput));
3513
3514 pvPC += cbOp;
3515 }
3516 return true;
3517}
3518
3519
3520/** @todo need to test the new code, using the old code in the mean while. */
3521#define USE_OLD_DUMP_AND_DISASSEMBLY
3522
3523/**
3524 * Disassembles one instruction and prints it to the log.
3525 *
3526 * @returns Success indicator.
3527 * @param env Pointer to the recompiler CPU structure.
3528 * @param f32BitCode Indicates that whether or not the code should
3529 * be disassembled as 16 or 32 bit. If -1 the CS
3530 * selector will be inspected.
3531 * @param pszPrefix
3532 */
3533bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3534{
3535#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3536 PVM pVM = env->pVM;
3537 RTGCPTR GCPtrPC;
3538 uint8_t *pvPC;
3539 char szOutput[256];
3540 uint32_t cbOp;
3541 RTINTPTR off;
3542 DISCPUSTATE Cpu;
3543
3544
3545 /* Doesn't work in long mode. */
3546 if (env->hflags & HF_LMA_MASK)
3547 return false;
3548
3549 /*
3550 * Determin 16/32 bit mode.
3551 */
3552 if (f32BitCode == -1)
3553 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3554
3555 /*
3556 * Log registers
3557 */
3558 if (LogIs2Enabled())
3559 {
3560 remR3StateUpdate(pVM);
3561 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3562 }
3563
3564 /*
3565 * Convert cs:eip to host context address.
3566 * We don't care to much about cross page correctness presently.
3567 */
3568 GCPtrPC = env->segs[R_CS].base + env->eip;
3569 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3570 {
3571 /* convert eip to physical address. */
3572 int rc = PGMPhysGCPtr2R3PtrByGstCR3(pVM,
3573 GCPtrPC,
3574 env->cr[3],
3575 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3576 (void**)&pvPC);
3577 if (RT_FAILURE(rc))
3578 {
3579 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3580 return false;
3581 pvPC = (uint8_t *)PATMR3QueryPatchMemHC(pVM, NULL)
3582 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3583 }
3584 }
3585 else
3586 {
3587
3588 /* physical address */
3589 int rc = PGMPhysGCPhys2R3Ptr(pVM, (RTGCPHYS)GCPtrPC, 16, (void**)&pvPC);
3590 if (RT_FAILURE(rc))
3591 return false;
3592 }
3593
3594 /*
3595 * Disassemble.
3596 */
3597 off = env->eip - (RTGCUINTPTR)pvPC;
3598 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3599 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3600 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3601 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3602 //Cpu.dwUserData[2] = GCPtrPC;
3603 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3604 return false;
3605
3606 if (!f32BitCode)
3607 {
3608 if (pszPrefix)
3609 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3610 else
3611 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3612 }
3613 else
3614 {
3615 if (pszPrefix)
3616 Log(("%s: %s", pszPrefix, szOutput));
3617 else
3618 Log(("%s", szOutput));
3619 }
3620 return true;
3621
3622#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3623 PVM pVM = env->pVM;
3624 const bool fLog = LogIsEnabled();
3625 const bool fLog2 = LogIs2Enabled();
3626 int rc = VINF_SUCCESS;
3627
3628 /*
3629 * Don't bother if there ain't any log output to do.
3630 */
3631 if (!fLog && !fLog2)
3632 return true;
3633
3634 /*
3635 * Update the state so DBGF reads the correct register values.
3636 */
3637 remR3StateUpdate(pVM);
3638
3639 /*
3640 * Log registers if requested.
3641 */
3642 if (!fLog2)
3643 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3644
3645 /*
3646 * Disassemble to log.
3647 */
3648 if (fLog)
3649 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3650
3651 return RT_SUCCESS(rc);
3652#endif
3653}
3654
3655
3656/**
3657 * Disassemble recompiled code.
3658 *
3659 * @param phFileIgnored Ignored, logfile usually.
3660 * @param pvCode Pointer to the code block.
3661 * @param cb Size of the code block.
3662 */
3663void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3664{
3665 if (LogIs2Enabled())
3666 {
3667 unsigned off = 0;
3668 char szOutput[256];
3669 DISCPUSTATE Cpu;
3670
3671 memset(&Cpu, 0, sizeof(Cpu));
3672#ifdef RT_ARCH_X86
3673 Cpu.mode = CPUMODE_32BIT;
3674#else
3675 Cpu.mode = CPUMODE_64BIT;
3676#endif
3677
3678 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3679 while (off < cb)
3680 {
3681 uint32_t cbInstr;
3682 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3683 RTLogPrintf("%s", szOutput);
3684 else
3685 {
3686 RTLogPrintf("disas error\n");
3687 cbInstr = 1;
3688#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3689 break;
3690#endif
3691 }
3692 off += cbInstr;
3693 }
3694 }
3695 NOREF(phFileIgnored);
3696}
3697
3698
3699/**
3700 * Disassemble guest code.
3701 *
3702 * @param phFileIgnored Ignored, logfile usually.
3703 * @param uCode The guest address of the code to disassemble. (flat?)
3704 * @param cb Number of bytes to disassemble.
3705 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3706 */
3707void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3708{
3709 if (LogIs2Enabled())
3710 {
3711 PVM pVM = cpu_single_env->pVM;
3712 RTSEL cs;
3713 RTGCUINTPTR eip;
3714
3715 /*
3716 * Update the state so DBGF reads the correct register values (flags).
3717 */
3718 remR3StateUpdate(pVM);
3719
3720 /*
3721 * Do the disassembling.
3722 */
3723 RTLogPrintf("Guest Code: PC=%RGp %RGp bytes fFlags=%d\n", uCode, cb, fFlags);
3724 cs = cpu_single_env->segs[R_CS].selector;
3725 eip = uCode - cpu_single_env->segs[R_CS].base;
3726 for (;;)
3727 {
3728 char szBuf[256];
3729 uint32_t cbInstr;
3730 int rc = DBGFR3DisasInstrEx(pVM,
3731 cs,
3732 eip,
3733 0,
3734 szBuf, sizeof(szBuf),
3735 &cbInstr);
3736 if (RT_SUCCESS(rc))
3737 RTLogPrintf("%RGp %s\n", uCode, szBuf);
3738 else
3739 {
3740 RTLogPrintf("%RGp %04x:%RGp: %s\n", uCode, cs, eip, szBuf);
3741 cbInstr = 1;
3742 }
3743
3744 /* next */
3745 if (cb <= cbInstr)
3746 break;
3747 cb -= cbInstr;
3748 uCode += cbInstr;
3749 eip += cbInstr;
3750 }
3751 }
3752 NOREF(phFileIgnored);
3753}
3754
3755
3756/**
3757 * Looks up a guest symbol.
3758 *
3759 * @returns Pointer to symbol name. This is a static buffer.
3760 * @param orig_addr The address in question.
3761 */
3762const char *lookup_symbol(target_ulong orig_addr)
3763{
3764 RTGCINTPTR off = 0;
3765 DBGFSYMBOL Sym;
3766 PVM pVM = cpu_single_env->pVM;
3767 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3768 if (RT_SUCCESS(rc))
3769 {
3770 static char szSym[sizeof(Sym.szName) + 48];
3771 if (!off)
3772 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3773 else if (off > 0)
3774 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3775 else
3776 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3777 return szSym;
3778 }
3779 return "<N/A>";
3780}
3781
3782
3783#undef LOG_GROUP
3784#define LOG_GROUP LOG_GROUP_REM
3785
3786
3787/* -+- FF notifications -+- */
3788
3789
3790/**
3791 * Notification about a pending interrupt.
3792 *
3793 * @param pVM VM Handle.
3794 * @param u8Interrupt Interrupt
3795 * @thread The emulation thread.
3796 */
3797REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3798{
3799 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3800 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3801}
3802
3803/**
3804 * Notification about a pending interrupt.
3805 *
3806 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3807 * @param pVM VM Handle.
3808 * @thread The emulation thread.
3809 */
3810REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3811{
3812 return pVM->rem.s.u32PendingInterrupt;
3813}
3814
3815/**
3816 * Notification about the interrupt FF being set.
3817 *
3818 * @param pVM VM Handle.
3819 * @thread The emulation thread.
3820 */
3821REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3822{
3823 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3824 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3825 if (pVM->rem.s.fInREM)
3826 {
3827 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3828 CPU_INTERRUPT_EXTERNAL_HARD);
3829 }
3830}
3831
3832
3833/**
3834 * Notification about the interrupt FF being set.
3835 *
3836 * @param pVM VM Handle.
3837 * @thread Any.
3838 */
3839REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3840{
3841 LogFlow(("REMR3NotifyInterruptClear:\n"));
3842 if (pVM->rem.s.fInREM)
3843 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3844}
3845
3846
3847/**
3848 * Notification about pending timer(s).
3849 *
3850 * @param pVM VM Handle.
3851 * @thread Any.
3852 */
3853REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3854{
3855#ifndef DEBUG_bird
3856 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3857#endif
3858 if (pVM->rem.s.fInREM)
3859 {
3860 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3861 CPU_INTERRUPT_EXTERNAL_TIMER);
3862 }
3863}
3864
3865
3866/**
3867 * Notification about pending DMA transfers.
3868 *
3869 * @param pVM VM Handle.
3870 * @thread Any.
3871 */
3872REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3873{
3874 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3875 if (pVM->rem.s.fInREM)
3876 {
3877 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3878 CPU_INTERRUPT_EXTERNAL_DMA);
3879 }
3880}
3881
3882
3883/**
3884 * Notification about pending timer(s).
3885 *
3886 * @param pVM VM Handle.
3887 * @thread Any.
3888 */
3889REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3890{
3891 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3892 if (pVM->rem.s.fInREM)
3893 {
3894 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3895 CPU_INTERRUPT_EXTERNAL_EXIT);
3896 }
3897}
3898
3899
3900/**
3901 * Notification about pending FF set by an external thread.
3902 *
3903 * @param pVM VM handle.
3904 * @thread Any.
3905 */
3906REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3907{
3908 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3909 if (pVM->rem.s.fInREM)
3910 {
3911 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3912 CPU_INTERRUPT_EXTERNAL_EXIT);
3913 }
3914}
3915
3916
3917#ifdef VBOX_WITH_STATISTICS
3918void remR3ProfileStart(int statcode)
3919{
3920 STAMPROFILEADV *pStat;
3921 switch(statcode)
3922 {
3923 case STATS_EMULATE_SINGLE_INSTR:
3924 pStat = &gStatExecuteSingleInstr;
3925 break;
3926 case STATS_QEMU_COMPILATION:
3927 pStat = &gStatCompilationQEmu;
3928 break;
3929 case STATS_QEMU_RUN_EMULATED_CODE:
3930 pStat = &gStatRunCodeQEmu;
3931 break;
3932 case STATS_QEMU_TOTAL:
3933 pStat = &gStatTotalTimeQEmu;
3934 break;
3935 case STATS_QEMU_RUN_TIMERS:
3936 pStat = &gStatTimers;
3937 break;
3938 case STATS_TLB_LOOKUP:
3939 pStat= &gStatTBLookup;
3940 break;
3941 case STATS_IRQ_HANDLING:
3942 pStat= &gStatIRQ;
3943 break;
3944 case STATS_RAW_CHECK:
3945 pStat = &gStatRawCheck;
3946 break;
3947
3948 default:
3949 AssertMsgFailed(("unknown stat %d\n", statcode));
3950 return;
3951 }
3952 STAM_PROFILE_ADV_START(pStat, a);
3953}
3954
3955
3956void remR3ProfileStop(int statcode)
3957{
3958 STAMPROFILEADV *pStat;
3959 switch(statcode)
3960 {
3961 case STATS_EMULATE_SINGLE_INSTR:
3962 pStat = &gStatExecuteSingleInstr;
3963 break;
3964 case STATS_QEMU_COMPILATION:
3965 pStat = &gStatCompilationQEmu;
3966 break;
3967 case STATS_QEMU_RUN_EMULATED_CODE:
3968 pStat = &gStatRunCodeQEmu;
3969 break;
3970 case STATS_QEMU_TOTAL:
3971 pStat = &gStatTotalTimeQEmu;
3972 break;
3973 case STATS_QEMU_RUN_TIMERS:
3974 pStat = &gStatTimers;
3975 break;
3976 case STATS_TLB_LOOKUP:
3977 pStat= &gStatTBLookup;
3978 break;
3979 case STATS_IRQ_HANDLING:
3980 pStat= &gStatIRQ;
3981 break;
3982 case STATS_RAW_CHECK:
3983 pStat = &gStatRawCheck;
3984 break;
3985 default:
3986 AssertMsgFailed(("unknown stat %d\n", statcode));
3987 return;
3988 }
3989 STAM_PROFILE_ADV_STOP(pStat, a);
3990}
3991#endif
3992
3993/**
3994 * Raise an RC, force rem exit.
3995 *
3996 * @param pVM VM handle.
3997 * @param rc The rc.
3998 */
3999void remR3RaiseRC(PVM pVM, int rc)
4000{
4001 Log(("remR3RaiseRC: rc=%Rrc\n", rc));
4002 Assert(pVM->rem.s.fInREM);
4003 VM_ASSERT_EMT(pVM);
4004 pVM->rem.s.rc = rc;
4005 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4006}
4007
4008
4009/* -+- timers -+- */
4010
4011uint64_t cpu_get_tsc(CPUX86State *env)
4012{
4013 STAM_COUNTER_INC(&gStatCpuGetTSC);
4014 return TMCpuTickGet(env->pVM);
4015}
4016
4017
4018/* -+- interrupts -+- */
4019
4020void cpu_set_ferr(CPUX86State *env)
4021{
4022 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4023 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4024}
4025
4026int cpu_get_pic_interrupt(CPUState *env)
4027{
4028 uint8_t u8Interrupt;
4029 int rc;
4030
4031 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4032 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4033 * with the (a)pic.
4034 */
4035 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4036 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4037 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4038 * remove this kludge. */
4039 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4040 {
4041 rc = VINF_SUCCESS;
4042 Assert(env->pVM->rem.s.u32PendingInterrupt <= 255);
4043 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4044 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4045 }
4046 else
4047 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4048
4049 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Rrc\n", u8Interrupt, rc));
4050 if (RT_SUCCESS(rc))
4051 {
4052 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4053 env->interrupt_request |= CPU_INTERRUPT_HARD;
4054 return u8Interrupt;
4055 }
4056 return -1;
4057}
4058
4059
4060/* -+- local apic -+- */
4061
4062void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4063{
4064 int rc = PDMApicSetBase(env->pVM, val);
4065 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Rrc\n", val, rc)); NOREF(rc);
4066}
4067
4068uint64_t cpu_get_apic_base(CPUX86State *env)
4069{
4070 uint64_t u64;
4071 int rc = PDMApicGetBase(env->pVM, &u64);
4072 if (RT_SUCCESS(rc))
4073 {
4074 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4075 return u64;
4076 }
4077 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Rrc)\n", rc));
4078 return 0;
4079}
4080
4081void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4082{
4083 int rc = PDMApicSetTPR(env->pVM, val);
4084 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Rrc\n", val, rc)); NOREF(rc);
4085}
4086
4087uint8_t cpu_get_apic_tpr(CPUX86State *env)
4088{
4089 uint8_t u8;
4090 int rc = PDMApicGetTPR(env->pVM, &u8, NULL);
4091 if (RT_SUCCESS(rc))
4092 {
4093 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4094 return u8;
4095 }
4096 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Rrc)\n", rc));
4097 return 0;
4098}
4099
4100
4101uint64_t cpu_apic_rdmsr(CPUX86State *env, uint32_t reg)
4102{
4103 uint64_t value;
4104 int rc = PDMApicReadMSR(env->pVM, 0/* cpu */, reg, &value);
4105 if (RT_SUCCESS(rc))
4106 {
4107 LogFlow(("cpu_apic_rdms returns %#x\n", value));
4108 return value;
4109 }
4110 /** @todo: exception ? */
4111 LogFlow(("cpu_apic_rdms returns 0 (rc=%Rrc)\n", rc));
4112 return value;
4113}
4114
4115void cpu_apic_wrmsr(CPUX86State *env, uint32_t reg, uint64_t value)
4116{
4117 int rc = PDMApicWriteMSR(env->pVM, 0 /* cpu */, reg, value);
4118 /** @todo: exception if error ? */
4119 LogFlow(("cpu_apic_wrmsr: rc=%Rrc\n", rc)); NOREF(rc);
4120}
4121
4122uint64_t cpu_rdmsr(CPUX86State *env, uint32_t msr)
4123{
4124 return CPUMGetGuestMsr(env->pVM, msr);
4125}
4126
4127void cpu_wrmsr(CPUX86State *env, uint32_t msr, uint64_t val)
4128{
4129 CPUMSetGuestMsr(env->pVM, msr, val);
4130}
4131/* -+- I/O Ports -+- */
4132
4133#undef LOG_GROUP
4134#define LOG_GROUP LOG_GROUP_REM_IOPORT
4135
4136void cpu_outb(CPUState *env, int addr, int val)
4137{
4138 int rc;
4139
4140 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4141 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4142
4143 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4144 if (RT_LIKELY(rc == VINF_SUCCESS))
4145 return;
4146 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4147 {
4148 Log(("cpu_outb: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4149 remR3RaiseRC(env->pVM, rc);
4150 return;
4151 }
4152 remAbort(rc, __FUNCTION__);
4153}
4154
4155void cpu_outw(CPUState *env, int addr, int val)
4156{
4157 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4158 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4159 if (RT_LIKELY(rc == VINF_SUCCESS))
4160 return;
4161 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4162 {
4163 Log(("cpu_outw: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4164 remR3RaiseRC(env->pVM, rc);
4165 return;
4166 }
4167 remAbort(rc, __FUNCTION__);
4168}
4169
4170void cpu_outl(CPUState *env, int addr, int val)
4171{
4172 int rc;
4173 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4174 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4175 if (RT_LIKELY(rc == VINF_SUCCESS))
4176 return;
4177 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4178 {
4179 Log(("cpu_outl: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4180 remR3RaiseRC(env->pVM, rc);
4181 return;
4182 }
4183 remAbort(rc, __FUNCTION__);
4184}
4185
4186int cpu_inb(CPUState *env, int addr)
4187{
4188 uint32_t u32 = 0;
4189 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4190 if (RT_LIKELY(rc == VINF_SUCCESS))
4191 {
4192 if (/*addr != 0x61 && */addr != 0x71)
4193 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4194 return (int)u32;
4195 }
4196 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4197 {
4198 Log(("cpu_inb: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4199 remR3RaiseRC(env->pVM, rc);
4200 return (int)u32;
4201 }
4202 remAbort(rc, __FUNCTION__);
4203 return 0xff;
4204}
4205
4206int cpu_inw(CPUState *env, int addr)
4207{
4208 uint32_t u32 = 0;
4209 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4210 if (RT_LIKELY(rc == VINF_SUCCESS))
4211 {
4212 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4213 return (int)u32;
4214 }
4215 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4216 {
4217 Log(("cpu_inw: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4218 remR3RaiseRC(env->pVM, rc);
4219 return (int)u32;
4220 }
4221 remAbort(rc, __FUNCTION__);
4222 return 0xffff;
4223}
4224
4225int cpu_inl(CPUState *env, int addr)
4226{
4227 uint32_t u32 = 0;
4228 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4229 if (RT_LIKELY(rc == VINF_SUCCESS))
4230 {
4231//if (addr==0x01f0 && u32 == 0x6b6d)
4232// loglevel = ~0;
4233 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4234 return (int)u32;
4235 }
4236 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4237 {
4238 Log(("cpu_inl: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4239 remR3RaiseRC(env->pVM, rc);
4240 return (int)u32;
4241 }
4242 remAbort(rc, __FUNCTION__);
4243 return 0xffffffff;
4244}
4245
4246#undef LOG_GROUP
4247#define LOG_GROUP LOG_GROUP_REM
4248
4249
4250/* -+- helpers and misc other interfaces -+- */
4251
4252/**
4253 * Perform the CPUID instruction.
4254 *
4255 * ASMCpuId cannot be invoked from some source files where this is used because of global
4256 * register allocations.
4257 *
4258 * @param env Pointer to the recompiler CPU structure.
4259 * @param uOperator CPUID operation (eax).
4260 * @param pvEAX Where to store eax.
4261 * @param pvEBX Where to store ebx.
4262 * @param pvECX Where to store ecx.
4263 * @param pvEDX Where to store edx.
4264 */
4265void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4266{
4267 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4268}
4269
4270
4271#if 0 /* not used */
4272/**
4273 * Interface for qemu hardware to report back fatal errors.
4274 */
4275void hw_error(const char *pszFormat, ...)
4276{
4277 /*
4278 * Bitch about it.
4279 */
4280 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4281 * this in my Odin32 tree at home! */
4282 va_list args;
4283 va_start(args, pszFormat);
4284 RTLogPrintf("fatal error in virtual hardware:");
4285 RTLogPrintfV(pszFormat, args);
4286 va_end(args);
4287 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4288
4289 /*
4290 * If we're in REM context we'll sync back the state before 'jumping' to
4291 * the EMs failure handling.
4292 */
4293 PVM pVM = cpu_single_env->pVM;
4294 if (pVM->rem.s.fInREM)
4295 REMR3StateBack(pVM);
4296 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4297 AssertMsgFailed(("EMR3FatalError returned!\n"));
4298}
4299#endif
4300
4301/**
4302 * Interface for the qemu cpu to report unhandled situation
4303 * raising a fatal VM error.
4304 */
4305void cpu_abort(CPUState *env, const char *pszFormat, ...)
4306{
4307 va_list args;
4308 PVM pVM;
4309
4310 /*
4311 * Bitch about it.
4312 */
4313#ifndef _MSC_VER
4314 /** @todo: MSVC is right - it's not valid C */
4315 RTLogFlags(NULL, "nodisabled nobuffered");
4316#endif
4317 va_start(args, pszFormat);
4318 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4319 va_end(args);
4320 va_start(args, pszFormat);
4321 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4322 va_end(args);
4323
4324 /*
4325 * If we're in REM context we'll sync back the state before 'jumping' to
4326 * the EMs failure handling.
4327 */
4328 pVM = cpu_single_env->pVM;
4329 if (pVM->rem.s.fInREM)
4330 REMR3StateBack(pVM);
4331 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4332 AssertMsgFailed(("EMR3FatalError returned!\n"));
4333}
4334
4335
4336/**
4337 * Aborts the VM.
4338 *
4339 * @param rc VBox error code.
4340 * @param pszTip Hint about why/when this happend.
4341 */
4342void remAbort(int rc, const char *pszTip)
4343{
4344 PVM pVM;
4345
4346 /*
4347 * Bitch about it.
4348 */
4349 RTLogPrintf("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip);
4350 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip));
4351
4352 /*
4353 * Jump back to where we entered the recompiler.
4354 */
4355 pVM = cpu_single_env->pVM;
4356 if (pVM->rem.s.fInREM)
4357 REMR3StateBack(pVM);
4358 EMR3FatalError(pVM, rc);
4359 AssertMsgFailed(("EMR3FatalError returned!\n"));
4360}
4361
4362
4363/**
4364 * Dumps a linux system call.
4365 * @param pVM VM handle.
4366 */
4367void remR3DumpLnxSyscall(PVM pVM)
4368{
4369 static const char *apsz[] =
4370 {
4371 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4372 "sys_exit",
4373 "sys_fork",
4374 "sys_read",
4375 "sys_write",
4376 "sys_open", /* 5 */
4377 "sys_close",
4378 "sys_waitpid",
4379 "sys_creat",
4380 "sys_link",
4381 "sys_unlink", /* 10 */
4382 "sys_execve",
4383 "sys_chdir",
4384 "sys_time",
4385 "sys_mknod",
4386 "sys_chmod", /* 15 */
4387 "sys_lchown16",
4388 "sys_ni_syscall", /* old break syscall holder */
4389 "sys_stat",
4390 "sys_lseek",
4391 "sys_getpid", /* 20 */
4392 "sys_mount",
4393 "sys_oldumount",
4394 "sys_setuid16",
4395 "sys_getuid16",
4396 "sys_stime", /* 25 */
4397 "sys_ptrace",
4398 "sys_alarm",
4399 "sys_fstat",
4400 "sys_pause",
4401 "sys_utime", /* 30 */
4402 "sys_ni_syscall", /* old stty syscall holder */
4403 "sys_ni_syscall", /* old gtty syscall holder */
4404 "sys_access",
4405 "sys_nice",
4406 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4407 "sys_sync",
4408 "sys_kill",
4409 "sys_rename",
4410 "sys_mkdir",
4411 "sys_rmdir", /* 40 */
4412 "sys_dup",
4413 "sys_pipe",
4414 "sys_times",
4415 "sys_ni_syscall", /* old prof syscall holder */
4416 "sys_brk", /* 45 */
4417 "sys_setgid16",
4418 "sys_getgid16",
4419 "sys_signal",
4420 "sys_geteuid16",
4421 "sys_getegid16", /* 50 */
4422 "sys_acct",
4423 "sys_umount", /* recycled never used phys() */
4424 "sys_ni_syscall", /* old lock syscall holder */
4425 "sys_ioctl",
4426 "sys_fcntl", /* 55 */
4427 "sys_ni_syscall", /* old mpx syscall holder */
4428 "sys_setpgid",
4429 "sys_ni_syscall", /* old ulimit syscall holder */
4430 "sys_olduname",
4431 "sys_umask", /* 60 */
4432 "sys_chroot",
4433 "sys_ustat",
4434 "sys_dup2",
4435 "sys_getppid",
4436 "sys_getpgrp", /* 65 */
4437 "sys_setsid",
4438 "sys_sigaction",
4439 "sys_sgetmask",
4440 "sys_ssetmask",
4441 "sys_setreuid16", /* 70 */
4442 "sys_setregid16",
4443 "sys_sigsuspend",
4444 "sys_sigpending",
4445 "sys_sethostname",
4446 "sys_setrlimit", /* 75 */
4447 "sys_old_getrlimit",
4448 "sys_getrusage",
4449 "sys_gettimeofday",
4450 "sys_settimeofday",
4451 "sys_getgroups16", /* 80 */
4452 "sys_setgroups16",
4453 "old_select",
4454 "sys_symlink",
4455 "sys_lstat",
4456 "sys_readlink", /* 85 */
4457 "sys_uselib",
4458 "sys_swapon",
4459 "sys_reboot",
4460 "old_readdir",
4461 "old_mmap", /* 90 */
4462 "sys_munmap",
4463 "sys_truncate",
4464 "sys_ftruncate",
4465 "sys_fchmod",
4466 "sys_fchown16", /* 95 */
4467 "sys_getpriority",
4468 "sys_setpriority",
4469 "sys_ni_syscall", /* old profil syscall holder */
4470 "sys_statfs",
4471 "sys_fstatfs", /* 100 */
4472 "sys_ioperm",
4473 "sys_socketcall",
4474 "sys_syslog",
4475 "sys_setitimer",
4476 "sys_getitimer", /* 105 */
4477 "sys_newstat",
4478 "sys_newlstat",
4479 "sys_newfstat",
4480 "sys_uname",
4481 "sys_iopl", /* 110 */
4482 "sys_vhangup",
4483 "sys_ni_syscall", /* old "idle" system call */
4484 "sys_vm86old",
4485 "sys_wait4",
4486 "sys_swapoff", /* 115 */
4487 "sys_sysinfo",
4488 "sys_ipc",
4489 "sys_fsync",
4490 "sys_sigreturn",
4491 "sys_clone", /* 120 */
4492 "sys_setdomainname",
4493 "sys_newuname",
4494 "sys_modify_ldt",
4495 "sys_adjtimex",
4496 "sys_mprotect", /* 125 */
4497 "sys_sigprocmask",
4498 "sys_ni_syscall", /* old "create_module" */
4499 "sys_init_module",
4500 "sys_delete_module",
4501 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4502 "sys_quotactl",
4503 "sys_getpgid",
4504 "sys_fchdir",
4505 "sys_bdflush",
4506 "sys_sysfs", /* 135 */
4507 "sys_personality",
4508 "sys_ni_syscall", /* reserved for afs_syscall */
4509 "sys_setfsuid16",
4510 "sys_setfsgid16",
4511 "sys_llseek", /* 140 */
4512 "sys_getdents",
4513 "sys_select",
4514 "sys_flock",
4515 "sys_msync",
4516 "sys_readv", /* 145 */
4517 "sys_writev",
4518 "sys_getsid",
4519 "sys_fdatasync",
4520 "sys_sysctl",
4521 "sys_mlock", /* 150 */
4522 "sys_munlock",
4523 "sys_mlockall",
4524 "sys_munlockall",
4525 "sys_sched_setparam",
4526 "sys_sched_getparam", /* 155 */
4527 "sys_sched_setscheduler",
4528 "sys_sched_getscheduler",
4529 "sys_sched_yield",
4530 "sys_sched_get_priority_max",
4531 "sys_sched_get_priority_min", /* 160 */
4532 "sys_sched_rr_get_interval",
4533 "sys_nanosleep",
4534 "sys_mremap",
4535 "sys_setresuid16",
4536 "sys_getresuid16", /* 165 */
4537 "sys_vm86",
4538 "sys_ni_syscall", /* Old sys_query_module */
4539 "sys_poll",
4540 "sys_nfsservctl",
4541 "sys_setresgid16", /* 170 */
4542 "sys_getresgid16",
4543 "sys_prctl",
4544 "sys_rt_sigreturn",
4545 "sys_rt_sigaction",
4546 "sys_rt_sigprocmask", /* 175 */
4547 "sys_rt_sigpending",
4548 "sys_rt_sigtimedwait",
4549 "sys_rt_sigqueueinfo",
4550 "sys_rt_sigsuspend",
4551 "sys_pread64", /* 180 */
4552 "sys_pwrite64",
4553 "sys_chown16",
4554 "sys_getcwd",
4555 "sys_capget",
4556 "sys_capset", /* 185 */
4557 "sys_sigaltstack",
4558 "sys_sendfile",
4559 "sys_ni_syscall", /* reserved for streams1 */
4560 "sys_ni_syscall", /* reserved for streams2 */
4561 "sys_vfork", /* 190 */
4562 "sys_getrlimit",
4563 "sys_mmap2",
4564 "sys_truncate64",
4565 "sys_ftruncate64",
4566 "sys_stat64", /* 195 */
4567 "sys_lstat64",
4568 "sys_fstat64",
4569 "sys_lchown",
4570 "sys_getuid",
4571 "sys_getgid", /* 200 */
4572 "sys_geteuid",
4573 "sys_getegid",
4574 "sys_setreuid",
4575 "sys_setregid",
4576 "sys_getgroups", /* 205 */
4577 "sys_setgroups",
4578 "sys_fchown",
4579 "sys_setresuid",
4580 "sys_getresuid",
4581 "sys_setresgid", /* 210 */
4582 "sys_getresgid",
4583 "sys_chown",
4584 "sys_setuid",
4585 "sys_setgid",
4586 "sys_setfsuid", /* 215 */
4587 "sys_setfsgid",
4588 "sys_pivot_root",
4589 "sys_mincore",
4590 "sys_madvise",
4591 "sys_getdents64", /* 220 */
4592 "sys_fcntl64",
4593 "sys_ni_syscall", /* reserved for TUX */
4594 "sys_ni_syscall",
4595 "sys_gettid",
4596 "sys_readahead", /* 225 */
4597 "sys_setxattr",
4598 "sys_lsetxattr",
4599 "sys_fsetxattr",
4600 "sys_getxattr",
4601 "sys_lgetxattr", /* 230 */
4602 "sys_fgetxattr",
4603 "sys_listxattr",
4604 "sys_llistxattr",
4605 "sys_flistxattr",
4606 "sys_removexattr", /* 235 */
4607 "sys_lremovexattr",
4608 "sys_fremovexattr",
4609 "sys_tkill",
4610 "sys_sendfile64",
4611 "sys_futex", /* 240 */
4612 "sys_sched_setaffinity",
4613 "sys_sched_getaffinity",
4614 "sys_set_thread_area",
4615 "sys_get_thread_area",
4616 "sys_io_setup", /* 245 */
4617 "sys_io_destroy",
4618 "sys_io_getevents",
4619 "sys_io_submit",
4620 "sys_io_cancel",
4621 "sys_fadvise64", /* 250 */
4622 "sys_ni_syscall",
4623 "sys_exit_group",
4624 "sys_lookup_dcookie",
4625 "sys_epoll_create",
4626 "sys_epoll_ctl", /* 255 */
4627 "sys_epoll_wait",
4628 "sys_remap_file_pages",
4629 "sys_set_tid_address",
4630 "sys_timer_create",
4631 "sys_timer_settime", /* 260 */
4632 "sys_timer_gettime",
4633 "sys_timer_getoverrun",
4634 "sys_timer_delete",
4635 "sys_clock_settime",
4636 "sys_clock_gettime", /* 265 */
4637 "sys_clock_getres",
4638 "sys_clock_nanosleep",
4639 "sys_statfs64",
4640 "sys_fstatfs64",
4641 "sys_tgkill", /* 270 */
4642 "sys_utimes",
4643 "sys_fadvise64_64",
4644 "sys_ni_syscall" /* sys_vserver */
4645 };
4646
4647 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4648 switch (uEAX)
4649 {
4650 default:
4651 if (uEAX < RT_ELEMENTS(apsz))
4652 Log(("REM: linux syscall %3d: %s (eip=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4653 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4654 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4655 else
4656 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4657 break;
4658
4659 }
4660}
4661
4662
4663/**
4664 * Dumps an OpenBSD system call.
4665 * @param pVM VM handle.
4666 */
4667void remR3DumpOBsdSyscall(PVM pVM)
4668{
4669 static const char *apsz[] =
4670 {
4671 "SYS_syscall", //0
4672 "SYS_exit", //1
4673 "SYS_fork", //2
4674 "SYS_read", //3
4675 "SYS_write", //4
4676 "SYS_open", //5
4677 "SYS_close", //6
4678 "SYS_wait4", //7
4679 "SYS_8",
4680 "SYS_link", //9
4681 "SYS_unlink", //10
4682 "SYS_11",
4683 "SYS_chdir", //12
4684 "SYS_fchdir", //13
4685 "SYS_mknod", //14
4686 "SYS_chmod", //15
4687 "SYS_chown", //16
4688 "SYS_break", //17
4689 "SYS_18",
4690 "SYS_19",
4691 "SYS_getpid", //20
4692 "SYS_mount", //21
4693 "SYS_unmount", //22
4694 "SYS_setuid", //23
4695 "SYS_getuid", //24
4696 "SYS_geteuid", //25
4697 "SYS_ptrace", //26
4698 "SYS_recvmsg", //27
4699 "SYS_sendmsg", //28
4700 "SYS_recvfrom", //29
4701 "SYS_accept", //30
4702 "SYS_getpeername", //31
4703 "SYS_getsockname", //32
4704 "SYS_access", //33
4705 "SYS_chflags", //34
4706 "SYS_fchflags", //35
4707 "SYS_sync", //36
4708 "SYS_kill", //37
4709 "SYS_38",
4710 "SYS_getppid", //39
4711 "SYS_40",
4712 "SYS_dup", //41
4713 "SYS_opipe", //42
4714 "SYS_getegid", //43
4715 "SYS_profil", //44
4716 "SYS_ktrace", //45
4717 "SYS_sigaction", //46
4718 "SYS_getgid", //47
4719 "SYS_sigprocmask", //48
4720 "SYS_getlogin", //49
4721 "SYS_setlogin", //50
4722 "SYS_acct", //51
4723 "SYS_sigpending", //52
4724 "SYS_osigaltstack", //53
4725 "SYS_ioctl", //54
4726 "SYS_reboot", //55
4727 "SYS_revoke", //56
4728 "SYS_symlink", //57
4729 "SYS_readlink", //58
4730 "SYS_execve", //59
4731 "SYS_umask", //60
4732 "SYS_chroot", //61
4733 "SYS_62",
4734 "SYS_63",
4735 "SYS_64",
4736 "SYS_65",
4737 "SYS_vfork", //66
4738 "SYS_67",
4739 "SYS_68",
4740 "SYS_sbrk", //69
4741 "SYS_sstk", //70
4742 "SYS_61",
4743 "SYS_vadvise", //72
4744 "SYS_munmap", //73
4745 "SYS_mprotect", //74
4746 "SYS_madvise", //75
4747 "SYS_76",
4748 "SYS_77",
4749 "SYS_mincore", //78
4750 "SYS_getgroups", //79
4751 "SYS_setgroups", //80
4752 "SYS_getpgrp", //81
4753 "SYS_setpgid", //82
4754 "SYS_setitimer", //83
4755 "SYS_84",
4756 "SYS_85",
4757 "SYS_getitimer", //86
4758 "SYS_87",
4759 "SYS_88",
4760 "SYS_89",
4761 "SYS_dup2", //90
4762 "SYS_91",
4763 "SYS_fcntl", //92
4764 "SYS_select", //93
4765 "SYS_94",
4766 "SYS_fsync", //95
4767 "SYS_setpriority", //96
4768 "SYS_socket", //97
4769 "SYS_connect", //98
4770 "SYS_99",
4771 "SYS_getpriority", //100
4772 "SYS_101",
4773 "SYS_102",
4774 "SYS_sigreturn", //103
4775 "SYS_bind", //104
4776 "SYS_setsockopt", //105
4777 "SYS_listen", //106
4778 "SYS_107",
4779 "SYS_108",
4780 "SYS_109",
4781 "SYS_110",
4782 "SYS_sigsuspend", //111
4783 "SYS_112",
4784 "SYS_113",
4785 "SYS_114",
4786 "SYS_115",
4787 "SYS_gettimeofday", //116
4788 "SYS_getrusage", //117
4789 "SYS_getsockopt", //118
4790 "SYS_119",
4791 "SYS_readv", //120
4792 "SYS_writev", //121
4793 "SYS_settimeofday", //122
4794 "SYS_fchown", //123
4795 "SYS_fchmod", //124
4796 "SYS_125",
4797 "SYS_setreuid", //126
4798 "SYS_setregid", //127
4799 "SYS_rename", //128
4800 "SYS_129",
4801 "SYS_130",
4802 "SYS_flock", //131
4803 "SYS_mkfifo", //132
4804 "SYS_sendto", //133
4805 "SYS_shutdown", //134
4806 "SYS_socketpair", //135
4807 "SYS_mkdir", //136
4808 "SYS_rmdir", //137
4809 "SYS_utimes", //138
4810 "SYS_139",
4811 "SYS_adjtime", //140
4812 "SYS_141",
4813 "SYS_142",
4814 "SYS_143",
4815 "SYS_144",
4816 "SYS_145",
4817 "SYS_146",
4818 "SYS_setsid", //147
4819 "SYS_quotactl", //148
4820 "SYS_149",
4821 "SYS_150",
4822 "SYS_151",
4823 "SYS_152",
4824 "SYS_153",
4825 "SYS_154",
4826 "SYS_nfssvc", //155
4827 "SYS_156",
4828 "SYS_157",
4829 "SYS_158",
4830 "SYS_159",
4831 "SYS_160",
4832 "SYS_getfh", //161
4833 "SYS_162",
4834 "SYS_163",
4835 "SYS_164",
4836 "SYS_sysarch", //165
4837 "SYS_166",
4838 "SYS_167",
4839 "SYS_168",
4840 "SYS_169",
4841 "SYS_170",
4842 "SYS_171",
4843 "SYS_172",
4844 "SYS_pread", //173
4845 "SYS_pwrite", //174
4846 "SYS_175",
4847 "SYS_176",
4848 "SYS_177",
4849 "SYS_178",
4850 "SYS_179",
4851 "SYS_180",
4852 "SYS_setgid", //181
4853 "SYS_setegid", //182
4854 "SYS_seteuid", //183
4855 "SYS_lfs_bmapv", //184
4856 "SYS_lfs_markv", //185
4857 "SYS_lfs_segclean", //186
4858 "SYS_lfs_segwait", //187
4859 "SYS_188",
4860 "SYS_189",
4861 "SYS_190",
4862 "SYS_pathconf", //191
4863 "SYS_fpathconf", //192
4864 "SYS_swapctl", //193
4865 "SYS_getrlimit", //194
4866 "SYS_setrlimit", //195
4867 "SYS_getdirentries", //196
4868 "SYS_mmap", //197
4869 "SYS___syscall", //198
4870 "SYS_lseek", //199
4871 "SYS_truncate", //200
4872 "SYS_ftruncate", //201
4873 "SYS___sysctl", //202
4874 "SYS_mlock", //203
4875 "SYS_munlock", //204
4876 "SYS_205",
4877 "SYS_futimes", //206
4878 "SYS_getpgid", //207
4879 "SYS_xfspioctl", //208
4880 "SYS_209",
4881 "SYS_210",
4882 "SYS_211",
4883 "SYS_212",
4884 "SYS_213",
4885 "SYS_214",
4886 "SYS_215",
4887 "SYS_216",
4888 "SYS_217",
4889 "SYS_218",
4890 "SYS_219",
4891 "SYS_220",
4892 "SYS_semget", //221
4893 "SYS_222",
4894 "SYS_223",
4895 "SYS_224",
4896 "SYS_msgget", //225
4897 "SYS_msgsnd", //226
4898 "SYS_msgrcv", //227
4899 "SYS_shmat", //228
4900 "SYS_229",
4901 "SYS_shmdt", //230
4902 "SYS_231",
4903 "SYS_clock_gettime", //232
4904 "SYS_clock_settime", //233
4905 "SYS_clock_getres", //234
4906 "SYS_235",
4907 "SYS_236",
4908 "SYS_237",
4909 "SYS_238",
4910 "SYS_239",
4911 "SYS_nanosleep", //240
4912 "SYS_241",
4913 "SYS_242",
4914 "SYS_243",
4915 "SYS_244",
4916 "SYS_245",
4917 "SYS_246",
4918 "SYS_247",
4919 "SYS_248",
4920 "SYS_249",
4921 "SYS_minherit", //250
4922 "SYS_rfork", //251
4923 "SYS_poll", //252
4924 "SYS_issetugid", //253
4925 "SYS_lchown", //254
4926 "SYS_getsid", //255
4927 "SYS_msync", //256
4928 "SYS_257",
4929 "SYS_258",
4930 "SYS_259",
4931 "SYS_getfsstat", //260
4932 "SYS_statfs", //261
4933 "SYS_fstatfs", //262
4934 "SYS_pipe", //263
4935 "SYS_fhopen", //264
4936 "SYS_265",
4937 "SYS_fhstatfs", //266
4938 "SYS_preadv", //267
4939 "SYS_pwritev", //268
4940 "SYS_kqueue", //269
4941 "SYS_kevent", //270
4942 "SYS_mlockall", //271
4943 "SYS_munlockall", //272
4944 "SYS_getpeereid", //273
4945 "SYS_274",
4946 "SYS_275",
4947 "SYS_276",
4948 "SYS_277",
4949 "SYS_278",
4950 "SYS_279",
4951 "SYS_280",
4952 "SYS_getresuid", //281
4953 "SYS_setresuid", //282
4954 "SYS_getresgid", //283
4955 "SYS_setresgid", //284
4956 "SYS_285",
4957 "SYS_mquery", //286
4958 "SYS_closefrom", //287
4959 "SYS_sigaltstack", //288
4960 "SYS_shmget", //289
4961 "SYS_semop", //290
4962 "SYS_stat", //291
4963 "SYS_fstat", //292
4964 "SYS_lstat", //293
4965 "SYS_fhstat", //294
4966 "SYS___semctl", //295
4967 "SYS_shmctl", //296
4968 "SYS_msgctl", //297
4969 "SYS_MAXSYSCALL", //298
4970 //299
4971 //300
4972 };
4973 uint32_t uEAX;
4974 if (!LogIsEnabled())
4975 return;
4976 uEAX = CPUMGetGuestEAX(pVM);
4977 switch (uEAX)
4978 {
4979 default:
4980 if (uEAX < RT_ELEMENTS(apsz))
4981 {
4982 uint32_t au32Args[8] = {0};
4983 PGMPhysSimpleReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4984 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4985 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4986 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4987 }
4988 else
4989 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4990 break;
4991 }
4992}
4993
4994
4995#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
4996/**
4997 * The Dll main entry point (stub).
4998 */
4999bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
5000{
5001 return true;
5002}
5003
5004void *memcpy(void *dst, const void *src, size_t size)
5005{
5006 uint8_t*pbDst = dst, *pbSrc = src;
5007 while (size-- > 0)
5008 *pbDst++ = *pbSrc++;
5009 return dst;
5010}
5011
5012#endif
5013
5014void cpu_smm_update(CPUState* env)
5015{
5016}
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette