VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 12299

Last change on this file since 12299 was 12299, checked in by vboxsync, 17 years ago

Add option to REMR3State to flush all TBs. (currently not yet active)

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 155.4 KB
Line 
1/* $Id: VBoxRecompiler.c 12299 2008-09-09 14:31:16Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.215389.xyz. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "exec-all.h"
29
30#include <VBox/rem.h>
31#include <VBox/vmapi.h>
32#include <VBox/tm.h>
33#include <VBox/ssm.h>
34#include <VBox/em.h>
35#include <VBox/trpm.h>
36#include <VBox/iom.h>
37#include <VBox/mm.h>
38#include <VBox/pgm.h>
39#include <VBox/pdm.h>
40#include <VBox/dbgf.h>
41#include <VBox/dbg.h>
42#include <VBox/hwaccm.h>
43#include <VBox/patm.h>
44#include <VBox/csam.h>
45#include "REMInternal.h"
46#include <VBox/vm.h>
47#include <VBox/param.h>
48#include <VBox/err.h>
49
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57/* Don't wanna include everything. */
58extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
59extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
60extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
61extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
62extern void tlb_flush(CPUState *env, int flush_global);
63extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
64extern void sync_ldtr(CPUX86State *env1, int selector);
65extern int sync_tr(CPUX86State *env1, int selector);
66
67#ifdef VBOX_STRICT
68unsigned long get_phys_page_offset(target_ulong addr);
69#endif
70
71
72/*******************************************************************************
73* Defined Constants And Macros *
74*******************************************************************************/
75
76/** Copy 80-bit fpu register at pSrc to pDst.
77 * This is probably faster than *calling* memcpy.
78 */
79#define REM_COPY_FPU_REG(pDst, pSrc) \
80 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
81
82
83/*******************************************************************************
84* Internal Functions *
85*******************************************************************************/
86static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
87static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
88static void remR3StateUpdate(PVM pVM);
89
90static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
91static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
92static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
93static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
94static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
95static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
96
97static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
98static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
99static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
100static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
101static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
102static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
103
104
105/*******************************************************************************
106* Global Variables *
107*******************************************************************************/
108
109/** @todo Move stats to REM::s some rainy day we have nothing do to. */
110#ifdef VBOX_WITH_STATISTICS
111static STAMPROFILEADV gStatExecuteSingleInstr;
112static STAMPROFILEADV gStatCompilationQEmu;
113static STAMPROFILEADV gStatRunCodeQEmu;
114static STAMPROFILEADV gStatTotalTimeQEmu;
115static STAMPROFILEADV gStatTimers;
116static STAMPROFILEADV gStatTBLookup;
117static STAMPROFILEADV gStatIRQ;
118static STAMPROFILEADV gStatRawCheck;
119static STAMPROFILEADV gStatMemRead;
120static STAMPROFILEADV gStatMemWrite;
121static STAMPROFILE gStatGCPhys2HCVirt;
122static STAMPROFILE gStatHCVirt2GCPhys;
123static STAMCOUNTER gStatCpuGetTSC;
124static STAMCOUNTER gStatRefuseTFInhibit;
125static STAMCOUNTER gStatRefuseVM86;
126static STAMCOUNTER gStatRefusePaging;
127static STAMCOUNTER gStatRefusePAE;
128static STAMCOUNTER gStatRefuseIOPLNot0;
129static STAMCOUNTER gStatRefuseIF0;
130static STAMCOUNTER gStatRefuseCode16;
131static STAMCOUNTER gStatRefuseWP0;
132static STAMCOUNTER gStatRefuseRing1or2;
133static STAMCOUNTER gStatRefuseCanExecute;
134static STAMCOUNTER gStatREMGDTChange;
135static STAMCOUNTER gStatREMIDTChange;
136static STAMCOUNTER gStatREMLDTRChange;
137static STAMCOUNTER gStatREMTRChange;
138static STAMCOUNTER gStatSelOutOfSync[6];
139static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
140#endif
141
142/*
143 * Global stuff.
144 */
145
146/** MMIO read callbacks. */
147CPUReadMemoryFunc *g_apfnMMIORead[3] =
148{
149 remR3MMIOReadU8,
150 remR3MMIOReadU16,
151 remR3MMIOReadU32
152};
153
154/** MMIO write callbacks. */
155CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
156{
157 remR3MMIOWriteU8,
158 remR3MMIOWriteU16,
159 remR3MMIOWriteU32
160};
161
162/** Handler read callbacks. */
163CPUReadMemoryFunc *g_apfnHandlerRead[3] =
164{
165 remR3HandlerReadU8,
166 remR3HandlerReadU16,
167 remR3HandlerReadU32
168};
169
170/** Handler write callbacks. */
171CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
172{
173 remR3HandlerWriteU8,
174 remR3HandlerWriteU16,
175 remR3HandlerWriteU32
176};
177
178
179#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDWS) && defined(RT_ARCH_AMD64))
180/*
181 * Debugger commands.
182 */
183static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
184
185/** '.remstep' arguments. */
186static const DBGCVARDESC g_aArgRemStep[] =
187{
188 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
189 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
190};
191
192/** Command descriptors. */
193static const DBGCCMD g_aCmds[] =
194{
195 {
196 .pszCmd ="remstep",
197 .cArgsMin = 0,
198 .cArgsMax = 1,
199 .paArgDescs = &g_aArgRemStep[0],
200 .cArgDescs = ELEMENTS(g_aArgRemStep),
201 .pResultDesc = NULL,
202 .fFlags = 0,
203 .pfnHandler = remR3CmdDisasEnableStepping,
204 .pszSyntax = "[on/off]",
205 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
206 "If no arguments show the current state."
207 }
208};
209#endif
210
211
212/* Instantiate the structure signatures. */
213#define REM_STRUCT_OP 0
214#include "Sun/structs.h"
215
216
217
218/*******************************************************************************
219* Internal Functions *
220*******************************************************************************/
221static void remAbort(int rc, const char *pszTip);
222extern int testmath(void);
223
224/* Put them here to avoid unused variable warning. */
225AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
226#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
227//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
228/* Why did this have to be identical?? */
229AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
230#else
231AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
232#endif
233
234
235/**
236 * Initializes the REM.
237 *
238 * @returns VBox status code.
239 * @param pVM The VM to operate on.
240 */
241REMR3DECL(int) REMR3Init(PVM pVM)
242{
243 uint32_t u32Dummy;
244 unsigned i;
245
246 /*
247 * Assert sanity.
248 */
249 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
250 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
251 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
252#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
253 Assert(!testmath());
254#endif
255 ASSERT_STRUCT_TABLE(Misc);
256 ASSERT_STRUCT_TABLE(TLB);
257 ASSERT_STRUCT_TABLE(SegmentCache);
258 ASSERT_STRUCT_TABLE(XMMReg);
259 ASSERT_STRUCT_TABLE(MMXReg);
260 ASSERT_STRUCT_TABLE(float_status);
261 ASSERT_STRUCT_TABLE(float32u);
262 ASSERT_STRUCT_TABLE(float64u);
263 ASSERT_STRUCT_TABLE(floatx80u);
264 ASSERT_STRUCT_TABLE(CPUState);
265
266 /*
267 * Init some internal data members.
268 */
269 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
270 pVM->rem.s.Env.pVM = pVM;
271#ifdef CPU_RAW_MODE_INIT
272 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
273#endif
274
275 /* ctx. */
276 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
277 if (VBOX_FAILURE(rc))
278 {
279 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
280 return rc;
281 }
282 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
283
284 /* ignore all notifications */
285 pVM->rem.s.fIgnoreAll = true;
286
287 /*
288 * Init the recompiler.
289 */
290 if (!cpu_x86_init(&pVM->rem.s.Env))
291 {
292 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
293 return VERR_GENERAL_FAILURE;
294 }
295 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
296 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
297
298 /* allocate code buffer for single instruction emulation. */
299 pVM->rem.s.Env.cbCodeBuffer = 4096;
300 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
301 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
302
303 /* finally, set the cpu_single_env global. */
304 cpu_single_env = &pVM->rem.s.Env;
305
306 /* Nothing is pending by default */
307 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
308
309 /*
310 * Register ram types.
311 */
312 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
313 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
314 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
315 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
316 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
317
318 /* stop ignoring. */
319 pVM->rem.s.fIgnoreAll = false;
320
321 /*
322 * Register the saved state data unit.
323 */
324 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
325 NULL, remR3Save, NULL,
326 NULL, remR3Load, NULL);
327 if (VBOX_FAILURE(rc))
328 return rc;
329
330#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
331 /*
332 * Debugger commands.
333 */
334 static bool fRegisteredCmds = false;
335 if (!fRegisteredCmds)
336 {
337 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
338 if (VBOX_SUCCESS(rc))
339 fRegisteredCmds = true;
340 }
341#endif
342
343#ifdef VBOX_WITH_STATISTICS
344 /*
345 * Statistics.
346 */
347 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
348 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
349 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
350 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
351 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
352 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
353 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
354 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
355 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
356 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
357 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
358 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
359
360 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
361
362 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
363 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
364 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
365 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
366 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
367 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
368 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
369 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
370 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
371 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
372
373 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
374 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
375 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
376 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
377
378 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
379 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
380 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
381 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
382 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
383 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
384
385 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
386 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
387 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
388 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
389 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
390 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
391
392
393#endif
394
395#ifdef DEBUG_ALL_LOGGING
396 loglevel = ~0;
397#endif
398
399 return rc;
400}
401
402
403/**
404 * Terminates the REM.
405 *
406 * Termination means cleaning up and freeing all resources,
407 * the VM it self is at this point powered off or suspended.
408 *
409 * @returns VBox status code.
410 * @param pVM The VM to operate on.
411 */
412REMR3DECL(int) REMR3Term(PVM pVM)
413{
414 return VINF_SUCCESS;
415}
416
417
418/**
419 * The VM is being reset.
420 *
421 * For the REM component this means to call the cpu_reset() and
422 * reinitialize some state variables.
423 *
424 * @param pVM VM handle.
425 */
426REMR3DECL(void) REMR3Reset(PVM pVM)
427{
428 /*
429 * Reset the REM cpu.
430 */
431 pVM->rem.s.fIgnoreAll = true;
432 cpu_reset(&pVM->rem.s.Env);
433 pVM->rem.s.cInvalidatedPages = 0;
434 pVM->rem.s.fIgnoreAll = false;
435
436 /* Clear raw ring 0 init state */
437 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
438}
439
440
441/**
442 * Execute state save operation.
443 *
444 * @returns VBox status code.
445 * @param pVM VM Handle.
446 * @param pSSM SSM operation handle.
447 */
448static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
449{
450 LogFlow(("remR3Save:\n"));
451
452 /*
453 * Save the required CPU Env bits.
454 * (Not much because we're never in REM when doing the save.)
455 */
456 PREM pRem = &pVM->rem.s;
457 Assert(!pRem->fInREM);
458 SSMR3PutU32(pSSM, pRem->Env.hflags);
459 SSMR3PutU32(pSSM, ~0); /* separator */
460
461 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
462 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
463 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
464
465 return SSMR3PutU32(pSSM, ~0); /* terminator */
466}
467
468
469/**
470 * Execute state load operation.
471 *
472 * @returns VBox status code.
473 * @param pVM VM Handle.
474 * @param pSSM SSM operation handle.
475 * @param u32Version Data layout version.
476 */
477static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
478{
479 uint32_t u32Dummy;
480 uint32_t fRawRing0 = false;
481 LogFlow(("remR3Load:\n"));
482
483 /*
484 * Validate version.
485 */
486 if ( u32Version != REM_SAVED_STATE_VERSION
487 && u32Version != REM_SAVED_STATE_VERSION_VER1_6)
488 {
489 AssertMsgFailed(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
490 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
491 }
492
493 /*
494 * Do a reset to be on the safe side...
495 */
496 REMR3Reset(pVM);
497
498 /*
499 * Ignore all ignorable notifications.
500 * (Not doing this will cause serious trouble.)
501 */
502 pVM->rem.s.fIgnoreAll = true;
503
504 /*
505 * Load the required CPU Env bits.
506 * (Not much because we're never in REM when doing the save.)
507 */
508 PREM pRem = &pVM->rem.s;
509 Assert(!pRem->fInREM);
510 SSMR3GetU32(pSSM, &pRem->Env.hflags);
511 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
512 {
513 /* Redundant REM CPU state has to be loaded, but can be ignored. */
514 CPUX86State_Ver16 temp;
515 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
516 }
517
518 uint32_t u32Sep;
519 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
520 if (VBOX_FAILURE(rc))
521 return rc;
522 if (u32Sep != ~0)
523 {
524 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
525 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
526 }
527
528 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
529 SSMR3GetUInt(pSSM, &fRawRing0);
530 if (fRawRing0)
531 pRem->Env.state |= CPU_RAW_RING0;
532
533 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
534 {
535 /*
536 * Load the REM stuff.
537 */
538 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
539 if (VBOX_FAILURE(rc))
540 return rc;
541 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
542 {
543 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
544 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
545 }
546 unsigned i;
547 for (i = 0; i < pRem->cInvalidatedPages; i++)
548 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
549 }
550
551 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
552 if (VBOX_FAILURE(rc))
553 return rc;
554
555 /* check the terminator. */
556 rc = SSMR3GetU32(pSSM, &u32Sep);
557 if (VBOX_FAILURE(rc))
558 return rc;
559 if (u32Sep != ~0)
560 {
561 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
562 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
563 }
564
565 /*
566 * Get the CPUID features.
567 */
568 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
569 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
570
571 /*
572 * Sync the Load Flush the TLB
573 */
574 tlb_flush(&pRem->Env, 1);
575
576 /*
577 * Stop ignoring ignornable notifications.
578 */
579 pVM->rem.s.fIgnoreAll = false;
580
581 /*
582 * Sync the whole CPU state when executing code in the recompiler.
583 */
584 CPUMSetChangedFlags(pVM, CPUM_CHANGED_ALL);
585 return VINF_SUCCESS;
586}
587
588
589
590#undef LOG_GROUP
591#define LOG_GROUP LOG_GROUP_REM_RUN
592
593/**
594 * Single steps an instruction in recompiled mode.
595 *
596 * Before calling this function the REM state needs to be in sync with
597 * the VM. Call REMR3State() to perform the sync. It's only necessary
598 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
599 * and after calling REMR3StateBack().
600 *
601 * @returns VBox status code.
602 *
603 * @param pVM VM Handle.
604 */
605REMR3DECL(int) REMR3Step(PVM pVM)
606{
607 /*
608 * Lock the REM - we don't wanna have anyone interrupting us
609 * while stepping - and enabled single stepping. We also ignore
610 * pending interrupts and suchlike.
611 */
612 int interrupt_request = pVM->rem.s.Env.interrupt_request;
613 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
614 pVM->rem.s.Env.interrupt_request = 0;
615 cpu_single_step(&pVM->rem.s.Env, 1);
616
617 /*
618 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
619 */
620 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
621 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
622
623 /*
624 * Execute and handle the return code.
625 * We execute without enabling the cpu tick, so on success we'll
626 * just flip it on and off to make sure it moves
627 */
628 int rc = cpu_exec(&pVM->rem.s.Env);
629 if (rc == EXCP_DEBUG)
630 {
631 TMCpuTickResume(pVM);
632 TMCpuTickPause(pVM);
633 TMVirtualResume(pVM);
634 TMVirtualPause(pVM);
635 rc = VINF_EM_DBG_STEPPED;
636 }
637 else
638 {
639 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
640 switch (rc)
641 {
642 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
643 case EXCP_HLT:
644 case EXCP_HALTED: rc = VINF_EM_HALT; break;
645 case EXCP_RC:
646 rc = pVM->rem.s.rc;
647 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
648 break;
649 default:
650 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
651 rc = VERR_INTERNAL_ERROR;
652 break;
653 }
654 }
655
656 /*
657 * Restore the stuff we changed to prevent interruption.
658 * Unlock the REM.
659 */
660 if (fBp)
661 {
662 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
663 Assert(rc2 == 0); NOREF(rc2);
664 }
665 cpu_single_step(&pVM->rem.s.Env, 0);
666 pVM->rem.s.Env.interrupt_request = interrupt_request;
667
668 return rc;
669}
670
671
672/**
673 * Set a breakpoint using the REM facilities.
674 *
675 * @returns VBox status code.
676 * @param pVM The VM handle.
677 * @param Address The breakpoint address.
678 * @thread The emulation thread.
679 */
680REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
681{
682 VM_ASSERT_EMT(pVM);
683 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
684 {
685 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
686 return VINF_SUCCESS;
687 }
688 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
689 return VERR_REM_NO_MORE_BP_SLOTS;
690}
691
692
693/**
694 * Clears a breakpoint set by REMR3BreakpointSet().
695 *
696 * @returns VBox status code.
697 * @param pVM The VM handle.
698 * @param Address The breakpoint address.
699 * @thread The emulation thread.
700 */
701REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
702{
703 VM_ASSERT_EMT(pVM);
704 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
705 {
706 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
707 return VINF_SUCCESS;
708 }
709 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
710 return VERR_REM_BP_NOT_FOUND;
711}
712
713
714/**
715 * Emulate an instruction.
716 *
717 * This function executes one instruction without letting anyone
718 * interrupt it. This is intended for being called while being in
719 * raw mode and thus will take care of all the state syncing between
720 * REM and the rest.
721 *
722 * @returns VBox status code.
723 * @param pVM VM handle.
724 */
725REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
726{
727 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
728
729 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
730 * CPU_RAW_HWACC makes sure we never execute interrupt handlers in the recompiler.
731 */
732 if (HWACCMIsEnabled(pVM))
733 pVM->rem.s.Env.state |= CPU_RAW_HWACC;
734
735 /*
736 * Sync the state and enable single instruction / single stepping.
737 */
738 int rc = REMR3State(pVM, false /* no need to flush the TBs; we always compile. */);
739 if (VBOX_SUCCESS(rc))
740 {
741 int interrupt_request = pVM->rem.s.Env.interrupt_request;
742 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
743 Assert(!pVM->rem.s.Env.singlestep_enabled);
744#if 1
745
746 /*
747 * Now we set the execute single instruction flag and enter the cpu_exec loop.
748 */
749 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
750 rc = cpu_exec(&pVM->rem.s.Env);
751 switch (rc)
752 {
753 /*
754 * Executed without anything out of the way happening.
755 */
756 case EXCP_SINGLE_INSTR:
757 rc = VINF_EM_RESCHEDULE;
758 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
759 break;
760
761 /*
762 * If we take a trap or start servicing a pending interrupt, we might end up here.
763 * (Timer thread or some other thread wishing EMT's attention.)
764 */
765 case EXCP_INTERRUPT:
766 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
767 rc = VINF_EM_RESCHEDULE;
768 break;
769
770 /*
771 * Single step, we assume!
772 * If there was a breakpoint there we're fucked now.
773 */
774 case EXCP_DEBUG:
775 {
776 /* breakpoint or single step? */
777 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
778 int iBP;
779 rc = VINF_EM_DBG_STEPPED;
780 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
781 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
782 {
783 rc = VINF_EM_DBG_BREAKPOINT;
784 break;
785 }
786 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
787 break;
788 }
789
790 /*
791 * hlt instruction.
792 */
793 case EXCP_HLT:
794 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
795 rc = VINF_EM_HALT;
796 break;
797
798 /*
799 * The VM has halted.
800 */
801 case EXCP_HALTED:
802 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
803 rc = VINF_EM_HALT;
804 break;
805
806 /*
807 * Switch to RAW-mode.
808 */
809 case EXCP_EXECUTE_RAW:
810 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
811 rc = VINF_EM_RESCHEDULE_RAW;
812 break;
813
814 /*
815 * Switch to hardware accelerated RAW-mode.
816 */
817 case EXCP_EXECUTE_HWACC:
818 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
819 rc = VINF_EM_RESCHEDULE_HWACC;
820 break;
821
822 /*
823 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
824 */
825 case EXCP_RC:
826 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
827 rc = pVM->rem.s.rc;
828 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
829 break;
830
831 /*
832 * Figure out the rest when they arrive....
833 */
834 default:
835 AssertMsgFailed(("rc=%d\n", rc));
836 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
837 rc = VINF_EM_RESCHEDULE;
838 break;
839 }
840
841 /*
842 * Switch back the state.
843 */
844#else
845 pVM->rem.s.Env.interrupt_request = 0;
846 cpu_single_step(&pVM->rem.s.Env, 1);
847
848 /*
849 * Execute and handle the return code.
850 * We execute without enabling the cpu tick, so on success we'll
851 * just flip it on and off to make sure it moves.
852 *
853 * (We do not use emulate_single_instr() because that doesn't enter the
854 * right way in will cause serious trouble if a longjmp was attempted.)
855 */
856# ifdef DEBUG_bird
857 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
858# endif
859 int cTimesMax = 16384;
860 uint32_t eip = pVM->rem.s.Env.eip;
861 do
862 {
863 rc = cpu_exec(&pVM->rem.s.Env);
864
865 } while ( eip == pVM->rem.s.Env.eip
866 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
867 && --cTimesMax > 0);
868 switch (rc)
869 {
870 /*
871 * Single step, we assume!
872 * If there was a breakpoint there we're fucked now.
873 */
874 case EXCP_DEBUG:
875 {
876 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
877 rc = VINF_EM_RESCHEDULE;
878 break;
879 }
880
881 /*
882 * We cannot be interrupted!
883 */
884 case EXCP_INTERRUPT:
885 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
886 rc = VERR_INTERNAL_ERROR;
887 break;
888
889 /*
890 * hlt instruction.
891 */
892 case EXCP_HLT:
893 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
894 rc = VINF_EM_HALT;
895 break;
896
897 /*
898 * The VM has halted.
899 */
900 case EXCP_HALTED:
901 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
902 rc = VINF_EM_HALT;
903 break;
904
905 /*
906 * Switch to RAW-mode.
907 */
908 case EXCP_EXECUTE_RAW:
909 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
910 rc = VINF_EM_RESCHEDULE_RAW;
911 break;
912
913 /*
914 * Switch to hardware accelerated RAW-mode.
915 */
916 case EXCP_EXECUTE_HWACC:
917 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
918 rc = VINF_EM_RESCHEDULE_HWACC;
919 break;
920
921 /*
922 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
923 */
924 case EXCP_RC:
925 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
926 rc = pVM->rem.s.rc;
927 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
928 break;
929
930 /*
931 * Figure out the rest when they arrive....
932 */
933 default:
934 AssertMsgFailed(("rc=%d\n", rc));
935 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
936 rc = VINF_SUCCESS;
937 break;
938 }
939
940 /*
941 * Switch back the state.
942 */
943 cpu_single_step(&pVM->rem.s.Env, 0);
944#endif
945 pVM->rem.s.Env.interrupt_request = interrupt_request;
946 int rc2 = REMR3StateBack(pVM);
947 AssertRC(rc2);
948 }
949
950 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%08x)\n",
951 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
952 return rc;
953}
954
955
956/**
957 * Runs code in recompiled mode.
958 *
959 * Before calling this function the REM state needs to be in sync with
960 * the VM. Call REMR3State() to perform the sync. It's only necessary
961 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
962 * and after calling REMR3StateBack().
963 *
964 * @returns VBox status code.
965 *
966 * @param pVM VM Handle.
967 */
968REMR3DECL(int) REMR3Run(PVM pVM)
969{
970 Log2(("REMR3Run: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
971 Assert(pVM->rem.s.fInREM);
972
973 int rc = cpu_exec(&pVM->rem.s.Env);
974 switch (rc)
975 {
976 /*
977 * This happens when the execution was interrupted
978 * by an external event, like pending timers.
979 */
980 case EXCP_INTERRUPT:
981 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
982 rc = VINF_SUCCESS;
983 break;
984
985 /*
986 * hlt instruction.
987 */
988 case EXCP_HLT:
989 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
990 rc = VINF_EM_HALT;
991 break;
992
993 /*
994 * The VM has halted.
995 */
996 case EXCP_HALTED:
997 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
998 rc = VINF_EM_HALT;
999 break;
1000
1001 /*
1002 * Breakpoint/single step.
1003 */
1004 case EXCP_DEBUG:
1005 {
1006#if 0//def DEBUG_bird
1007 static int iBP = 0;
1008 printf("howdy, breakpoint! iBP=%d\n", iBP);
1009 switch (iBP)
1010 {
1011 case 0:
1012 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1013 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1014 //pVM->rem.s.Env.interrupt_request = 0;
1015 //pVM->rem.s.Env.exception_index = -1;
1016 //g_fInterruptDisabled = 1;
1017 rc = VINF_SUCCESS;
1018 asm("int3");
1019 break;
1020 default:
1021 asm("int3");
1022 break;
1023 }
1024 iBP++;
1025#else
1026 /* breakpoint or single step? */
1027 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1028 int iBP;
1029 rc = VINF_EM_DBG_STEPPED;
1030 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1031 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1032 {
1033 rc = VINF_EM_DBG_BREAKPOINT;
1034 break;
1035 }
1036 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1037#endif
1038 break;
1039 }
1040
1041 /*
1042 * Switch to RAW-mode.
1043 */
1044 case EXCP_EXECUTE_RAW:
1045 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1046 rc = VINF_EM_RESCHEDULE_RAW;
1047 break;
1048
1049 /*
1050 * Switch to hardware accelerated RAW-mode.
1051 */
1052 case EXCP_EXECUTE_HWACC:
1053 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1054 rc = VINF_EM_RESCHEDULE_HWACC;
1055 break;
1056
1057 /*
1058 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1059 */
1060 case EXCP_RC:
1061 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1062 rc = pVM->rem.s.rc;
1063 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1064 break;
1065
1066 /*
1067 * Figure out the rest when they arrive....
1068 */
1069 default:
1070 AssertMsgFailed(("rc=%d\n", rc));
1071 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1072 rc = VINF_SUCCESS;
1073 break;
1074 }
1075
1076 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%08x)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1077 return rc;
1078}
1079
1080
1081/**
1082 * Check if the cpu state is suitable for Raw execution.
1083 *
1084 * @returns boolean
1085 * @param env The CPU env struct.
1086 * @param eip The EIP to check this for (might differ from env->eip).
1087 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1088 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1089 *
1090 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1091 */
1092bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1093{
1094 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1095 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1096 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1097
1098 /* Update counter. */
1099 env->pVM->rem.s.cCanExecuteRaw++;
1100
1101 if (HWACCMIsEnabled(env->pVM))
1102 {
1103 env->state |= CPU_RAW_HWACC;
1104
1105 /*
1106 * Create partial context for HWACCMR3CanExecuteGuest
1107 */
1108 CPUMCTX Ctx;
1109 Ctx.cr0 = env->cr[0];
1110 Ctx.cr3 = env->cr[3];
1111 Ctx.cr4 = env->cr[4];
1112
1113 Ctx.tr = env->tr.selector;
1114 Ctx.trHid.u64Base = env->tr.base;
1115 Ctx.trHid.u32Limit = env->tr.limit;
1116 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1117
1118 Ctx.idtr.cbIdt = env->idt.limit;
1119 Ctx.idtr.pIdt = env->idt.base;
1120
1121 Ctx.eflags.u32 = env->eflags;
1122
1123 Ctx.cs = env->segs[R_CS].selector;
1124 Ctx.csHid.u64Base = env->segs[R_CS].base;
1125 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1126 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1127
1128 Ctx.ss = env->segs[R_SS].selector;
1129 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1130 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1131 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1132
1133 Ctx.msrEFER = env->efer;
1134
1135 /* Hardware accelerated raw-mode:
1136 *
1137 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1138 */
1139 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1140 {
1141 *piException = EXCP_EXECUTE_HWACC;
1142 return true;
1143 }
1144 return false;
1145 }
1146
1147 /*
1148 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1149 * or 32 bits protected mode ring 0 code
1150 *
1151 * The tests are ordered by the likelyhood of being true during normal execution.
1152 */
1153 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1154 {
1155 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1156 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1157 return false;
1158 }
1159
1160#ifndef VBOX_RAW_V86
1161 if (fFlags & VM_MASK) {
1162 STAM_COUNTER_INC(&gStatRefuseVM86);
1163 Log2(("raw mode refused: VM_MASK\n"));
1164 return false;
1165 }
1166#endif
1167
1168 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1169 {
1170#ifndef DEBUG_bird
1171 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1172#endif
1173 return false;
1174 }
1175
1176 if (env->singlestep_enabled)
1177 {
1178 //Log2(("raw mode refused: Single step\n"));
1179 return false;
1180 }
1181
1182 if (env->nb_breakpoints > 0)
1183 {
1184 //Log2(("raw mode refused: Breakpoints\n"));
1185 return false;
1186 }
1187
1188 uint32_t u32CR0 = env->cr[0];
1189 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1190 {
1191 STAM_COUNTER_INC(&gStatRefusePaging);
1192 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1193 return false;
1194 }
1195
1196 if (env->cr[4] & CR4_PAE_MASK)
1197 {
1198 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1199 {
1200 STAM_COUNTER_INC(&gStatRefusePAE);
1201 return false;
1202 }
1203 }
1204
1205 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1206 {
1207 if (!EMIsRawRing3Enabled(env->pVM))
1208 return false;
1209
1210 if (!(env->eflags & IF_MASK))
1211 {
1212 STAM_COUNTER_INC(&gStatRefuseIF0);
1213 Log2(("raw mode refused: IF (RawR3)\n"));
1214 return false;
1215 }
1216
1217 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1218 {
1219 STAM_COUNTER_INC(&gStatRefuseWP0);
1220 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1221 return false;
1222 }
1223 }
1224 else
1225 {
1226 if (!EMIsRawRing0Enabled(env->pVM))
1227 return false;
1228
1229 // Let's start with pure 32 bits ring 0 code first
1230 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1231 {
1232 STAM_COUNTER_INC(&gStatRefuseCode16);
1233 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1234 return false;
1235 }
1236
1237 // Only R0
1238 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1239 {
1240 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1241 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1242 return false;
1243 }
1244
1245 if (!(u32CR0 & CR0_WP_MASK))
1246 {
1247 STAM_COUNTER_INC(&gStatRefuseWP0);
1248 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1249 return false;
1250 }
1251
1252 if (PATMIsPatchGCAddr(env->pVM, eip))
1253 {
1254 Log2(("raw r0 mode forced: patch code\n"));
1255 *piException = EXCP_EXECUTE_RAW;
1256 return true;
1257 }
1258
1259#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1260 if (!(env->eflags & IF_MASK))
1261 {
1262 STAM_COUNTER_INC(&gStatRefuseIF0);
1263 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1264 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1265 return false;
1266 }
1267#endif
1268
1269 env->state |= CPU_RAW_RING0;
1270 }
1271
1272 /*
1273 * Don't reschedule the first time we're called, because there might be
1274 * special reasons why we're here that is not covered by the above checks.
1275 */
1276 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1277 {
1278 Log2(("raw mode refused: first scheduling\n"));
1279 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1280 return false;
1281 }
1282
1283 Assert(PGMPhysIsA20Enabled(env->pVM));
1284 *piException = EXCP_EXECUTE_RAW;
1285 return true;
1286}
1287
1288
1289/**
1290 * Fetches a code byte.
1291 *
1292 * @returns Success indicator (bool) for ease of use.
1293 * @param env The CPU environment structure.
1294 * @param GCPtrInstr Where to fetch code.
1295 * @param pu8Byte Where to store the byte on success
1296 */
1297bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1298{
1299 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1300 if (VBOX_SUCCESS(rc))
1301 return true;
1302 return false;
1303}
1304
1305
1306/**
1307 * Flush (or invalidate if you like) page table/dir entry.
1308 *
1309 * (invlpg instruction; tlb_flush_page)
1310 *
1311 * @param env Pointer to cpu environment.
1312 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1313 */
1314void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1315{
1316 PVM pVM = env->pVM;
1317
1318 /*
1319 * When we're replaying invlpg instructions or restoring a saved
1320 * state we disable this path.
1321 */
1322 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1323 return;
1324 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1325 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1326
1327 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1328
1329 /*
1330 * Update the control registers before calling PGMFlushPage.
1331 */
1332 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1333 pCtx->cr0 = env->cr[0];
1334 pCtx->cr3 = env->cr[3];
1335 pCtx->cr4 = env->cr[4];
1336
1337 /*
1338 * Let PGM do the rest.
1339 */
1340 int rc = PGMInvalidatePage(pVM, GCPtr);
1341 if (VBOX_FAILURE(rc))
1342 {
1343 AssertMsgFailed(("remR3FlushPage %VGv failed with %d!!\n", GCPtr, rc));
1344 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1345 }
1346 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1347}
1348
1349
1350/**
1351 * Called from tlb_protect_code in order to write monitor a code page.
1352 *
1353 * @param env Pointer to the CPU environment.
1354 * @param GCPtr Code page to monitor
1355 */
1356void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1357{
1358#ifndef VBOX_REM_FLUSH_ALL_TBS
1359 Assert(env->pVM->rem.s.fInREM);
1360 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1361 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1362 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1363 && !(env->eflags & VM_MASK) /* no V86 mode */
1364 && !HWACCMIsEnabled(env->pVM))
1365 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1366#endif
1367}
1368
1369/**
1370 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1371 *
1372 * @param env Pointer to the CPU environment.
1373 * @param GCPtr Code page to monitor
1374 */
1375void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1376{
1377 Assert(env->pVM->rem.s.fInREM);
1378#ifndef VBOX_REM_FLUSH_ALL_TBS
1379 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1380 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1381 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1382 && !(env->eflags & VM_MASK) /* no V86 mode */
1383 && !HWACCMIsEnabled(env->pVM))
1384 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1385#endif
1386}
1387
1388
1389/**
1390 * Called when the CPU is initialized, any of the CRx registers are changed or
1391 * when the A20 line is modified.
1392 *
1393 * @param env Pointer to the CPU environment.
1394 * @param fGlobal Set if the flush is global.
1395 */
1396void remR3FlushTLB(CPUState *env, bool fGlobal)
1397{
1398 PVM pVM = env->pVM;
1399
1400 /*
1401 * When we're replaying invlpg instructions or restoring a saved
1402 * state we disable this path.
1403 */
1404 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1405 return;
1406 Assert(pVM->rem.s.fInREM);
1407
1408 /*
1409 * The caller doesn't check cr4, so we have to do that for ourselves.
1410 */
1411 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1412 fGlobal = true;
1413 Log(("remR3FlushTLB: CR0=%VGp CR3=%VGp CR4=%VGp %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1414
1415 /*
1416 * Update the control registers before calling PGMR3FlushTLB.
1417 */
1418 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1419 pCtx->cr0 = env->cr[0];
1420 pCtx->cr3 = env->cr[3];
1421 pCtx->cr4 = env->cr[4];
1422
1423 /*
1424 * Let PGM do the rest.
1425 */
1426 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1427}
1428
1429
1430/**
1431 * Called when any of the cr0, cr4 or efer registers is updated.
1432 *
1433 * @param env Pointer to the CPU environment.
1434 */
1435void remR3ChangeCpuMode(CPUState *env)
1436{
1437 int rc;
1438 PVM pVM = env->pVM;
1439
1440 /*
1441 * When we're replaying loads or restoring a saved
1442 * state this path is disabled.
1443 */
1444 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1445 return;
1446 Assert(pVM->rem.s.fInREM);
1447
1448 /*
1449 * Update the control registers before calling PGMChangeMode()
1450 * as it may need to map whatever cr3 is pointing to.
1451 */
1452 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1453 pCtx->cr0 = env->cr[0];
1454 pCtx->cr3 = env->cr[3];
1455 pCtx->cr4 = env->cr[4];
1456
1457#ifdef TARGET_X86_64
1458 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1459 if (rc != VINF_SUCCESS)
1460 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1461#else
1462 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1463 if (rc != VINF_SUCCESS)
1464 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1465#endif
1466}
1467
1468
1469/**
1470 * Called from compiled code to run dma.
1471 *
1472 * @param env Pointer to the CPU environment.
1473 */
1474void remR3DmaRun(CPUState *env)
1475{
1476 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1477 PDMR3DmaRun(env->pVM);
1478 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1479}
1480
1481
1482/**
1483 * Called from compiled code to schedule pending timers in VMM
1484 *
1485 * @param env Pointer to the CPU environment.
1486 */
1487void remR3TimersRun(CPUState *env)
1488{
1489 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1490 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1491 TMR3TimerQueuesDo(env->pVM);
1492 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1493 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1494}
1495
1496
1497/**
1498 * Record trap occurance
1499 *
1500 * @returns VBox status code
1501 * @param env Pointer to the CPU environment.
1502 * @param uTrap Trap nr
1503 * @param uErrorCode Error code
1504 * @param pvNextEIP Next EIP
1505 */
1506int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1507{
1508 PVM pVM = env->pVM;
1509#ifdef VBOX_WITH_STATISTICS
1510 static STAMCOUNTER s_aStatTrap[255];
1511 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1512#endif
1513
1514#ifdef VBOX_WITH_STATISTICS
1515 if (uTrap < 255)
1516 {
1517 if (!s_aRegisters[uTrap])
1518 {
1519 s_aRegisters[uTrap] = true;
1520 char szStatName[64];
1521 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1522 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1523 }
1524 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1525 }
1526#endif
1527 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%VGv\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1528 if( uTrap < 0x20
1529 && (env->cr[0] & X86_CR0_PE)
1530 && !(env->eflags & X86_EFL_VM))
1531 {
1532#ifdef DEBUG
1533 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1534#endif
1535 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1536 {
1537 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1538 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1539 return VERR_REM_TOO_MANY_TRAPS;
1540 }
1541 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1542 pVM->rem.s.cPendingExceptions = 1;
1543 pVM->rem.s.uPendingException = uTrap;
1544 pVM->rem.s.uPendingExcptEIP = env->eip;
1545 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1546 }
1547 else
1548 {
1549 pVM->rem.s.cPendingExceptions = 0;
1550 pVM->rem.s.uPendingException = uTrap;
1551 pVM->rem.s.uPendingExcptEIP = env->eip;
1552 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1553 }
1554 return VINF_SUCCESS;
1555}
1556
1557
1558/*
1559 * Clear current active trap
1560 *
1561 * @param pVM VM Handle.
1562 */
1563void remR3TrapClear(PVM pVM)
1564{
1565 pVM->rem.s.cPendingExceptions = 0;
1566 pVM->rem.s.uPendingException = 0;
1567 pVM->rem.s.uPendingExcptEIP = 0;
1568 pVM->rem.s.uPendingExcptCR2 = 0;
1569}
1570
1571
1572/*
1573 * Record previous call instruction addresses
1574 *
1575 * @param env Pointer to the CPU environment.
1576 */
1577void remR3RecordCall(CPUState *env)
1578{
1579 CSAMR3RecordCallAddress(env->pVM, env->eip);
1580}
1581
1582
1583/**
1584 * Syncs the internal REM state with the VM.
1585 *
1586 * This must be called before REMR3Run() is invoked whenever when the REM
1587 * state is not up to date. Calling it several times in a row is not
1588 * permitted.
1589 *
1590 * @returns VBox status code.
1591 *
1592 * @param pVM VM Handle.
1593 * @param fFlushTBs Flush all translation blocks before executing code
1594 *
1595 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1596 * no do this since the majority of the callers don't want any unnecessary of events
1597 * pending that would immediatly interrupt execution.
1598 */
1599REMR3DECL(int) REMR3State(PVM pVM, bool fFlushTBs)
1600{
1601 Log2(("REMR3State:\n"));
1602 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1603 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1604 register unsigned fFlags;
1605 bool fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1606
1607 Assert(!pVM->rem.s.fInREM);
1608 pVM->rem.s.fInStateSync = true;
1609
1610#ifdef VBOX_REM_FLUSH_ALL_TBS
1611 if (fFlushTBs)
1612 tb_flush(&pVM->rem.s.Env);
1613#endif
1614
1615 /*
1616 * Copy the registers which require no special handling.
1617 */
1618#ifdef TARGET_X86_64
1619 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
1620 Assert(R_EAX == 0);
1621 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1622 Assert(R_ECX == 1);
1623 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1624 Assert(R_EDX == 2);
1625 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1626 Assert(R_EBX == 3);
1627 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1628 Assert(R_ESP == 4);
1629 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1630 Assert(R_EBP == 5);
1631 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1632 Assert(R_ESI == 6);
1633 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1634 Assert(R_EDI == 7);
1635 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1636 pVM->rem.s.Env.regs[8] = pCtx->r8;
1637 pVM->rem.s.Env.regs[9] = pCtx->r9;
1638 pVM->rem.s.Env.regs[10] = pCtx->r10;
1639 pVM->rem.s.Env.regs[11] = pCtx->r11;
1640 pVM->rem.s.Env.regs[12] = pCtx->r12;
1641 pVM->rem.s.Env.regs[13] = pCtx->r13;
1642 pVM->rem.s.Env.regs[14] = pCtx->r14;
1643 pVM->rem.s.Env.regs[15] = pCtx->r15;
1644
1645 pVM->rem.s.Env.eip = pCtx->rip;
1646
1647 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1648#else
1649 Assert(R_EAX == 0);
1650 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1651 Assert(R_ECX == 1);
1652 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1653 Assert(R_EDX == 2);
1654 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1655 Assert(R_EBX == 3);
1656 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1657 Assert(R_ESP == 4);
1658 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1659 Assert(R_EBP == 5);
1660 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1661 Assert(R_ESI == 6);
1662 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1663 Assert(R_EDI == 7);
1664 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1665 pVM->rem.s.Env.eip = pCtx->eip;
1666
1667 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1668#endif
1669
1670 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1671
1672 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1673 pVM->rem.s.Env.dr[0] = pCtx->dr0;
1674 pVM->rem.s.Env.dr[1] = pCtx->dr1;
1675 pVM->rem.s.Env.dr[2] = pCtx->dr2;
1676 pVM->rem.s.Env.dr[3] = pCtx->dr3;
1677 pVM->rem.s.Env.dr[4] = pCtx->dr4;
1678 pVM->rem.s.Env.dr[5] = pCtx->dr5;
1679 pVM->rem.s.Env.dr[6] = pCtx->dr6;
1680 pVM->rem.s.Env.dr[7] = pCtx->dr7;
1681
1682 /*
1683 * Clear the halted hidden flag (the interrupt waking up the CPU can
1684 * have been dispatched in raw mode).
1685 */
1686 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1687
1688 /*
1689 * Replay invlpg?
1690 */
1691 if (pVM->rem.s.cInvalidatedPages)
1692 {
1693 pVM->rem.s.fIgnoreInvlPg = true;
1694 RTUINT i;
1695 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1696 {
1697 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1698 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1699 }
1700 pVM->rem.s.fIgnoreInvlPg = false;
1701 pVM->rem.s.cInvalidatedPages = 0;
1702 }
1703
1704 /* Replay notification changes? */
1705 if (pVM->rem.s.cHandlerNotifications)
1706 REMR3ReplayHandlerNotifications(pVM);
1707
1708 /* Update MSRs; before CRx registers! */
1709 pVM->rem.s.Env.efer = pCtx->msrEFER;
1710 pVM->rem.s.Env.star = pCtx->msrSTAR;
1711 pVM->rem.s.Env.pat = pCtx->msrPAT;
1712#ifdef TARGET_X86_64
1713 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1714 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1715 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1716 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1717
1718 /* Update the internal long mode activate flag according to the new EFER value. */
1719 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1720 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
1721 else
1722 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
1723#endif
1724
1725
1726 /*
1727 * Registers which are rarely changed and require special handling / order when changed.
1728 */
1729 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1730 LogFlow(("CPUMGetAndClearChangedFlagsREM %x\n", fFlags));
1731 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1732 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1733 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1734 {
1735 if (fFlags & CPUM_CHANGED_FPU_REM)
1736 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1737
1738 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1739 {
1740 pVM->rem.s.fIgnoreCR3Load = true;
1741 tlb_flush(&pVM->rem.s.Env, true);
1742 pVM->rem.s.fIgnoreCR3Load = false;
1743 }
1744
1745 /* CR4 before CR0! */
1746 if (fFlags & CPUM_CHANGED_CR4)
1747 {
1748 pVM->rem.s.fIgnoreCR3Load = true;
1749 pVM->rem.s.fIgnoreCpuMode = true;
1750 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1751 pVM->rem.s.fIgnoreCpuMode = false;
1752 pVM->rem.s.fIgnoreCR3Load = false;
1753 }
1754
1755 if (fFlags & CPUM_CHANGED_CR0)
1756 {
1757 pVM->rem.s.fIgnoreCR3Load = true;
1758 pVM->rem.s.fIgnoreCpuMode = true;
1759 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1760 pVM->rem.s.fIgnoreCpuMode = false;
1761 pVM->rem.s.fIgnoreCR3Load = false;
1762 }
1763
1764 if (fFlags & CPUM_CHANGED_CR3)
1765 {
1766 pVM->rem.s.fIgnoreCR3Load = true;
1767 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1768 pVM->rem.s.fIgnoreCR3Load = false;
1769 }
1770
1771 if (fFlags & CPUM_CHANGED_GDTR)
1772 {
1773 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1774 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1775 }
1776
1777 if (fFlags & CPUM_CHANGED_IDTR)
1778 {
1779 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1780 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1781 }
1782
1783 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1784 {
1785 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1786 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1787 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1788 }
1789
1790 if (fFlags & CPUM_CHANGED_LDTR)
1791 {
1792 if (fHiddenSelRegsValid)
1793 {
1794 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1795 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1796 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1797 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1798 }
1799 else
1800 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1801 }
1802
1803 if (fFlags & CPUM_CHANGED_TR)
1804 {
1805 if (fHiddenSelRegsValid)
1806 {
1807 pVM->rem.s.Env.tr.selector = pCtx->tr;
1808 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1809 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1810 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1811 }
1812 else
1813 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1814
1815 /** @note do_interrupt will fault if the busy flag is still set.... */
1816 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1817 }
1818
1819 if (fFlags & CPUM_CHANGED_CPUID)
1820 {
1821 uint32_t u32Dummy;
1822
1823 /*
1824 * Get the CPUID features.
1825 */
1826 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1827 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1828 }
1829 }
1830
1831 /*
1832 * Update selector registers.
1833 * This must be done *after* we've synced gdt, ldt and crX registers
1834 * since we're reading the GDT/LDT om sync_seg. This will happen with
1835 * saved state which takes a quick dip into rawmode for instance.
1836 */
1837 /*
1838 * Stack; Note first check this one as the CPL might have changed. The
1839 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1840 */
1841
1842 if (fHiddenSelRegsValid)
1843 {
1844 /* The hidden selector registers are valid in the CPU context. */
1845 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1846
1847 /* Set current CPL */
1848 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1849
1850 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1851 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1852 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1853 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1854 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1855 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1856 }
1857 else
1858 {
1859 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1860 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1861 {
1862 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1863
1864 cpu_x86_set_cpl(&pVM->rem.s.Env, (pCtx->eflags.Bits.u1VM) ? 3 : (pCtx->ss & 3));
1865 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1866#ifdef VBOX_WITH_STATISTICS
1867 if (pVM->rem.s.Env.segs[R_SS].newselector)
1868 {
1869 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1870 }
1871#endif
1872 }
1873 else
1874 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1875
1876 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1877 {
1878 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1879 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1880#ifdef VBOX_WITH_STATISTICS
1881 if (pVM->rem.s.Env.segs[R_ES].newselector)
1882 {
1883 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1884 }
1885#endif
1886 }
1887 else
1888 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1889
1890 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1891 {
1892 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1893 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1894#ifdef VBOX_WITH_STATISTICS
1895 if (pVM->rem.s.Env.segs[R_CS].newselector)
1896 {
1897 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1898 }
1899#endif
1900 }
1901 else
1902 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1903
1904 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1905 {
1906 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1907 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1908#ifdef VBOX_WITH_STATISTICS
1909 if (pVM->rem.s.Env.segs[R_DS].newselector)
1910 {
1911 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1912 }
1913#endif
1914 }
1915 else
1916 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1917
1918 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1919 * be the same but not the base/limit. */
1920 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1921 {
1922 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1923 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1924#ifdef VBOX_WITH_STATISTICS
1925 if (pVM->rem.s.Env.segs[R_FS].newselector)
1926 {
1927 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1928 }
1929#endif
1930 }
1931 else
1932 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1933
1934 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1935 {
1936 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1937 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1938#ifdef VBOX_WITH_STATISTICS
1939 if (pVM->rem.s.Env.segs[R_GS].newselector)
1940 {
1941 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1942 }
1943#endif
1944 }
1945 else
1946 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1947 }
1948
1949 /*
1950 * Check for traps.
1951 */
1952 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1953 TRPMEVENT enmType;
1954 uint8_t u8TrapNo;
1955 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1956 if (VBOX_SUCCESS(rc))
1957 {
1958#ifdef DEBUG
1959 if (u8TrapNo == 0x80)
1960 {
1961 remR3DumpLnxSyscall(pVM);
1962 remR3DumpOBsdSyscall(pVM);
1963 }
1964#endif
1965
1966 pVM->rem.s.Env.exception_index = u8TrapNo;
1967 if (enmType != TRPM_SOFTWARE_INT)
1968 {
1969 pVM->rem.s.Env.exception_is_int = 0;
1970 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1971 }
1972 else
1973 {
1974 /*
1975 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1976 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1977 * for int03 and into.
1978 */
1979 pVM->rem.s.Env.exception_is_int = 1;
1980 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 2;
1981 /* int 3 may be generated by one-byte 0xcc */
1982 if (u8TrapNo == 3)
1983 {
1984 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xcc)
1985 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1986 }
1987 /* int 4 may be generated by one-byte 0xce */
1988 else if (u8TrapNo == 4)
1989 {
1990 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xce)
1991 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1992 }
1993 }
1994
1995 /* get error code and cr2 if needed. */
1996 switch (u8TrapNo)
1997 {
1998 case 0x0e:
1999 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
2000 /* fallthru */
2001 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2002 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
2003 break;
2004
2005 case 0x11: case 0x08:
2006 default:
2007 pVM->rem.s.Env.error_code = 0;
2008 break;
2009 }
2010
2011 /*
2012 * We can now reset the active trap since the recompiler is gonna have a go at it.
2013 */
2014 rc = TRPMResetTrap(pVM);
2015 AssertRC(rc);
2016 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
2017 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2018 }
2019
2020 /*
2021 * Clear old interrupt request flags; Check for pending hardware interrupts.
2022 * (See @remark for why we don't check for other FFs.)
2023 */
2024 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2025 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2026 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2027 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2028
2029 /*
2030 * We're now in REM mode.
2031 */
2032 pVM->rem.s.fInREM = true;
2033 pVM->rem.s.fInStateSync = false;
2034 pVM->rem.s.cCanExecuteRaw = 0;
2035 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2036 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2037 return VINF_SUCCESS;
2038}
2039
2040
2041/**
2042 * Syncs back changes in the REM state to the the VM state.
2043 *
2044 * This must be called after invoking REMR3Run().
2045 * Calling it several times in a row is not permitted.
2046 *
2047 * @returns VBox status code.
2048 *
2049 * @param pVM VM Handle.
2050 */
2051REMR3DECL(int) REMR3StateBack(PVM pVM)
2052{
2053 Log2(("REMR3StateBack:\n"));
2054 Assert(pVM->rem.s.fInREM);
2055 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2056 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2057
2058 /*
2059 * Copy back the registers.
2060 * This is done in the order they are declared in the CPUMCTX structure.
2061 */
2062
2063 /** @todo FOP */
2064 /** @todo FPUIP */
2065 /** @todo CS */
2066 /** @todo FPUDP */
2067 /** @todo DS */
2068 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2069 pCtx->fpu.MXCSR = 0;
2070 pCtx->fpu.MXCSR_MASK = 0;
2071
2072 /** @todo check if FPU/XMM was actually used in the recompiler */
2073 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2074//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2075
2076#ifdef TARGET_X86_64
2077 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2078 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2079 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2080 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2081 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2082 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2083 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2084 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2085 pCtx->r8 = pVM->rem.s.Env.regs[8];
2086 pCtx->r9 = pVM->rem.s.Env.regs[9];
2087 pCtx->r10 = pVM->rem.s.Env.regs[10];
2088 pCtx->r11 = pVM->rem.s.Env.regs[11];
2089 pCtx->r12 = pVM->rem.s.Env.regs[12];
2090 pCtx->r13 = pVM->rem.s.Env.regs[13];
2091 pCtx->r14 = pVM->rem.s.Env.regs[14];
2092 pCtx->r15 = pVM->rem.s.Env.regs[15];
2093
2094 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2095
2096#else
2097 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2098 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2099 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2100 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2101 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2102 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2103 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2104
2105 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2106#endif
2107
2108 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2109
2110#ifdef VBOX_WITH_STATISTICS
2111 if (pVM->rem.s.Env.segs[R_SS].newselector)
2112 {
2113 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2114 }
2115 if (pVM->rem.s.Env.segs[R_GS].newselector)
2116 {
2117 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2118 }
2119 if (pVM->rem.s.Env.segs[R_FS].newselector)
2120 {
2121 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2122 }
2123 if (pVM->rem.s.Env.segs[R_ES].newselector)
2124 {
2125 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2126 }
2127 if (pVM->rem.s.Env.segs[R_DS].newselector)
2128 {
2129 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2130 }
2131 if (pVM->rem.s.Env.segs[R_CS].newselector)
2132 {
2133 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2134 }
2135#endif
2136 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2137 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2138 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2139 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2140 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2141
2142#ifdef TARGET_X86_64
2143 pCtx->rip = pVM->rem.s.Env.eip;
2144 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2145#else
2146 pCtx->eip = pVM->rem.s.Env.eip;
2147 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2148#endif
2149
2150 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2151 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2152 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2153 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2154
2155 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2156 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2157 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2158 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2159 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2160 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2161 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2162 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2163
2164 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2165 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2166 {
2167 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2168 STAM_COUNTER_INC(&gStatREMGDTChange);
2169 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2170 }
2171
2172 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2173 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2174 {
2175 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2176 STAM_COUNTER_INC(&gStatREMIDTChange);
2177 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2178 }
2179
2180 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2181 {
2182 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2183 STAM_COUNTER_INC(&gStatREMLDTRChange);
2184 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2185 }
2186 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2187 {
2188 pCtx->tr = pVM->rem.s.Env.tr.selector;
2189 STAM_COUNTER_INC(&gStatREMTRChange);
2190 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2191 }
2192
2193 /** @todo These values could still be out of sync! */
2194 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2195 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2196 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2197 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2198
2199 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2200 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2201 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2202
2203 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2204 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2205 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2206
2207 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2208 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2209 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2210
2211 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2212 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2213 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2214
2215 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2216 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2217 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2218
2219 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2220 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2221 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2222
2223 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2224 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2225 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2226
2227 /* Sysenter MSR */
2228 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2229 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2230 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2231
2232 /* System MSRs. */
2233 pCtx->msrEFER = pVM->rem.s.Env.efer;
2234 pCtx->msrSTAR = pVM->rem.s.Env.star;
2235 pCtx->msrPAT = pVM->rem.s.Env.pat;
2236#ifdef TARGET_X86_64
2237 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2238 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2239 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2240 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2241#endif
2242
2243 remR3TrapClear(pVM);
2244
2245 /*
2246 * Check for traps.
2247 */
2248 if ( pVM->rem.s.Env.exception_index >= 0
2249 && pVM->rem.s.Env.exception_index < 256)
2250 {
2251 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2252 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2253 AssertRC(rc);
2254 switch (pVM->rem.s.Env.exception_index)
2255 {
2256 case 0x0e:
2257 TRPMSetFaultAddress(pVM, pCtx->cr2);
2258 /* fallthru */
2259 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2260 case 0x11: case 0x08: /* 0 */
2261 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2262 break;
2263 }
2264
2265 }
2266
2267 /*
2268 * We're not longer in REM mode.
2269 */
2270 pVM->rem.s.fInREM = false;
2271 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2272 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2273 return VINF_SUCCESS;
2274}
2275
2276
2277/**
2278 * This is called by the disassembler when it wants to update the cpu state
2279 * before for instance doing a register dump.
2280 */
2281static void remR3StateUpdate(PVM pVM)
2282{
2283 Assert(pVM->rem.s.fInREM);
2284 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2285
2286 /*
2287 * Copy back the registers.
2288 * This is done in the order they are declared in the CPUMCTX structure.
2289 */
2290
2291 /** @todo FOP */
2292 /** @todo FPUIP */
2293 /** @todo CS */
2294 /** @todo FPUDP */
2295 /** @todo DS */
2296 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2297 pCtx->fpu.MXCSR = 0;
2298 pCtx->fpu.MXCSR_MASK = 0;
2299
2300 /** @todo check if FPU/XMM was actually used in the recompiler */
2301 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2302//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2303
2304#ifdef TARGET_X86_64
2305 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2306 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2307 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2308 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2309 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2310 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2311 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2312 pCtx->r8 = pVM->rem.s.Env.regs[8];
2313 pCtx->r9 = pVM->rem.s.Env.regs[9];
2314 pCtx->r10 = pVM->rem.s.Env.regs[10];
2315 pCtx->r11 = pVM->rem.s.Env.regs[11];
2316 pCtx->r12 = pVM->rem.s.Env.regs[12];
2317 pCtx->r13 = pVM->rem.s.Env.regs[13];
2318 pCtx->r14 = pVM->rem.s.Env.regs[14];
2319 pCtx->r15 = pVM->rem.s.Env.regs[15];
2320
2321 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2322#else
2323 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2324 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2325 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2326 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2327 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2328 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2329 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2330
2331 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2332#endif
2333
2334 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2335
2336 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2337 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2338 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2339 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2340 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2341
2342#ifdef TARGET_X86_64
2343 pCtx->rip = pVM->rem.s.Env.eip;
2344 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2345#else
2346 pCtx->eip = pVM->rem.s.Env.eip;
2347 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2348#endif
2349
2350 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2351 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2352 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2353 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2354
2355 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2356 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2357 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2358 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2359 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2360 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2361 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2362 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2363
2364 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2365 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2366 {
2367 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2368 STAM_COUNTER_INC(&gStatREMGDTChange);
2369 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2370 }
2371
2372 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2373 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2374 {
2375 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2376 STAM_COUNTER_INC(&gStatREMIDTChange);
2377 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2378 }
2379
2380 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2381 {
2382 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2383 STAM_COUNTER_INC(&gStatREMLDTRChange);
2384 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2385 }
2386 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2387 {
2388 pCtx->tr = pVM->rem.s.Env.tr.selector;
2389 STAM_COUNTER_INC(&gStatREMTRChange);
2390 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2391 }
2392
2393 /** @todo These values could still be out of sync! */
2394 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2395 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2396 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2397 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2398
2399 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2400 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2401 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2402
2403 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2404 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2405 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2406
2407 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2408 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2409 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2410
2411 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2412 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2413 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2414
2415 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2416 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2417 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2418
2419 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2420 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2421 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2422
2423 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2424 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2425 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2426
2427 /* Sysenter MSR */
2428 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2429 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2430 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2431
2432 /* System MSRs. */
2433 pCtx->msrEFER = pVM->rem.s.Env.efer;
2434 pCtx->msrSTAR = pVM->rem.s.Env.star;
2435 pCtx->msrPAT = pVM->rem.s.Env.pat;
2436#ifdef TARGET_X86_64
2437 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2438 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2439 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2440 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2441#endif
2442
2443}
2444
2445
2446/**
2447 * Update the VMM state information if we're currently in REM.
2448 *
2449 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2450 * we're currently executing in REM and the VMM state is invalid. This method will of
2451 * course check that we're executing in REM before syncing any data over to the VMM.
2452 *
2453 * @param pVM The VM handle.
2454 */
2455REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2456{
2457 if (pVM->rem.s.fInREM)
2458 remR3StateUpdate(pVM);
2459}
2460
2461
2462#undef LOG_GROUP
2463#define LOG_GROUP LOG_GROUP_REM
2464
2465
2466/**
2467 * Notify the recompiler about Address Gate 20 state change.
2468 *
2469 * This notification is required since A20 gate changes are
2470 * initialized from a device driver and the VM might just as
2471 * well be in REM mode as in RAW mode.
2472 *
2473 * @param pVM VM handle.
2474 * @param fEnable True if the gate should be enabled.
2475 * False if the gate should be disabled.
2476 */
2477REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2478{
2479 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2480 VM_ASSERT_EMT(pVM);
2481
2482 bool fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2483 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2484
2485 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2486
2487 pVM->rem.s.fIgnoreAll = fSaved;
2488}
2489
2490
2491/**
2492 * Replays the invalidated recorded pages.
2493 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2494 *
2495 * @param pVM VM handle.
2496 */
2497REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2498{
2499 VM_ASSERT_EMT(pVM);
2500
2501 /*
2502 * Sync the required registers.
2503 */
2504 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2505 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2506 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2507 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2508
2509 /*
2510 * Replay the flushes.
2511 */
2512 pVM->rem.s.fIgnoreInvlPg = true;
2513 RTUINT i;
2514 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2515 {
2516 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2517 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2518 }
2519 pVM->rem.s.fIgnoreInvlPg = false;
2520 pVM->rem.s.cInvalidatedPages = 0;
2521}
2522
2523
2524/**
2525 * Replays the handler notification changes
2526 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
2527 *
2528 * @param pVM VM handle.
2529 */
2530REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2531{
2532 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2533 VM_ASSERT_EMT(pVM);
2534
2535 /*
2536 * Replay the flushes.
2537 */
2538 RTUINT i;
2539 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2540 pVM->rem.s.cHandlerNotifications = 0;
2541 for (i = 0; i < c; i++)
2542 {
2543 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2544 switch (pRec->enmKind)
2545 {
2546 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2547 REMR3NotifyHandlerPhysicalRegister(pVM,
2548 pRec->u.PhysicalRegister.enmType,
2549 pRec->u.PhysicalRegister.GCPhys,
2550 pRec->u.PhysicalRegister.cb,
2551 pRec->u.PhysicalRegister.fHasHCHandler);
2552 break;
2553
2554 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2555 REMR3NotifyHandlerPhysicalDeregister(pVM,
2556 pRec->u.PhysicalDeregister.enmType,
2557 pRec->u.PhysicalDeregister.GCPhys,
2558 pRec->u.PhysicalDeregister.cb,
2559 pRec->u.PhysicalDeregister.fHasHCHandler,
2560 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2561 break;
2562
2563 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2564 REMR3NotifyHandlerPhysicalModify(pVM,
2565 pRec->u.PhysicalModify.enmType,
2566 pRec->u.PhysicalModify.GCPhysOld,
2567 pRec->u.PhysicalModify.GCPhysNew,
2568 pRec->u.PhysicalModify.cb,
2569 pRec->u.PhysicalModify.fHasHCHandler,
2570 pRec->u.PhysicalModify.fRestoreAsRAM);
2571 break;
2572
2573 default:
2574 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2575 break;
2576 }
2577 }
2578 VM_FF_CLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY);
2579}
2580
2581
2582/**
2583 * Notify REM about changed code page.
2584 *
2585 * @returns VBox status code.
2586 * @param pVM VM handle.
2587 * @param pvCodePage Code page address
2588 */
2589REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2590{
2591 int rc;
2592 RTGCPHYS PhysGC;
2593 uint64_t flags;
2594
2595 VM_ASSERT_EMT(pVM);
2596
2597 /*
2598 * Get the physical page address.
2599 */
2600 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2601 if (rc == VINF_SUCCESS)
2602 {
2603 /*
2604 * Sync the required registers and flush the whole page.
2605 * (Easier to do the whole page than notifying it about each physical
2606 * byte that was changed.
2607 */
2608 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2609 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2610 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2611 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2612
2613 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2614 }
2615 return VINF_SUCCESS;
2616}
2617
2618
2619/**
2620 * Notification about a successful MMR3PhysRegister() call.
2621 *
2622 * @param pVM VM handle.
2623 * @param GCPhys The physical address the RAM.
2624 * @param cb Size of the memory.
2625 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2626 */
2627REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2628{
2629 Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2630 VM_ASSERT_EMT(pVM);
2631
2632 /*
2633 * Validate input - we trust the caller.
2634 */
2635 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2636 Assert(cb);
2637 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2638
2639 /*
2640 * Base ram?
2641 */
2642 if (!GCPhys)
2643 {
2644 phys_ram_size = cb;
2645 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2646#ifndef VBOX_STRICT
2647 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2648 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2649#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2650 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2651 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2652 uint32_t cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2653 int rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2654 AssertRC(rc);
2655 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2656#endif
2657 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2658 }
2659
2660 /*
2661 * Register the ram.
2662 */
2663 Assert(!pVM->rem.s.fIgnoreAll);
2664 pVM->rem.s.fIgnoreAll = true;
2665
2666#ifdef VBOX_WITH_NEW_PHYS_CODE
2667 if (fFlags & MM_RAM_FLAGS_RESERVED)
2668 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2669 else
2670 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2671#else
2672 if (!GCPhys)
2673 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2674 else
2675 {
2676 if (fFlags & MM_RAM_FLAGS_RESERVED)
2677 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2678 else
2679 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2680 }
2681#endif
2682 Assert(pVM->rem.s.fIgnoreAll);
2683 pVM->rem.s.fIgnoreAll = false;
2684}
2685
2686#ifndef VBOX_WITH_NEW_PHYS_CODE
2687
2688/**
2689 * Notification about a successful PGMR3PhysRegisterChunk() call.
2690 *
2691 * @param pVM VM handle.
2692 * @param GCPhys The physical address the RAM.
2693 * @param cb Size of the memory.
2694 * @param pvRam The HC address of the RAM.
2695 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2696 */
2697REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2698{
2699 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2700 VM_ASSERT_EMT(pVM);
2701
2702 /*
2703 * Validate input - we trust the caller.
2704 */
2705 Assert(pvRam);
2706 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2707 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2708 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2709 Assert(fFlags == 0 /* normal RAM */);
2710 Assert(!pVM->rem.s.fIgnoreAll);
2711 pVM->rem.s.fIgnoreAll = true;
2712
2713 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2714
2715 Assert(pVM->rem.s.fIgnoreAll);
2716 pVM->rem.s.fIgnoreAll = false;
2717}
2718
2719
2720/**
2721 * Grows dynamically allocated guest RAM.
2722 * Will raise a fatal error if the operation fails.
2723 *
2724 * @param physaddr The physical address.
2725 */
2726void remR3GrowDynRange(unsigned long physaddr)
2727{
2728 int rc;
2729 PVM pVM = cpu_single_env->pVM;
2730
2731 LogFlow(("remR3GrowDynRange %VGp\n", physaddr));
2732 const RTGCPHYS GCPhys = physaddr;
2733 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2734 if (VBOX_SUCCESS(rc))
2735 return;
2736
2737 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2738 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2739 AssertFatalFailed();
2740}
2741
2742#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2743
2744/**
2745 * Notification about a successful MMR3PhysRomRegister() call.
2746 *
2747 * @param pVM VM handle.
2748 * @param GCPhys The physical address of the ROM.
2749 * @param cb The size of the ROM.
2750 * @param pvCopy Pointer to the ROM copy.
2751 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2752 * This function will be called when ever the protection of the
2753 * shadow ROM changes (at reset and end of POST).
2754 */
2755REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2756{
2757 Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2758 VM_ASSERT_EMT(pVM);
2759
2760 /*
2761 * Validate input - we trust the caller.
2762 */
2763 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2764 Assert(cb);
2765 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2766 Assert(pvCopy);
2767 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2768
2769 /*
2770 * Register the rom.
2771 */
2772 Assert(!pVM->rem.s.fIgnoreAll);
2773 pVM->rem.s.fIgnoreAll = true;
2774
2775 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2776
2777 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2778
2779 Assert(pVM->rem.s.fIgnoreAll);
2780 pVM->rem.s.fIgnoreAll = false;
2781}
2782
2783
2784/**
2785 * Notification about a successful memory deregistration or reservation.
2786 *
2787 * @param pVM VM Handle.
2788 * @param GCPhys Start physical address.
2789 * @param cb The size of the range.
2790 * @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
2791 * reserve any memory soon.
2792 */
2793REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2794{
2795 Log(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2796 VM_ASSERT_EMT(pVM);
2797
2798 /*
2799 * Validate input - we trust the caller.
2800 */
2801 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2802 Assert(cb);
2803 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2804
2805 /*
2806 * Unassigning the memory.
2807 */
2808 Assert(!pVM->rem.s.fIgnoreAll);
2809 pVM->rem.s.fIgnoreAll = true;
2810
2811 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2812
2813 Assert(pVM->rem.s.fIgnoreAll);
2814 pVM->rem.s.fIgnoreAll = false;
2815}
2816
2817
2818/**
2819 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2820 *
2821 * @param pVM VM Handle.
2822 * @param enmType Handler type.
2823 * @param GCPhys Handler range address.
2824 * @param cb Size of the handler range.
2825 * @param fHasHCHandler Set if the handler has a HC callback function.
2826 *
2827 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2828 * Handler memory type to memory which has no HC handler.
2829 */
2830REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2831{
2832 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d\n",
2833 enmType, GCPhys, cb, fHasHCHandler));
2834 VM_ASSERT_EMT(pVM);
2835 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2836 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2837
2838 if (pVM->rem.s.cHandlerNotifications)
2839 REMR3ReplayHandlerNotifications(pVM);
2840
2841 Assert(!pVM->rem.s.fIgnoreAll);
2842 pVM->rem.s.fIgnoreAll = true;
2843
2844 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2845 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2846 else if (fHasHCHandler)
2847 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2848
2849 Assert(pVM->rem.s.fIgnoreAll);
2850 pVM->rem.s.fIgnoreAll = false;
2851}
2852
2853
2854/**
2855 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2856 *
2857 * @param pVM VM Handle.
2858 * @param enmType Handler type.
2859 * @param GCPhys Handler range address.
2860 * @param cb Size of the handler range.
2861 * @param fHasHCHandler Set if the handler has a HC callback function.
2862 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2863 */
2864REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2865{
2866 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2867 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2868 VM_ASSERT_EMT(pVM);
2869
2870 if (pVM->rem.s.cHandlerNotifications)
2871 REMR3ReplayHandlerNotifications(pVM);
2872
2873 Assert(!pVM->rem.s.fIgnoreAll);
2874 pVM->rem.s.fIgnoreAll = true;
2875
2876/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2877 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2878 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2879 else if (fHasHCHandler)
2880 {
2881 if (!fRestoreAsRAM)
2882 {
2883 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2884 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2885 }
2886 else
2887 {
2888 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2889 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2890 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2891 }
2892 }
2893
2894 Assert(pVM->rem.s.fIgnoreAll);
2895 pVM->rem.s.fIgnoreAll = false;
2896}
2897
2898
2899/**
2900 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2901 *
2902 * @param pVM VM Handle.
2903 * @param enmType Handler type.
2904 * @param GCPhysOld Old handler range address.
2905 * @param GCPhysNew New handler range address.
2906 * @param cb Size of the handler range.
2907 * @param fHasHCHandler Set if the handler has a HC callback function.
2908 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2909 */
2910REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2911{
2912 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%d fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2913 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2914 VM_ASSERT_EMT(pVM);
2915 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2916
2917 if (pVM->rem.s.cHandlerNotifications)
2918 REMR3ReplayHandlerNotifications(pVM);
2919
2920 if (fHasHCHandler)
2921 {
2922 Assert(!pVM->rem.s.fIgnoreAll);
2923 pVM->rem.s.fIgnoreAll = true;
2924
2925 /*
2926 * Reset the old page.
2927 */
2928 if (!fRestoreAsRAM)
2929 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2930 else
2931 {
2932 /* This is not perfect, but it'll do for PD monitoring... */
2933 Assert(cb == PAGE_SIZE);
2934 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2935 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2936 }
2937
2938 /*
2939 * Update the new page.
2940 */
2941 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2942 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2943 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2944
2945 Assert(pVM->rem.s.fIgnoreAll);
2946 pVM->rem.s.fIgnoreAll = false;
2947 }
2948}
2949
2950
2951/**
2952 * Checks if we're handling access to this page or not.
2953 *
2954 * @returns true if we're trapping access.
2955 * @returns false if we aren't.
2956 * @param pVM The VM handle.
2957 * @param GCPhys The physical address.
2958 *
2959 * @remark This function will only work correctly in VBOX_STRICT builds!
2960 */
2961REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2962{
2963#ifdef VBOX_STRICT
2964 if (pVM->rem.s.cHandlerNotifications)
2965 REMR3ReplayHandlerNotifications(pVM);
2966
2967 unsigned long off = get_phys_page_offset(GCPhys);
2968 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
2969 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
2970 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
2971#else
2972 return false;
2973#endif
2974}
2975
2976
2977/**
2978 * Deals with a rare case in get_phys_addr_code where the code
2979 * is being monitored.
2980 *
2981 * It could also be an MMIO page, in which case we will raise a fatal error.
2982 *
2983 * @returns The physical address corresponding to addr.
2984 * @param env The cpu environment.
2985 * @param addr The virtual address.
2986 * @param pTLBEntry The TLB entry.
2987 */
2988target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
2989{
2990 PVM pVM = env->pVM;
2991 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
2992 {
2993 target_ulong ret = pTLBEntry->addend + addr;
2994 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv addr_code=%VGv addend=%VGp ret=%VGp\n",
2995 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
2996 return ret;
2997 }
2998 LogRel(("\nTrying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
2999 "*** handlers\n",
3000 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
3001 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3002 LogRel(("*** mmio\n"));
3003 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3004 LogRel(("*** phys\n"));
3005 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3006 cpu_abort(env, "Trying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3007 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3008 AssertFatalFailed();
3009}
3010
3011
3012/** Validate the physical address passed to the read functions.
3013 * Useful for finding non-guest-ram reads/writes. */
3014#if 0 //1 /* disable if it becomes bothersome... */
3015# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%VGp\n", (GCPhys)))
3016#else
3017# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
3018#endif
3019
3020/**
3021 * Read guest RAM and ROM.
3022 *
3023 * @param SrcGCPhys The source address (guest physical).
3024 * @param pvDst The destination address.
3025 * @param cb Number of bytes
3026 */
3027void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3028{
3029 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3030 VBOX_CHECK_ADDR(SrcGCPhys);
3031 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3032 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3033}
3034
3035
3036/**
3037 * Read guest RAM and ROM, unsigned 8-bit.
3038 *
3039 * @param SrcGCPhys The source address (guest physical).
3040 */
3041uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3042{
3043 uint8_t val;
3044 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3045 VBOX_CHECK_ADDR(SrcGCPhys);
3046 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3047 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3048 return val;
3049}
3050
3051
3052/**
3053 * Read guest RAM and ROM, signed 8-bit.
3054 *
3055 * @param SrcGCPhys The source address (guest physical).
3056 */
3057int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3058{
3059 int8_t val;
3060 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3061 VBOX_CHECK_ADDR(SrcGCPhys);
3062 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3063 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3064 return val;
3065}
3066
3067
3068/**
3069 * Read guest RAM and ROM, unsigned 16-bit.
3070 *
3071 * @param SrcGCPhys The source address (guest physical).
3072 */
3073uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3074{
3075 uint16_t val;
3076 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3077 VBOX_CHECK_ADDR(SrcGCPhys);
3078 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3079 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3080 return val;
3081}
3082
3083
3084/**
3085 * Read guest RAM and ROM, signed 16-bit.
3086 *
3087 * @param SrcGCPhys The source address (guest physical).
3088 */
3089int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3090{
3091 uint16_t val;
3092 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3093 VBOX_CHECK_ADDR(SrcGCPhys);
3094 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3095 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3096 return val;
3097}
3098
3099
3100/**
3101 * Read guest RAM and ROM, unsigned 32-bit.
3102 *
3103 * @param SrcGCPhys The source address (guest physical).
3104 */
3105uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3106{
3107 uint32_t val;
3108 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3109 VBOX_CHECK_ADDR(SrcGCPhys);
3110 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3111 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3112 return val;
3113}
3114
3115
3116/**
3117 * Read guest RAM and ROM, signed 32-bit.
3118 *
3119 * @param SrcGCPhys The source address (guest physical).
3120 */
3121int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3122{
3123 int32_t val;
3124 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3125 VBOX_CHECK_ADDR(SrcGCPhys);
3126 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3127 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3128 return val;
3129}
3130
3131
3132/**
3133 * Read guest RAM and ROM, unsigned 64-bit.
3134 *
3135 * @param SrcGCPhys The source address (guest physical).
3136 */
3137uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3138{
3139 uint64_t val;
3140 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3141 VBOX_CHECK_ADDR(SrcGCPhys);
3142 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3143 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3144 return val;
3145}
3146
3147
3148/**
3149 * Write guest RAM.
3150 *
3151 * @param DstGCPhys The destination address (guest physical).
3152 * @param pvSrc The source address.
3153 * @param cb Number of bytes to write
3154 */
3155void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3156{
3157 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3158 VBOX_CHECK_ADDR(DstGCPhys);
3159 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3160 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3161}
3162
3163
3164/**
3165 * Write guest RAM, unsigned 8-bit.
3166 *
3167 * @param DstGCPhys The destination address (guest physical).
3168 * @param val Value
3169 */
3170void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3171{
3172 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3173 VBOX_CHECK_ADDR(DstGCPhys);
3174 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3175 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3176}
3177
3178
3179/**
3180 * Write guest RAM, unsigned 8-bit.
3181 *
3182 * @param DstGCPhys The destination address (guest physical).
3183 * @param val Value
3184 */
3185void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3186{
3187 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3188 VBOX_CHECK_ADDR(DstGCPhys);
3189 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3190 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3191}
3192
3193
3194/**
3195 * Write guest RAM, unsigned 32-bit.
3196 *
3197 * @param DstGCPhys The destination address (guest physical).
3198 * @param val Value
3199 */
3200void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3201{
3202 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3203 VBOX_CHECK_ADDR(DstGCPhys);
3204 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3205 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3206}
3207
3208
3209/**
3210 * Write guest RAM, unsigned 64-bit.
3211 *
3212 * @param DstGCPhys The destination address (guest physical).
3213 * @param val Value
3214 */
3215void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3216{
3217 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3218 VBOX_CHECK_ADDR(DstGCPhys);
3219 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3220 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3221}
3222
3223#undef LOG_GROUP
3224#define LOG_GROUP LOG_GROUP_REM_MMIO
3225
3226/** Read MMIO memory. */
3227static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3228{
3229 uint32_t u32 = 0;
3230 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3231 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3232 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3233 return u32;
3234}
3235
3236/** Read MMIO memory. */
3237static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3238{
3239 uint32_t u32 = 0;
3240 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3241 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3242 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3243 return u32;
3244}
3245
3246/** Read MMIO memory. */
3247static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3248{
3249 uint32_t u32 = 0;
3250 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3251 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3252 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3253 return u32;
3254}
3255
3256/** Write to MMIO memory. */
3257static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3258{
3259 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3260 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3261 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3262}
3263
3264/** Write to MMIO memory. */
3265static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3266{
3267 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3268 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3269 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3270}
3271
3272/** Write to MMIO memory. */
3273static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3274{
3275 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3276 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3277 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3278}
3279
3280
3281#undef LOG_GROUP
3282#define LOG_GROUP LOG_GROUP_REM_HANDLER
3283
3284/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3285
3286static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3287{
3288 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3289 uint8_t u8;
3290 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3291 return u8;
3292}
3293
3294static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3295{
3296 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3297 uint16_t u16;
3298 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3299 return u16;
3300}
3301
3302static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3303{
3304 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3305 uint32_t u32;
3306 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3307 return u32;
3308}
3309
3310static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3311{
3312 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3313 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3314}
3315
3316static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3317{
3318 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3319 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3320}
3321
3322static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3323{
3324 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3325 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3326}
3327
3328/* -+- disassembly -+- */
3329
3330#undef LOG_GROUP
3331#define LOG_GROUP LOG_GROUP_REM_DISAS
3332
3333
3334/**
3335 * Enables or disables singled stepped disassembly.
3336 *
3337 * @returns VBox status code.
3338 * @param pVM VM handle.
3339 * @param fEnable To enable set this flag, to disable clear it.
3340 */
3341static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3342{
3343 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3344 VM_ASSERT_EMT(pVM);
3345
3346 if (fEnable)
3347 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3348 else
3349 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3350 return VINF_SUCCESS;
3351}
3352
3353
3354/**
3355 * Enables or disables singled stepped disassembly.
3356 *
3357 * @returns VBox status code.
3358 * @param pVM VM handle.
3359 * @param fEnable To enable set this flag, to disable clear it.
3360 */
3361REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3362{
3363 PVMREQ pReq;
3364 int rc;
3365
3366 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3367 if (VM_IS_EMT(pVM))
3368 return remR3DisasEnableStepping(pVM, fEnable);
3369
3370 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3371 AssertRC(rc);
3372 if (VBOX_SUCCESS(rc))
3373 rc = pReq->iStatus;
3374 VMR3ReqFree(pReq);
3375 return rc;
3376}
3377
3378
3379#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3380/**
3381 * External Debugger Command: .remstep [on|off|1|0]
3382 */
3383static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3384{
3385 bool fEnable;
3386 int rc;
3387
3388 /* print status */
3389 if (cArgs == 0)
3390 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3391 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3392
3393 /* convert the argument and change the mode. */
3394 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3395 if (VBOX_FAILURE(rc))
3396 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3397 rc = REMR3DisasEnableStepping(pVM, fEnable);
3398 if (VBOX_FAILURE(rc))
3399 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3400 return rc;
3401}
3402#endif
3403
3404
3405/**
3406 * Disassembles n instructions and prints them to the log.
3407 *
3408 * @returns Success indicator.
3409 * @param env Pointer to the recompiler CPU structure.
3410 * @param f32BitCode Indicates that whether or not the code should
3411 * be disassembled as 16 or 32 bit. If -1 the CS
3412 * selector will be inspected.
3413 * @param nrInstructions Nr of instructions to disassemble
3414 * @param pszPrefix
3415 * @remark not currently used for anything but ad-hoc debugging.
3416 */
3417bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3418{
3419 int i;
3420
3421 /*
3422 * Determin 16/32 bit mode.
3423 */
3424 if (f32BitCode == -1)
3425 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3426
3427 /*
3428 * Convert cs:eip to host context address.
3429 * We don't care to much about cross page correctness presently.
3430 */
3431 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3432 void *pvPC;
3433 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3434 {
3435 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3436
3437 /* convert eip to physical address. */
3438 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3439 GCPtrPC,
3440 env->cr[3],
3441 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3442 &pvPC);
3443 if (VBOX_FAILURE(rc))
3444 {
3445 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3446 return false;
3447 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3448 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3449 }
3450 }
3451 else
3452 {
3453 /* physical address */
3454 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16, &pvPC);
3455 if (VBOX_FAILURE(rc))
3456 return false;
3457 }
3458
3459 /*
3460 * Disassemble.
3461 */
3462 RTINTPTR off = env->eip - (RTGCUINTPTR)pvPC;
3463 DISCPUSTATE Cpu;
3464 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3465 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3466 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3467 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3468 //Cpu.dwUserData[2] = GCPtrPC;
3469
3470 for (i=0;i<nrInstructions;i++)
3471 {
3472 char szOutput[256];
3473 uint32_t cbOp;
3474 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3475 return false;
3476 if (pszPrefix)
3477 Log(("%s: %s", pszPrefix, szOutput));
3478 else
3479 Log(("%s", szOutput));
3480
3481 pvPC += cbOp;
3482 }
3483 return true;
3484}
3485
3486
3487/** @todo need to test the new code, using the old code in the mean while. */
3488#define USE_OLD_DUMP_AND_DISASSEMBLY
3489
3490/**
3491 * Disassembles one instruction and prints it to the log.
3492 *
3493 * @returns Success indicator.
3494 * @param env Pointer to the recompiler CPU structure.
3495 * @param f32BitCode Indicates that whether or not the code should
3496 * be disassembled as 16 or 32 bit. If -1 the CS
3497 * selector will be inspected.
3498 * @param pszPrefix
3499 */
3500bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3501{
3502#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3503 PVM pVM = env->pVM;
3504
3505 /* Doesn't work in long mode. */
3506 if (env->hflags & HF_LMA_MASK)
3507 return false;
3508
3509 /*
3510 * Determin 16/32 bit mode.
3511 */
3512 if (f32BitCode == -1)
3513 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3514
3515 /*
3516 * Log registers
3517 */
3518 if (LogIs2Enabled())
3519 {
3520 remR3StateUpdate(pVM);
3521 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3522 }
3523
3524 /*
3525 * Convert cs:eip to host context address.
3526 * We don't care to much about cross page correctness presently.
3527 */
3528 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3529 void *pvPC;
3530 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3531 {
3532 /* convert eip to physical address. */
3533 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3534 GCPtrPC,
3535 env->cr[3],
3536 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3537 &pvPC);
3538 if (VBOX_FAILURE(rc))
3539 {
3540 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3541 return false;
3542 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
3543 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3544 }
3545 }
3546 else
3547 {
3548
3549 /* physical address */
3550 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
3551 if (VBOX_FAILURE(rc))
3552 return false;
3553 }
3554
3555 /*
3556 * Disassemble.
3557 */
3558 RTINTPTR off = env->eip - (RTGCUINTPTR)pvPC;
3559 DISCPUSTATE Cpu;
3560 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3561 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3562 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3563 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3564 //Cpu.dwUserData[2] = GCPtrPC;
3565 char szOutput[256];
3566 uint32_t cbOp;
3567 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3568 return false;
3569
3570 if (!f32BitCode)
3571 {
3572 if (pszPrefix)
3573 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3574 else
3575 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3576 }
3577 else
3578 {
3579 if (pszPrefix)
3580 Log(("%s: %s", pszPrefix, szOutput));
3581 else
3582 Log(("%s", szOutput));
3583 }
3584 return true;
3585
3586#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3587 PVM pVM = env->pVM;
3588 const bool fLog = LogIsEnabled();
3589 const bool fLog2 = LogIs2Enabled();
3590 int rc = VINF_SUCCESS;
3591
3592 /*
3593 * Don't bother if there ain't any log output to do.
3594 */
3595 if (!fLog && !fLog2)
3596 return true;
3597
3598 /*
3599 * Update the state so DBGF reads the correct register values.
3600 */
3601 remR3StateUpdate(pVM);
3602
3603 /*
3604 * Log registers if requested.
3605 */
3606 if (!fLog2)
3607 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3608
3609 /*
3610 * Disassemble to log.
3611 */
3612 if (fLog)
3613 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3614
3615 return VBOX_SUCCESS(rc);
3616#endif
3617}
3618
3619
3620/**
3621 * Disassemble recompiled code.
3622 *
3623 * @param phFileIgnored Ignored, logfile usually.
3624 * @param pvCode Pointer to the code block.
3625 * @param cb Size of the code block.
3626 */
3627void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3628{
3629 if (LogIs2Enabled())
3630 {
3631 unsigned off = 0;
3632 char szOutput[256];
3633 DISCPUSTATE Cpu;
3634
3635 memset(&Cpu, 0, sizeof(Cpu));
3636#ifdef RT_ARCH_X86
3637 Cpu.mode = CPUMODE_32BIT;
3638#else
3639 Cpu.mode = CPUMODE_64BIT;
3640#endif
3641
3642 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3643 while (off < cb)
3644 {
3645 uint32_t cbInstr;
3646 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3647 RTLogPrintf("%s", szOutput);
3648 else
3649 {
3650 RTLogPrintf("disas error\n");
3651 cbInstr = 1;
3652#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3653 break;
3654#endif
3655 }
3656 off += cbInstr;
3657 }
3658 }
3659 NOREF(phFileIgnored);
3660}
3661
3662
3663/**
3664 * Disassemble guest code.
3665 *
3666 * @param phFileIgnored Ignored, logfile usually.
3667 * @param uCode The guest address of the code to disassemble. (flat?)
3668 * @param cb Number of bytes to disassemble.
3669 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3670 */
3671void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3672{
3673 if (LogIs2Enabled())
3674 {
3675 PVM pVM = cpu_single_env->pVM;
3676
3677 /*
3678 * Update the state so DBGF reads the correct register values (flags).
3679 */
3680 remR3StateUpdate(pVM);
3681
3682 /*
3683 * Do the disassembling.
3684 */
3685 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3686 RTSEL cs = cpu_single_env->segs[R_CS].selector;
3687 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
3688 for (;;)
3689 {
3690 char szBuf[256];
3691 uint32_t cbInstr;
3692 int rc = DBGFR3DisasInstrEx(pVM,
3693 cs,
3694 eip,
3695 0,
3696 szBuf, sizeof(szBuf),
3697 &cbInstr);
3698 if (VBOX_SUCCESS(rc))
3699 RTLogPrintf("%VGp %s\n", uCode, szBuf);
3700 else
3701 {
3702 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
3703 cbInstr = 1;
3704 }
3705
3706 /* next */
3707 if (cb <= cbInstr)
3708 break;
3709 cb -= cbInstr;
3710 uCode += cbInstr;
3711 eip += cbInstr;
3712 }
3713 }
3714 NOREF(phFileIgnored);
3715}
3716
3717
3718/**
3719 * Looks up a guest symbol.
3720 *
3721 * @returns Pointer to symbol name. This is a static buffer.
3722 * @param orig_addr The address in question.
3723 */
3724const char *lookup_symbol(target_ulong orig_addr)
3725{
3726 RTGCINTPTR off = 0;
3727 DBGFSYMBOL Sym;
3728 PVM pVM = cpu_single_env->pVM;
3729 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3730 if (VBOX_SUCCESS(rc))
3731 {
3732 static char szSym[sizeof(Sym.szName) + 48];
3733 if (!off)
3734 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3735 else if (off > 0)
3736 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3737 else
3738 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3739 return szSym;
3740 }
3741 return "<N/A>";
3742}
3743
3744
3745#undef LOG_GROUP
3746#define LOG_GROUP LOG_GROUP_REM
3747
3748
3749/* -+- FF notifications -+- */
3750
3751
3752/**
3753 * Notification about a pending interrupt.
3754 *
3755 * @param pVM VM Handle.
3756 * @param u8Interrupt Interrupt
3757 * @thread The emulation thread.
3758 */
3759REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3760{
3761 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3762 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3763}
3764
3765/**
3766 * Notification about a pending interrupt.
3767 *
3768 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3769 * @param pVM VM Handle.
3770 * @thread The emulation thread.
3771 */
3772REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3773{
3774 return pVM->rem.s.u32PendingInterrupt;
3775}
3776
3777/**
3778 * Notification about the interrupt FF being set.
3779 *
3780 * @param pVM VM Handle.
3781 * @thread The emulation thread.
3782 */
3783REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3784{
3785 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3786 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3787 if (pVM->rem.s.fInREM)
3788 {
3789 if (VM_IS_EMT(pVM))
3790 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3791 else
3792 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
3793 }
3794}
3795
3796
3797/**
3798 * Notification about the interrupt FF being set.
3799 *
3800 * @param pVM VM Handle.
3801 * @thread Any.
3802 */
3803REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3804{
3805 LogFlow(("REMR3NotifyInterruptClear:\n"));
3806 if (pVM->rem.s.fInREM)
3807 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3808}
3809
3810
3811/**
3812 * Notification about pending timer(s).
3813 *
3814 * @param pVM VM Handle.
3815 * @thread Any.
3816 */
3817REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3818{
3819#ifndef DEBUG_bird
3820 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3821#endif
3822 if (pVM->rem.s.fInREM)
3823 {
3824 if (VM_IS_EMT(pVM))
3825 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3826 else
3827 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
3828 }
3829}
3830
3831
3832/**
3833 * Notification about pending DMA transfers.
3834 *
3835 * @param pVM VM Handle.
3836 * @thread Any.
3837 */
3838REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3839{
3840 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3841 if (pVM->rem.s.fInREM)
3842 {
3843 if (VM_IS_EMT(pVM))
3844 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3845 else
3846 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
3847 }
3848}
3849
3850
3851/**
3852 * Notification about pending timer(s).
3853 *
3854 * @param pVM VM Handle.
3855 * @thread Any.
3856 */
3857REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3858{
3859 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3860 if (pVM->rem.s.fInREM)
3861 {
3862 if (VM_IS_EMT(pVM))
3863 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3864 else
3865 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3866 }
3867}
3868
3869
3870/**
3871 * Notification about pending FF set by an external thread.
3872 *
3873 * @param pVM VM handle.
3874 * @thread Any.
3875 */
3876REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3877{
3878 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3879 if (pVM->rem.s.fInREM)
3880 {
3881 if (VM_IS_EMT(pVM))
3882 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3883 else
3884 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3885 }
3886}
3887
3888
3889#ifdef VBOX_WITH_STATISTICS
3890void remR3ProfileStart(int statcode)
3891{
3892 STAMPROFILEADV *pStat;
3893 switch(statcode)
3894 {
3895 case STATS_EMULATE_SINGLE_INSTR:
3896 pStat = &gStatExecuteSingleInstr;
3897 break;
3898 case STATS_QEMU_COMPILATION:
3899 pStat = &gStatCompilationQEmu;
3900 break;
3901 case STATS_QEMU_RUN_EMULATED_CODE:
3902 pStat = &gStatRunCodeQEmu;
3903 break;
3904 case STATS_QEMU_TOTAL:
3905 pStat = &gStatTotalTimeQEmu;
3906 break;
3907 case STATS_QEMU_RUN_TIMERS:
3908 pStat = &gStatTimers;
3909 break;
3910 case STATS_TLB_LOOKUP:
3911 pStat= &gStatTBLookup;
3912 break;
3913 case STATS_IRQ_HANDLING:
3914 pStat= &gStatIRQ;
3915 break;
3916 case STATS_RAW_CHECK:
3917 pStat = &gStatRawCheck;
3918 break;
3919
3920 default:
3921 AssertMsgFailed(("unknown stat %d\n", statcode));
3922 return;
3923 }
3924 STAM_PROFILE_ADV_START(pStat, a);
3925}
3926
3927
3928void remR3ProfileStop(int statcode)
3929{
3930 STAMPROFILEADV *pStat;
3931 switch(statcode)
3932 {
3933 case STATS_EMULATE_SINGLE_INSTR:
3934 pStat = &gStatExecuteSingleInstr;
3935 break;
3936 case STATS_QEMU_COMPILATION:
3937 pStat = &gStatCompilationQEmu;
3938 break;
3939 case STATS_QEMU_RUN_EMULATED_CODE:
3940 pStat = &gStatRunCodeQEmu;
3941 break;
3942 case STATS_QEMU_TOTAL:
3943 pStat = &gStatTotalTimeQEmu;
3944 break;
3945 case STATS_QEMU_RUN_TIMERS:
3946 pStat = &gStatTimers;
3947 break;
3948 case STATS_TLB_LOOKUP:
3949 pStat= &gStatTBLookup;
3950 break;
3951 case STATS_IRQ_HANDLING:
3952 pStat= &gStatIRQ;
3953 break;
3954 case STATS_RAW_CHECK:
3955 pStat = &gStatRawCheck;
3956 break;
3957 default:
3958 AssertMsgFailed(("unknown stat %d\n", statcode));
3959 return;
3960 }
3961 STAM_PROFILE_ADV_STOP(pStat, a);
3962}
3963#endif
3964
3965/**
3966 * Raise an RC, force rem exit.
3967 *
3968 * @param pVM VM handle.
3969 * @param rc The rc.
3970 */
3971void remR3RaiseRC(PVM pVM, int rc)
3972{
3973 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
3974 Assert(pVM->rem.s.fInREM);
3975 VM_ASSERT_EMT(pVM);
3976 pVM->rem.s.rc = rc;
3977 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
3978}
3979
3980
3981/* -+- timers -+- */
3982
3983uint64_t cpu_get_tsc(CPUX86State *env)
3984{
3985 STAM_COUNTER_INC(&gStatCpuGetTSC);
3986 return TMCpuTickGet(env->pVM);
3987}
3988
3989
3990/* -+- interrupts -+- */
3991
3992void cpu_set_ferr(CPUX86State *env)
3993{
3994 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
3995 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
3996}
3997
3998int cpu_get_pic_interrupt(CPUState *env)
3999{
4000 uint8_t u8Interrupt;
4001 int rc;
4002
4003 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4004 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4005 * with the (a)pic.
4006 */
4007 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4008 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4009 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4010 * remove this kludge. */
4011 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4012 {
4013 rc = VINF_SUCCESS;
4014 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
4015 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4016 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4017 }
4018 else
4019 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4020
4021 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
4022 if (VBOX_SUCCESS(rc))
4023 {
4024 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4025 env->interrupt_request |= CPU_INTERRUPT_HARD;
4026 return u8Interrupt;
4027 }
4028 return -1;
4029}
4030
4031
4032/* -+- local apic -+- */
4033
4034void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4035{
4036 int rc = PDMApicSetBase(env->pVM, val);
4037 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4038}
4039
4040uint64_t cpu_get_apic_base(CPUX86State *env)
4041{
4042 uint64_t u64;
4043 int rc = PDMApicGetBase(env->pVM, &u64);
4044 if (VBOX_SUCCESS(rc))
4045 {
4046 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4047 return u64;
4048 }
4049 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4050 return 0;
4051}
4052
4053void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4054{
4055 int rc = PDMApicSetTPR(env->pVM, val);
4056 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4057}
4058
4059uint8_t cpu_get_apic_tpr(CPUX86State *env)
4060{
4061 uint8_t u8;
4062 int rc = PDMApicGetTPR(env->pVM, &u8, NULL);
4063 if (VBOX_SUCCESS(rc))
4064 {
4065 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4066 return u8;
4067 }
4068 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4069 return 0;
4070}
4071
4072
4073/* -+- I/O Ports -+- */
4074
4075#undef LOG_GROUP
4076#define LOG_GROUP LOG_GROUP_REM_IOPORT
4077
4078void cpu_outb(CPUState *env, int addr, int val)
4079{
4080 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4081 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4082
4083 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4084 if (RT_LIKELY(rc == VINF_SUCCESS))
4085 return;
4086 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4087 {
4088 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4089 remR3RaiseRC(env->pVM, rc);
4090 return;
4091 }
4092 remAbort(rc, __FUNCTION__);
4093}
4094
4095void cpu_outw(CPUState *env, int addr, int val)
4096{
4097 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4098 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4099 if (RT_LIKELY(rc == VINF_SUCCESS))
4100 return;
4101 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4102 {
4103 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4104 remR3RaiseRC(env->pVM, rc);
4105 return;
4106 }
4107 remAbort(rc, __FUNCTION__);
4108}
4109
4110void cpu_outl(CPUState *env, int addr, int val)
4111{
4112 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4113 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4114 if (RT_LIKELY(rc == VINF_SUCCESS))
4115 return;
4116 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4117 {
4118 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4119 remR3RaiseRC(env->pVM, rc);
4120 return;
4121 }
4122 remAbort(rc, __FUNCTION__);
4123}
4124
4125int cpu_inb(CPUState *env, int addr)
4126{
4127 uint32_t u32 = 0;
4128 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4129 if (RT_LIKELY(rc == VINF_SUCCESS))
4130 {
4131 if (/*addr != 0x61 && */addr != 0x71)
4132 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4133 return (int)u32;
4134 }
4135 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4136 {
4137 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4138 remR3RaiseRC(env->pVM, rc);
4139 return (int)u32;
4140 }
4141 remAbort(rc, __FUNCTION__);
4142 return 0xff;
4143}
4144
4145int cpu_inw(CPUState *env, int addr)
4146{
4147 uint32_t u32 = 0;
4148 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4149 if (RT_LIKELY(rc == VINF_SUCCESS))
4150 {
4151 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4152 return (int)u32;
4153 }
4154 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4155 {
4156 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4157 remR3RaiseRC(env->pVM, rc);
4158 return (int)u32;
4159 }
4160 remAbort(rc, __FUNCTION__);
4161 return 0xffff;
4162}
4163
4164int cpu_inl(CPUState *env, int addr)
4165{
4166 uint32_t u32 = 0;
4167 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4168 if (RT_LIKELY(rc == VINF_SUCCESS))
4169 {
4170//if (addr==0x01f0 && u32 == 0x6b6d)
4171// loglevel = ~0;
4172 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4173 return (int)u32;
4174 }
4175 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4176 {
4177 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4178 remR3RaiseRC(env->pVM, rc);
4179 return (int)u32;
4180 }
4181 remAbort(rc, __FUNCTION__);
4182 return 0xffffffff;
4183}
4184
4185#undef LOG_GROUP
4186#define LOG_GROUP LOG_GROUP_REM
4187
4188
4189/* -+- helpers and misc other interfaces -+- */
4190
4191/**
4192 * Perform the CPUID instruction.
4193 *
4194 * ASMCpuId cannot be invoked from some source files where this is used because of global
4195 * register allocations.
4196 *
4197 * @param env Pointer to the recompiler CPU structure.
4198 * @param uOperator CPUID operation (eax).
4199 * @param pvEAX Where to store eax.
4200 * @param pvEBX Where to store ebx.
4201 * @param pvECX Where to store ecx.
4202 * @param pvEDX Where to store edx.
4203 */
4204void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4205{
4206 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4207}
4208
4209
4210#if 0 /* not used */
4211/**
4212 * Interface for qemu hardware to report back fatal errors.
4213 */
4214void hw_error(const char *pszFormat, ...)
4215{
4216 /*
4217 * Bitch about it.
4218 */
4219 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4220 * this in my Odin32 tree at home! */
4221 va_list args;
4222 va_start(args, pszFormat);
4223 RTLogPrintf("fatal error in virtual hardware:");
4224 RTLogPrintfV(pszFormat, args);
4225 va_end(args);
4226 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4227
4228 /*
4229 * If we're in REM context we'll sync back the state before 'jumping' to
4230 * the EMs failure handling.
4231 */
4232 PVM pVM = cpu_single_env->pVM;
4233 if (pVM->rem.s.fInREM)
4234 REMR3StateBack(pVM);
4235 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4236 AssertMsgFailed(("EMR3FatalError returned!\n"));
4237}
4238#endif
4239
4240/**
4241 * Interface for the qemu cpu to report unhandled situation
4242 * raising a fatal VM error.
4243 */
4244void cpu_abort(CPUState *env, const char *pszFormat, ...)
4245{
4246 /*
4247 * Bitch about it.
4248 */
4249 RTLogFlags(NULL, "nodisabled nobuffered");
4250 va_list args;
4251 va_start(args, pszFormat);
4252 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4253 va_end(args);
4254 va_start(args, pszFormat);
4255 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4256 va_end(args);
4257
4258 /*
4259 * If we're in REM context we'll sync back the state before 'jumping' to
4260 * the EMs failure handling.
4261 */
4262 PVM pVM = cpu_single_env->pVM;
4263 if (pVM->rem.s.fInREM)
4264 REMR3StateBack(pVM);
4265 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4266 AssertMsgFailed(("EMR3FatalError returned!\n"));
4267}
4268
4269
4270/**
4271 * Aborts the VM.
4272 *
4273 * @param rc VBox error code.
4274 * @param pszTip Hint about why/when this happend.
4275 */
4276static void remAbort(int rc, const char *pszTip)
4277{
4278 /*
4279 * Bitch about it.
4280 */
4281 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4282 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4283
4284 /*
4285 * Jump back to where we entered the recompiler.
4286 */
4287 PVM pVM = cpu_single_env->pVM;
4288 if (pVM->rem.s.fInREM)
4289 REMR3StateBack(pVM);
4290 EMR3FatalError(pVM, rc);
4291 AssertMsgFailed(("EMR3FatalError returned!\n"));
4292}
4293
4294
4295/**
4296 * Dumps a linux system call.
4297 * @param pVM VM handle.
4298 */
4299void remR3DumpLnxSyscall(PVM pVM)
4300{
4301 static const char *apsz[] =
4302 {
4303 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4304 "sys_exit",
4305 "sys_fork",
4306 "sys_read",
4307 "sys_write",
4308 "sys_open", /* 5 */
4309 "sys_close",
4310 "sys_waitpid",
4311 "sys_creat",
4312 "sys_link",
4313 "sys_unlink", /* 10 */
4314 "sys_execve",
4315 "sys_chdir",
4316 "sys_time",
4317 "sys_mknod",
4318 "sys_chmod", /* 15 */
4319 "sys_lchown16",
4320 "sys_ni_syscall", /* old break syscall holder */
4321 "sys_stat",
4322 "sys_lseek",
4323 "sys_getpid", /* 20 */
4324 "sys_mount",
4325 "sys_oldumount",
4326 "sys_setuid16",
4327 "sys_getuid16",
4328 "sys_stime", /* 25 */
4329 "sys_ptrace",
4330 "sys_alarm",
4331 "sys_fstat",
4332 "sys_pause",
4333 "sys_utime", /* 30 */
4334 "sys_ni_syscall", /* old stty syscall holder */
4335 "sys_ni_syscall", /* old gtty syscall holder */
4336 "sys_access",
4337 "sys_nice",
4338 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4339 "sys_sync",
4340 "sys_kill",
4341 "sys_rename",
4342 "sys_mkdir",
4343 "sys_rmdir", /* 40 */
4344 "sys_dup",
4345 "sys_pipe",
4346 "sys_times",
4347 "sys_ni_syscall", /* old prof syscall holder */
4348 "sys_brk", /* 45 */
4349 "sys_setgid16",
4350 "sys_getgid16",
4351 "sys_signal",
4352 "sys_geteuid16",
4353 "sys_getegid16", /* 50 */
4354 "sys_acct",
4355 "sys_umount", /* recycled never used phys() */
4356 "sys_ni_syscall", /* old lock syscall holder */
4357 "sys_ioctl",
4358 "sys_fcntl", /* 55 */
4359 "sys_ni_syscall", /* old mpx syscall holder */
4360 "sys_setpgid",
4361 "sys_ni_syscall", /* old ulimit syscall holder */
4362 "sys_olduname",
4363 "sys_umask", /* 60 */
4364 "sys_chroot",
4365 "sys_ustat",
4366 "sys_dup2",
4367 "sys_getppid",
4368 "sys_getpgrp", /* 65 */
4369 "sys_setsid",
4370 "sys_sigaction",
4371 "sys_sgetmask",
4372 "sys_ssetmask",
4373 "sys_setreuid16", /* 70 */
4374 "sys_setregid16",
4375 "sys_sigsuspend",
4376 "sys_sigpending",
4377 "sys_sethostname",
4378 "sys_setrlimit", /* 75 */
4379 "sys_old_getrlimit",
4380 "sys_getrusage",
4381 "sys_gettimeofday",
4382 "sys_settimeofday",
4383 "sys_getgroups16", /* 80 */
4384 "sys_setgroups16",
4385 "old_select",
4386 "sys_symlink",
4387 "sys_lstat",
4388 "sys_readlink", /* 85 */
4389 "sys_uselib",
4390 "sys_swapon",
4391 "sys_reboot",
4392 "old_readdir",
4393 "old_mmap", /* 90 */
4394 "sys_munmap",
4395 "sys_truncate",
4396 "sys_ftruncate",
4397 "sys_fchmod",
4398 "sys_fchown16", /* 95 */
4399 "sys_getpriority",
4400 "sys_setpriority",
4401 "sys_ni_syscall", /* old profil syscall holder */
4402 "sys_statfs",
4403 "sys_fstatfs", /* 100 */
4404 "sys_ioperm",
4405 "sys_socketcall",
4406 "sys_syslog",
4407 "sys_setitimer",
4408 "sys_getitimer", /* 105 */
4409 "sys_newstat",
4410 "sys_newlstat",
4411 "sys_newfstat",
4412 "sys_uname",
4413 "sys_iopl", /* 110 */
4414 "sys_vhangup",
4415 "sys_ni_syscall", /* old "idle" system call */
4416 "sys_vm86old",
4417 "sys_wait4",
4418 "sys_swapoff", /* 115 */
4419 "sys_sysinfo",
4420 "sys_ipc",
4421 "sys_fsync",
4422 "sys_sigreturn",
4423 "sys_clone", /* 120 */
4424 "sys_setdomainname",
4425 "sys_newuname",
4426 "sys_modify_ldt",
4427 "sys_adjtimex",
4428 "sys_mprotect", /* 125 */
4429 "sys_sigprocmask",
4430 "sys_ni_syscall", /* old "create_module" */
4431 "sys_init_module",
4432 "sys_delete_module",
4433 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4434 "sys_quotactl",
4435 "sys_getpgid",
4436 "sys_fchdir",
4437 "sys_bdflush",
4438 "sys_sysfs", /* 135 */
4439 "sys_personality",
4440 "sys_ni_syscall", /* reserved for afs_syscall */
4441 "sys_setfsuid16",
4442 "sys_setfsgid16",
4443 "sys_llseek", /* 140 */
4444 "sys_getdents",
4445 "sys_select",
4446 "sys_flock",
4447 "sys_msync",
4448 "sys_readv", /* 145 */
4449 "sys_writev",
4450 "sys_getsid",
4451 "sys_fdatasync",
4452 "sys_sysctl",
4453 "sys_mlock", /* 150 */
4454 "sys_munlock",
4455 "sys_mlockall",
4456 "sys_munlockall",
4457 "sys_sched_setparam",
4458 "sys_sched_getparam", /* 155 */
4459 "sys_sched_setscheduler",
4460 "sys_sched_getscheduler",
4461 "sys_sched_yield",
4462 "sys_sched_get_priority_max",
4463 "sys_sched_get_priority_min", /* 160 */
4464 "sys_sched_rr_get_interval",
4465 "sys_nanosleep",
4466 "sys_mremap",
4467 "sys_setresuid16",
4468 "sys_getresuid16", /* 165 */
4469 "sys_vm86",
4470 "sys_ni_syscall", /* Old sys_query_module */
4471 "sys_poll",
4472 "sys_nfsservctl",
4473 "sys_setresgid16", /* 170 */
4474 "sys_getresgid16",
4475 "sys_prctl",
4476 "sys_rt_sigreturn",
4477 "sys_rt_sigaction",
4478 "sys_rt_sigprocmask", /* 175 */
4479 "sys_rt_sigpending",
4480 "sys_rt_sigtimedwait",
4481 "sys_rt_sigqueueinfo",
4482 "sys_rt_sigsuspend",
4483 "sys_pread64", /* 180 */
4484 "sys_pwrite64",
4485 "sys_chown16",
4486 "sys_getcwd",
4487 "sys_capget",
4488 "sys_capset", /* 185 */
4489 "sys_sigaltstack",
4490 "sys_sendfile",
4491 "sys_ni_syscall", /* reserved for streams1 */
4492 "sys_ni_syscall", /* reserved for streams2 */
4493 "sys_vfork", /* 190 */
4494 "sys_getrlimit",
4495 "sys_mmap2",
4496 "sys_truncate64",
4497 "sys_ftruncate64",
4498 "sys_stat64", /* 195 */
4499 "sys_lstat64",
4500 "sys_fstat64",
4501 "sys_lchown",
4502 "sys_getuid",
4503 "sys_getgid", /* 200 */
4504 "sys_geteuid",
4505 "sys_getegid",
4506 "sys_setreuid",
4507 "sys_setregid",
4508 "sys_getgroups", /* 205 */
4509 "sys_setgroups",
4510 "sys_fchown",
4511 "sys_setresuid",
4512 "sys_getresuid",
4513 "sys_setresgid", /* 210 */
4514 "sys_getresgid",
4515 "sys_chown",
4516 "sys_setuid",
4517 "sys_setgid",
4518 "sys_setfsuid", /* 215 */
4519 "sys_setfsgid",
4520 "sys_pivot_root",
4521 "sys_mincore",
4522 "sys_madvise",
4523 "sys_getdents64", /* 220 */
4524 "sys_fcntl64",
4525 "sys_ni_syscall", /* reserved for TUX */
4526 "sys_ni_syscall",
4527 "sys_gettid",
4528 "sys_readahead", /* 225 */
4529 "sys_setxattr",
4530 "sys_lsetxattr",
4531 "sys_fsetxattr",
4532 "sys_getxattr",
4533 "sys_lgetxattr", /* 230 */
4534 "sys_fgetxattr",
4535 "sys_listxattr",
4536 "sys_llistxattr",
4537 "sys_flistxattr",
4538 "sys_removexattr", /* 235 */
4539 "sys_lremovexattr",
4540 "sys_fremovexattr",
4541 "sys_tkill",
4542 "sys_sendfile64",
4543 "sys_futex", /* 240 */
4544 "sys_sched_setaffinity",
4545 "sys_sched_getaffinity",
4546 "sys_set_thread_area",
4547 "sys_get_thread_area",
4548 "sys_io_setup", /* 245 */
4549 "sys_io_destroy",
4550 "sys_io_getevents",
4551 "sys_io_submit",
4552 "sys_io_cancel",
4553 "sys_fadvise64", /* 250 */
4554 "sys_ni_syscall",
4555 "sys_exit_group",
4556 "sys_lookup_dcookie",
4557 "sys_epoll_create",
4558 "sys_epoll_ctl", /* 255 */
4559 "sys_epoll_wait",
4560 "sys_remap_file_pages",
4561 "sys_set_tid_address",
4562 "sys_timer_create",
4563 "sys_timer_settime", /* 260 */
4564 "sys_timer_gettime",
4565 "sys_timer_getoverrun",
4566 "sys_timer_delete",
4567 "sys_clock_settime",
4568 "sys_clock_gettime", /* 265 */
4569 "sys_clock_getres",
4570 "sys_clock_nanosleep",
4571 "sys_statfs64",
4572 "sys_fstatfs64",
4573 "sys_tgkill", /* 270 */
4574 "sys_utimes",
4575 "sys_fadvise64_64",
4576 "sys_ni_syscall" /* sys_vserver */
4577 };
4578
4579 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4580 switch (uEAX)
4581 {
4582 default:
4583 if (uEAX < ELEMENTS(apsz))
4584 Log(("REM: linux syscall %3d: %s (eip=%VGv ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4585 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4586 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4587 else
4588 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4589 break;
4590
4591 }
4592}
4593
4594
4595/**
4596 * Dumps an OpenBSD system call.
4597 * @param pVM VM handle.
4598 */
4599void remR3DumpOBsdSyscall(PVM pVM)
4600{
4601 static const char *apsz[] =
4602 {
4603 "SYS_syscall", //0
4604 "SYS_exit", //1
4605 "SYS_fork", //2
4606 "SYS_read", //3
4607 "SYS_write", //4
4608 "SYS_open", //5
4609 "SYS_close", //6
4610 "SYS_wait4", //7
4611 "SYS_8",
4612 "SYS_link", //9
4613 "SYS_unlink", //10
4614 "SYS_11",
4615 "SYS_chdir", //12
4616 "SYS_fchdir", //13
4617 "SYS_mknod", //14
4618 "SYS_chmod", //15
4619 "SYS_chown", //16
4620 "SYS_break", //17
4621 "SYS_18",
4622 "SYS_19",
4623 "SYS_getpid", //20
4624 "SYS_mount", //21
4625 "SYS_unmount", //22
4626 "SYS_setuid", //23
4627 "SYS_getuid", //24
4628 "SYS_geteuid", //25
4629 "SYS_ptrace", //26
4630 "SYS_recvmsg", //27
4631 "SYS_sendmsg", //28
4632 "SYS_recvfrom", //29
4633 "SYS_accept", //30
4634 "SYS_getpeername", //31
4635 "SYS_getsockname", //32
4636 "SYS_access", //33
4637 "SYS_chflags", //34
4638 "SYS_fchflags", //35
4639 "SYS_sync", //36
4640 "SYS_kill", //37
4641 "SYS_38",
4642 "SYS_getppid", //39
4643 "SYS_40",
4644 "SYS_dup", //41
4645 "SYS_opipe", //42
4646 "SYS_getegid", //43
4647 "SYS_profil", //44
4648 "SYS_ktrace", //45
4649 "SYS_sigaction", //46
4650 "SYS_getgid", //47
4651 "SYS_sigprocmask", //48
4652 "SYS_getlogin", //49
4653 "SYS_setlogin", //50
4654 "SYS_acct", //51
4655 "SYS_sigpending", //52
4656 "SYS_osigaltstack", //53
4657 "SYS_ioctl", //54
4658 "SYS_reboot", //55
4659 "SYS_revoke", //56
4660 "SYS_symlink", //57
4661 "SYS_readlink", //58
4662 "SYS_execve", //59
4663 "SYS_umask", //60
4664 "SYS_chroot", //61
4665 "SYS_62",
4666 "SYS_63",
4667 "SYS_64",
4668 "SYS_65",
4669 "SYS_vfork", //66
4670 "SYS_67",
4671 "SYS_68",
4672 "SYS_sbrk", //69
4673 "SYS_sstk", //70
4674 "SYS_61",
4675 "SYS_vadvise", //72
4676 "SYS_munmap", //73
4677 "SYS_mprotect", //74
4678 "SYS_madvise", //75
4679 "SYS_76",
4680 "SYS_77",
4681 "SYS_mincore", //78
4682 "SYS_getgroups", //79
4683 "SYS_setgroups", //80
4684 "SYS_getpgrp", //81
4685 "SYS_setpgid", //82
4686 "SYS_setitimer", //83
4687 "SYS_84",
4688 "SYS_85",
4689 "SYS_getitimer", //86
4690 "SYS_87",
4691 "SYS_88",
4692 "SYS_89",
4693 "SYS_dup2", //90
4694 "SYS_91",
4695 "SYS_fcntl", //92
4696 "SYS_select", //93
4697 "SYS_94",
4698 "SYS_fsync", //95
4699 "SYS_setpriority", //96
4700 "SYS_socket", //97
4701 "SYS_connect", //98
4702 "SYS_99",
4703 "SYS_getpriority", //100
4704 "SYS_101",
4705 "SYS_102",
4706 "SYS_sigreturn", //103
4707 "SYS_bind", //104
4708 "SYS_setsockopt", //105
4709 "SYS_listen", //106
4710 "SYS_107",
4711 "SYS_108",
4712 "SYS_109",
4713 "SYS_110",
4714 "SYS_sigsuspend", //111
4715 "SYS_112",
4716 "SYS_113",
4717 "SYS_114",
4718 "SYS_115",
4719 "SYS_gettimeofday", //116
4720 "SYS_getrusage", //117
4721 "SYS_getsockopt", //118
4722 "SYS_119",
4723 "SYS_readv", //120
4724 "SYS_writev", //121
4725 "SYS_settimeofday", //122
4726 "SYS_fchown", //123
4727 "SYS_fchmod", //124
4728 "SYS_125",
4729 "SYS_setreuid", //126
4730 "SYS_setregid", //127
4731 "SYS_rename", //128
4732 "SYS_129",
4733 "SYS_130",
4734 "SYS_flock", //131
4735 "SYS_mkfifo", //132
4736 "SYS_sendto", //133
4737 "SYS_shutdown", //134
4738 "SYS_socketpair", //135
4739 "SYS_mkdir", //136
4740 "SYS_rmdir", //137
4741 "SYS_utimes", //138
4742 "SYS_139",
4743 "SYS_adjtime", //140
4744 "SYS_141",
4745 "SYS_142",
4746 "SYS_143",
4747 "SYS_144",
4748 "SYS_145",
4749 "SYS_146",
4750 "SYS_setsid", //147
4751 "SYS_quotactl", //148
4752 "SYS_149",
4753 "SYS_150",
4754 "SYS_151",
4755 "SYS_152",
4756 "SYS_153",
4757 "SYS_154",
4758 "SYS_nfssvc", //155
4759 "SYS_156",
4760 "SYS_157",
4761 "SYS_158",
4762 "SYS_159",
4763 "SYS_160",
4764 "SYS_getfh", //161
4765 "SYS_162",
4766 "SYS_163",
4767 "SYS_164",
4768 "SYS_sysarch", //165
4769 "SYS_166",
4770 "SYS_167",
4771 "SYS_168",
4772 "SYS_169",
4773 "SYS_170",
4774 "SYS_171",
4775 "SYS_172",
4776 "SYS_pread", //173
4777 "SYS_pwrite", //174
4778 "SYS_175",
4779 "SYS_176",
4780 "SYS_177",
4781 "SYS_178",
4782 "SYS_179",
4783 "SYS_180",
4784 "SYS_setgid", //181
4785 "SYS_setegid", //182
4786 "SYS_seteuid", //183
4787 "SYS_lfs_bmapv", //184
4788 "SYS_lfs_markv", //185
4789 "SYS_lfs_segclean", //186
4790 "SYS_lfs_segwait", //187
4791 "SYS_188",
4792 "SYS_189",
4793 "SYS_190",
4794 "SYS_pathconf", //191
4795 "SYS_fpathconf", //192
4796 "SYS_swapctl", //193
4797 "SYS_getrlimit", //194
4798 "SYS_setrlimit", //195
4799 "SYS_getdirentries", //196
4800 "SYS_mmap", //197
4801 "SYS___syscall", //198
4802 "SYS_lseek", //199
4803 "SYS_truncate", //200
4804 "SYS_ftruncate", //201
4805 "SYS___sysctl", //202
4806 "SYS_mlock", //203
4807 "SYS_munlock", //204
4808 "SYS_205",
4809 "SYS_futimes", //206
4810 "SYS_getpgid", //207
4811 "SYS_xfspioctl", //208
4812 "SYS_209",
4813 "SYS_210",
4814 "SYS_211",
4815 "SYS_212",
4816 "SYS_213",
4817 "SYS_214",
4818 "SYS_215",
4819 "SYS_216",
4820 "SYS_217",
4821 "SYS_218",
4822 "SYS_219",
4823 "SYS_220",
4824 "SYS_semget", //221
4825 "SYS_222",
4826 "SYS_223",
4827 "SYS_224",
4828 "SYS_msgget", //225
4829 "SYS_msgsnd", //226
4830 "SYS_msgrcv", //227
4831 "SYS_shmat", //228
4832 "SYS_229",
4833 "SYS_shmdt", //230
4834 "SYS_231",
4835 "SYS_clock_gettime", //232
4836 "SYS_clock_settime", //233
4837 "SYS_clock_getres", //234
4838 "SYS_235",
4839 "SYS_236",
4840 "SYS_237",
4841 "SYS_238",
4842 "SYS_239",
4843 "SYS_nanosleep", //240
4844 "SYS_241",
4845 "SYS_242",
4846 "SYS_243",
4847 "SYS_244",
4848 "SYS_245",
4849 "SYS_246",
4850 "SYS_247",
4851 "SYS_248",
4852 "SYS_249",
4853 "SYS_minherit", //250
4854 "SYS_rfork", //251
4855 "SYS_poll", //252
4856 "SYS_issetugid", //253
4857 "SYS_lchown", //254
4858 "SYS_getsid", //255
4859 "SYS_msync", //256
4860 "SYS_257",
4861 "SYS_258",
4862 "SYS_259",
4863 "SYS_getfsstat", //260
4864 "SYS_statfs", //261
4865 "SYS_fstatfs", //262
4866 "SYS_pipe", //263
4867 "SYS_fhopen", //264
4868 "SYS_265",
4869 "SYS_fhstatfs", //266
4870 "SYS_preadv", //267
4871 "SYS_pwritev", //268
4872 "SYS_kqueue", //269
4873 "SYS_kevent", //270
4874 "SYS_mlockall", //271
4875 "SYS_munlockall", //272
4876 "SYS_getpeereid", //273
4877 "SYS_274",
4878 "SYS_275",
4879 "SYS_276",
4880 "SYS_277",
4881 "SYS_278",
4882 "SYS_279",
4883 "SYS_280",
4884 "SYS_getresuid", //281
4885 "SYS_setresuid", //282
4886 "SYS_getresgid", //283
4887 "SYS_setresgid", //284
4888 "SYS_285",
4889 "SYS_mquery", //286
4890 "SYS_closefrom", //287
4891 "SYS_sigaltstack", //288
4892 "SYS_shmget", //289
4893 "SYS_semop", //290
4894 "SYS_stat", //291
4895 "SYS_fstat", //292
4896 "SYS_lstat", //293
4897 "SYS_fhstat", //294
4898 "SYS___semctl", //295
4899 "SYS_shmctl", //296
4900 "SYS_msgctl", //297
4901 "SYS_MAXSYSCALL", //298
4902 //299
4903 //300
4904 };
4905 uint32_t uEAX;
4906 if (!LogIsEnabled())
4907 return;
4908 uEAX = CPUMGetGuestEAX(pVM);
4909 switch (uEAX)
4910 {
4911 default:
4912 if (uEAX < ELEMENTS(apsz))
4913 {
4914 uint32_t au32Args[8] = {0};
4915 PGMPhysReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4916 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4917 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4918 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4919 }
4920 else
4921 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4922 break;
4923 }
4924}
4925
4926
4927#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
4928/**
4929 * The Dll main entry point (stub).
4930 */
4931bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
4932{
4933 return true;
4934}
4935
4936void *memcpy(void *dst, const void *src, size_t size)
4937{
4938 uint8_t*pbDst = dst, *pbSrc = src;
4939 while (size-- > 0)
4940 *pbDst++ = *pbSrc++;
4941 return dst;
4942}
4943
4944#endif
4945
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette