VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/VMM.cpp@ 90997

Last change on this file since 90997 was 90997, checked in by vboxsync, 4 years ago

VMM,PDM,PGM: Restrict the VMSetError and VMSetRuntimeError APIs to ring-3, these never worked properly in ring-0 or raw-mode. A PAEmode runtime error was the only place any of these were used, but given that the VMSetRuntimeError codepath starts with an assertion, it can't have been used/tested. The PAEmode runtime error shouldn't necessarily be triggered by PGM anyway, but IEM. Removed VMMCALLRING3_VM_SET_ERROR and VMMCALLRING3_VM_SET_RUNTIME_ERROR. bugref:10093

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 110.3 KB
Line 
1/* $Id: VMM.cpp 90997 2021-08-30 14:04:48Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.215389.xyz. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18//#define NO_SUPCALLR0VMM
19
20/** @page pg_vmm VMM - The Virtual Machine Monitor
21 *
22 * The VMM component is two things at the moment, it's a component doing a few
23 * management and routing tasks, and it's the whole virtual machine monitor
24 * thing. For hysterical reasons, it is not doing all the management that one
25 * would expect, this is instead done by @ref pg_vm. We'll address this
26 * misdesign eventually, maybe.
27 *
28 * VMM is made up of these components:
29 * - @subpage pg_cfgm
30 * - @subpage pg_cpum
31 * - @subpage pg_dbgf
32 * - @subpage pg_em
33 * - @subpage pg_gim
34 * - @subpage pg_gmm
35 * - @subpage pg_gvmm
36 * - @subpage pg_hm
37 * - @subpage pg_iem
38 * - @subpage pg_iom
39 * - @subpage pg_mm
40 * - @subpage pg_nem
41 * - @subpage pg_pdm
42 * - @subpage pg_pgm
43 * - @subpage pg_selm
44 * - @subpage pg_ssm
45 * - @subpage pg_stam
46 * - @subpage pg_tm
47 * - @subpage pg_trpm
48 * - @subpage pg_vm
49 *
50 *
51 * @see @ref grp_vmm @ref grp_vm @subpage pg_vmm_guideline @subpage pg_raw
52 *
53 *
54 * @section sec_vmmstate VMM State
55 *
56 * @image html VM_Statechart_Diagram.gif
57 *
58 * To be written.
59 *
60 *
61 * @subsection subsec_vmm_init VMM Initialization
62 *
63 * To be written.
64 *
65 *
66 * @subsection subsec_vmm_term VMM Termination
67 *
68 * To be written.
69 *
70 *
71 * @section sec_vmm_limits VMM Limits
72 *
73 * There are various resource limits imposed by the VMM and it's
74 * sub-components. We'll list some of them here.
75 *
76 * On 64-bit hosts:
77 * - Max 8191 VMs. Imposed by GVMM's handle allocation (GVMM_MAX_HANDLES),
78 * can be increased up to 64K - 1.
79 * - Max 16TB - 64KB of the host memory can be used for backing VM RAM and
80 * ROM pages. The limit is imposed by the 32-bit page ID used by GMM.
81 * - A VM can be assigned all the memory we can use (16TB), however, the
82 * Main API will restrict this to 2TB (MM_RAM_MAX_IN_MB).
83 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
84 *
85 * On 32-bit hosts:
86 * - Max 127 VMs. Imposed by GMM's per page structure.
87 * - Max 64GB - 64KB of the host memory can be used for backing VM RAM and
88 * ROM pages. The limit is imposed by the 28-bit page ID used
89 * internally in GMM. It is also limited by PAE.
90 * - A VM can be assigned all the memory GMM can allocate, however, the
91 * Main API will restrict this to 3584MB (MM_RAM_MAX_IN_MB).
92 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
93 *
94 */
95
96
97/*********************************************************************************************************************************
98* Header Files *
99*********************************************************************************************************************************/
100#define LOG_GROUP LOG_GROUP_VMM
101#include <VBox/vmm/vmm.h>
102#include <VBox/vmm/vmapi.h>
103#include <VBox/vmm/pgm.h>
104#include <VBox/vmm/cfgm.h>
105#include <VBox/vmm/pdmqueue.h>
106#include <VBox/vmm/pdmcritsect.h>
107#include <VBox/vmm/pdmcritsectrw.h>
108#include <VBox/vmm/pdmapi.h>
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/gim.h>
111#include <VBox/vmm/mm.h>
112#include <VBox/vmm/nem.h>
113#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
114# include <VBox/vmm/iem.h>
115#endif
116#include <VBox/vmm/iom.h>
117#include <VBox/vmm/trpm.h>
118#include <VBox/vmm/selm.h>
119#include <VBox/vmm/em.h>
120#include <VBox/sup.h>
121#include <VBox/vmm/dbgf.h>
122#include <VBox/vmm/apic.h>
123#include <VBox/vmm/ssm.h>
124#include <VBox/vmm/tm.h>
125#include "VMMInternal.h"
126#include <VBox/vmm/vmcc.h>
127
128#include <VBox/err.h>
129#include <VBox/param.h>
130#include <VBox/version.h>
131#include <VBox/vmm/hm.h>
132#include <iprt/assert.h>
133#include <iprt/alloc.h>
134#include <iprt/asm.h>
135#include <iprt/time.h>
136#include <iprt/semaphore.h>
137#include <iprt/stream.h>
138#include <iprt/string.h>
139#include <iprt/stdarg.h>
140#include <iprt/ctype.h>
141#include <iprt/x86.h>
142
143
144/*********************************************************************************************************************************
145* Defined Constants And Macros *
146*********************************************************************************************************************************/
147/** The saved state version. */
148#define VMM_SAVED_STATE_VERSION 4
149/** The saved state version used by v3.0 and earlier. (Teleportation) */
150#define VMM_SAVED_STATE_VERSION_3_0 3
151
152/** Macro for flushing the ring-0 logging. */
153#define VMM_FLUSH_R0_LOG(a_pVM, a_pVCpu, a_pLogger, a_pR3Logger) \
154 do { \
155 size_t const idxBuf = (a_pLogger)->idxBuf % VMMLOGGER_BUFFER_COUNT; \
156 if ( (a_pLogger)->aBufs[idxBuf].AuxDesc.offBuf == 0 \
157 || (a_pLogger)->aBufs[idxBuf].AuxDesc.fFlushedIndicator) \
158 { /* likely? */ } \
159 else \
160 vmmR3LogReturnFlush(a_pVM, a_pVCpu, a_pLogger, idxBuf, a_pR3Logger); \
161 } while (0)
162
163
164/*********************************************************************************************************************************
165* Internal Functions *
166*********************************************************************************************************************************/
167static int vmmR3InitStacks(PVM pVM);
168static void vmmR3InitRegisterStats(PVM pVM);
169static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
170static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
171#if 0 /* pointless when timers doesn't run on EMT */
172static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser);
173#endif
174static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
175 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser);
176static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu);
177static FNRTTHREAD vmmR3LogFlusher;
178static void vmmR3LogReturnFlush(PVM pVM, PVMCPU pVCpu, PVMMR3CPULOGGER pShared, size_t idxBuf,
179 PRTLOGGER pDstLogger);
180static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
181
182
183
184/**
185 * Initializes the VMM.
186 *
187 * @returns VBox status code.
188 * @param pVM The cross context VM structure.
189 */
190VMMR3_INT_DECL(int) VMMR3Init(PVM pVM)
191{
192 LogFlow(("VMMR3Init\n"));
193
194 /*
195 * Assert alignment, sizes and order.
196 */
197 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
198 AssertCompile(RT_SIZEOFMEMB(VMCPU, vmm.s) <= RT_SIZEOFMEMB(VMCPU, vmm.padding));
199
200 /*
201 * Init basic VM VMM members.
202 */
203 pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL;
204 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
205 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
206 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
207 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
208 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
209 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
210 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
211 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
212 pVM->vmm.s.nsProgramStart = RTTimeProgramStartNanoTS();
213
214#if 0 /* pointless when timers doesn't run on EMT */
215 /** @cfgm{/YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms}
216 * The EMT yield interval. The EMT yielding is a hack we employ to play a
217 * bit nicer with the rest of the system (like for instance the GUI).
218 */
219 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies,
220 23 /* Value arrived at after experimenting with the grub boot prompt. */);
221 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
222#endif
223
224 /** @cfgm{/VMM/UsePeriodicPreemptionTimers, boolean, true}
225 * Controls whether we employ per-cpu preemption timers to limit the time
226 * spent executing guest code. This option is not available on all
227 * platforms and we will silently ignore this setting then. If we are
228 * running in VT-x mode, we will use the VMX-preemption timer instead of
229 * this one when possible.
230 */
231 PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM");
232 int rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true);
233 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc);
234
235 /*
236 * Initialize the VMM rendezvous semaphores.
237 */
238 pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus);
239 if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered)
240 return VERR_NO_MEMORY;
241 for (VMCPUID i = 0; i < pVM->cCpus; i++)
242 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
243 for (VMCPUID i = 0; i < pVM->cCpus; i++)
244 {
245 rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
246 AssertRCReturn(rc, rc);
247 }
248 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
249 AssertRCReturn(rc, rc);
250 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
251 AssertRCReturn(rc, rc);
252 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
253 AssertRCReturn(rc, rc);
254 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
255 AssertRCReturn(rc, rc);
256 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPush);
257 AssertRCReturn(rc, rc);
258 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPop);
259 AssertRCReturn(rc, rc);
260 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
261 AssertRCReturn(rc, rc);
262 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
263 AssertRCReturn(rc, rc);
264
265 /*
266 * Register the saved state data unit.
267 */
268 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
269 NULL, NULL, NULL,
270 NULL, vmmR3Save, NULL,
271 NULL, vmmR3Load, NULL);
272 if (RT_FAILURE(rc))
273 return rc;
274
275 /*
276 * Register the Ring-0 VM handle with the session for fast ioctl calls.
277 */
278 rc = SUPR3SetVMForFastIOCtl(VMCC_GET_VMR0_FOR_CALL(pVM));
279 if (RT_FAILURE(rc))
280 return rc;
281
282 /*
283 * Init various sub-components.
284 */
285 rc = vmmR3InitStacks(pVM);
286 if (RT_SUCCESS(rc))
287 {
288#ifdef VBOX_WITH_NMI
289 /*
290 * Allocate mapping for the host APIC.
291 */
292 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
293 AssertRC(rc);
294#endif
295 if (RT_SUCCESS(rc))
296 {
297 /*
298 * Start the log flusher thread.
299 */
300 rc = RTThreadCreate(&pVM->vmm.s.hLogFlusherThread, vmmR3LogFlusher, pVM, 0 /*cbStack*/,
301 RTTHREADTYPE_IO, RTTHREADFLAGS_WAITABLE, "R0LogWrk");
302 if (RT_SUCCESS(rc))
303 {
304
305 /*
306 * Debug info and statistics.
307 */
308 DBGFR3InfoRegisterInternal(pVM, "fflags", "Displays the current Forced actions Flags.", vmmR3InfoFF);
309 vmmR3InitRegisterStats(pVM);
310 vmmInitFormatTypes();
311
312 return VINF_SUCCESS;
313 }
314 }
315 }
316 /** @todo Need failure cleanup? */
317
318 return rc;
319}
320
321
322/**
323 * Allocate & setup the VMM RC stack(s) (for EMTs).
324 *
325 * The stacks are also used for long jumps in Ring-0.
326 *
327 * @returns VBox status code.
328 * @param pVM The cross context VM structure.
329 *
330 * @remarks The optional guard page gets it protection setup up during R3 init
331 * completion because of init order issues.
332 */
333static int vmmR3InitStacks(PVM pVM)
334{
335 int rc = VINF_SUCCESS;
336#ifdef VMM_R0_SWITCH_STACK
337 uint32_t fFlags = MMHYPER_AONR_FLAGS_KERNEL_MAPPING;
338#else
339 uint32_t fFlags = 0;
340#endif
341
342 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
343 {
344 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
345
346#ifdef VBOX_STRICT_VMM_STACK
347 rc = MMR3HyperAllocOnceNoRelEx(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE,
348#else
349 rc = MMR3HyperAllocOnceNoRelEx(pVM, VMM_STACK_SIZE,
350#endif
351 PAGE_SIZE, MM_TAG_VMM, fFlags, (void **)&pVCpu->vmm.s.pbEMTStackR3);
352 if (RT_SUCCESS(rc))
353 {
354#ifdef VBOX_STRICT_VMM_STACK
355 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
356#endif
357 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
358
359 }
360 }
361
362 return rc;
363}
364
365
366/**
367 * VMMR3Init worker that register the statistics with STAM.
368 *
369 * @param pVM The cross context VM structure.
370 */
371static void vmmR3InitRegisterStats(PVM pVM)
372{
373 RT_NOREF_PV(pVM);
374
375 /*
376 * Statistics.
377 */
378 STAM_REG(pVM, &pVM->vmm.s.StatRunGC, STAMTYPE_COUNTER, "/VMM/RunGC", STAMUNIT_OCCURENCES, "Number of context switches.");
379 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
380 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
381 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
382 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
383 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
384 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
385 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
386 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
387 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
388 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
389 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_READ returns.");
390 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_WRITE returns.");
391 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_COMMIT_WRITE returns.");
392 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ returns.");
393 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_WRITE returns.");
394 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_COMMIT_WRITE returns.");
395 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ_WRITE returns.");
396 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
397 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
398 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRRead, STAMTYPE_COUNTER, "/VMM/RZRet/MSRRead", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_READ returns.");
399 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MSRWrite", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_WRITE returns.");
400 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
401 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
402 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
403 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
404 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
405 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
406 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
407 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
408 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
409 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
410 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
411 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
412 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Total, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
413 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns without responsible force flag.");
414 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3FF, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TO_R3.");
415 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_TM_VIRTUAL_SYNC.");
416 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PGM_NEED_HANDY_PAGES.");
417 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_QUEUES.");
418 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_EMT_RENDEZVOUS.");
419 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TIMER.");
420 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_DMA.");
421 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3CritSect, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/CritSect", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_PDM_CRITSECT.");
422 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iem, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IEM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IEM.");
423 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iom, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IOM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IOM.");
424 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
425 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
426 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
427 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
428 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns.");
429 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
430 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HM_PATCH_TPR_INSTR returns.");
431 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
432 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_LOCK calls.");
433 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls.");
434 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls.");
435 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls.");
436
437 STAMR3Register(pVM, &pVM->vmm.s.StatLogFlusherFlushes, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, "/VMM/LogFlush/00-Flushes", STAMUNIT_OCCURENCES, "Total number of buffer flushes");
438 STAMR3Register(pVM, &pVM->vmm.s.StatLogFlusherNoWakeUp, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, "/VMM/LogFlush/00-NoWakups", STAMUNIT_OCCURENCES, "Times the flusher thread didn't need waking up.");
439
440#ifdef VBOX_WITH_STATISTICS
441 for (VMCPUID i = 0; i < pVM->cCpus; i++)
442 {
443 PVMCPU pVCpu = pVM->apCpusR3[i];
444 STAMR3RegisterF(pVM, &pVCpu->vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
445 STAMR3RegisterF(pVM, &pVCpu->vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
446 STAMR3RegisterF(pVM, &pVCpu->vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
447 }
448#endif
449 for (VMCPUID i = 0; i < pVM->cCpus; i++)
450 {
451 PVMCPU pVCpu = pVM->apCpusR3[i];
452 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlock, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlock", i);
453 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockOnTime, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOnTime", i);
454 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockOverslept, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOverslept", i);
455 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockInsomnia, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockInsomnia", i);
456 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExec, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec", i);
457 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExecFromSpin, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromSpin", i);
458 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExecFromBlock, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromBlock", i);
459 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3", i);
460 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3FromSpin, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/FromSpin", i);
461 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3Other, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/Other", i);
462 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PendingFF, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PendingFF", i);
463 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3SmallDelta, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/SmallDelta", i);
464 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PostNoInt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PostWaitNoInt", i);
465 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PostPendingFF,STAMTYPE_COUNTER,STAMVISIBILITY_ALWAYS,STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PostWaitPendingFF", i);
466 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0Halts, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryCounter", i);
467 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0HaltsSucceeded, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistorySucceeded", i);
468 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0HaltsToRing3, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryToRing3", i);
469
470 STAMR3RegisterF(pVM, &pVCpu->cEmtHashCollisions, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/VMM/EmtHashCollisions/Emt%02u", i);
471
472 PVMMR3CPULOGGER pShared = &pVCpu->vmm.s.u.s.Logger;
473 STAMR3RegisterF(pVM, &pShared->StatFlushes, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Reg", i);
474 STAMR3RegisterF(pVM, &pShared->StatCannotBlock, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Reg/CannotBlock", i);
475 STAMR3RegisterF(pVM, &pShared->StatWait, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Reg/Wait", i);
476 STAMR3RegisterF(pVM, &pShared->StatRaces, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Reg/Races", i);
477 STAMR3RegisterF(pVM, &pShared->StatRacesToR0, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Reg/RacesToR0", i);
478 STAMR3RegisterF(pVM, &pShared->cbDropped, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Reg/cbDropped", i);
479 STAMR3RegisterF(pVM, &pShared->cbBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Reg/cbBuf", i);
480 STAMR3RegisterF(pVM, &pShared->idxBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Reg/idxBuf", i);
481
482 pShared = &pVCpu->vmm.s.u.s.RelLogger;
483 STAMR3RegisterF(pVM, &pShared->StatFlushes, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Rel", i);
484 STAMR3RegisterF(pVM, &pShared->StatCannotBlock, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Rel/CannotBlock", i);
485 STAMR3RegisterF(pVM, &pShared->StatWait, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Rel/Wait", i);
486 STAMR3RegisterF(pVM, &pShared->StatRaces, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Rel/Races", i);
487 STAMR3RegisterF(pVM, &pShared->StatRacesToR0, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Rel/RacesToR0", i);
488 STAMR3RegisterF(pVM, &pShared->cbDropped, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Rel/cbDropped", i);
489 STAMR3RegisterF(pVM, &pShared->cbBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Rel/cbBuf", i);
490 STAMR3RegisterF(pVM, &pShared->idxBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Rel/idxBuf", i);
491 }
492}
493
494
495/**
496 * Worker for VMMR3InitR0 that calls ring-0 to do EMT specific initialization.
497 *
498 * @returns VBox status code.
499 * @param pVM The cross context VM structure.
500 * @param pVCpu The cross context per CPU structure.
501 * @thread EMT(pVCpu)
502 */
503static DECLCALLBACK(int) vmmR3InitR0Emt(PVM pVM, PVMCPU pVCpu)
504{
505 return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_VMMR0_INIT_EMT, 0, NULL);
506}
507
508
509/**
510 * Initializes the R0 VMM.
511 *
512 * @returns VBox status code.
513 * @param pVM The cross context VM structure.
514 */
515VMMR3_INT_DECL(int) VMMR3InitR0(PVM pVM)
516{
517 int rc;
518 PVMCPU pVCpu = VMMGetCpu(pVM);
519 Assert(pVCpu && pVCpu->idCpu == 0);
520
521 /*
522 * Make sure the ring-0 loggers are up to date.
523 */
524 rc = VMMR3UpdateLoggers(pVM);
525 if (RT_FAILURE(rc))
526 return rc;
527
528 /*
529 * Call Ring-0 entry with init code.
530 */
531 for (;;)
532 {
533#ifdef NO_SUPCALLR0VMM
534 //rc = VERR_GENERAL_FAILURE;
535 rc = VINF_SUCCESS;
536#else
537 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, RT_MAKE_U64(VMMGetSvnRev(), vmmGetBuildType()), NULL);
538#endif
539 /*
540 * Flush the logs.
541 */
542#ifdef LOG_ENABLED
543 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
544#endif
545 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
546 if (rc != VINF_VMM_CALL_HOST)
547 break;
548 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
549 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
550 break;
551 /* Resume R0 */
552 }
553
554 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
555 {
556 LogRel(("VMM: R0 init failed, rc=%Rra\n", rc));
557 if (RT_SUCCESS(rc))
558 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
559 }
560
561 /* Log whether thread-context hooks are used (on Linux this can depend on how the kernel is configured). */
562 if (pVM->vmm.s.fIsUsingContextHooks)
563 LogRel(("VMM: Enabled thread-context hooks\n"));
564 else
565 LogRel(("VMM: Thread-context hooks unavailable\n"));
566
567 /* Log RTThreadPreemptIsPendingTrusty() and RTThreadPreemptIsPossible() results. */
568 if (pVM->vmm.s.fIsPreemptPendingApiTrusty)
569 LogRel(("VMM: RTThreadPreemptIsPending() can be trusted\n"));
570 else
571 LogRel(("VMM: Warning! RTThreadPreemptIsPending() cannot be trusted! Need to update kernel info?\n"));
572 if (pVM->vmm.s.fIsPreemptPossible)
573 LogRel(("VMM: Kernel preemption is possible\n"));
574 else
575 LogRel(("VMM: Kernel preemption is not possible it seems\n"));
576
577 /*
578 * Send all EMTs to ring-0 to get their logger initialized.
579 */
580 for (VMCPUID idCpu = 0; RT_SUCCESS(rc) && idCpu < pVM->cCpus; idCpu++)
581 rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)vmmR3InitR0Emt, 2, pVM, pVM->apCpusR3[idCpu]);
582
583 return rc;
584}
585
586
587/**
588 * Called when an init phase completes.
589 *
590 * @returns VBox status code.
591 * @param pVM The cross context VM structure.
592 * @param enmWhat Which init phase.
593 */
594VMMR3_INT_DECL(int) VMMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
595{
596 int rc = VINF_SUCCESS;
597
598 switch (enmWhat)
599 {
600 case VMINITCOMPLETED_RING3:
601 {
602#if 0 /* pointless when timers doesn't run on EMT */
603 /*
604 * Create the EMT yield timer.
605 */
606 rc = TMR3TimerCreate(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, TMTIMER_FLAGS_NO_RING0,
607 "EMT Yielder", &pVM->vmm.s.hYieldTimer);
608 AssertRCReturn(rc, rc);
609
610 rc = TMTimerSetMillies(pVM, pVM->vmm.s.hYieldTimer, pVM->vmm.s.cYieldEveryMillies);
611 AssertRCReturn(rc, rc);
612#endif
613 break;
614 }
615
616 case VMINITCOMPLETED_HM:
617 {
618 /*
619 * Disable the periodic preemption timers if we can use the
620 * VMX-preemption timer instead.
621 */
622 if ( pVM->vmm.s.fUsePeriodicPreemptionTimers
623 && HMR3IsVmxPreemptionTimerUsed(pVM))
624 pVM->vmm.s.fUsePeriodicPreemptionTimers = false;
625 LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers));
626
627 /*
628 * Last chance for GIM to update its CPUID leaves if it requires
629 * knowledge/information from HM initialization.
630 */
631 rc = GIMR3InitCompleted(pVM);
632 AssertRCReturn(rc, rc);
633
634 /*
635 * CPUM's post-initialization (print CPUIDs).
636 */
637 CPUMR3LogCpuIdAndMsrFeatures(pVM);
638 break;
639 }
640
641 default: /* shuts up gcc */
642 break;
643 }
644
645 return rc;
646}
647
648
649/**
650 * Terminate the VMM bits.
651 *
652 * @returns VBox status code.
653 * @param pVM The cross context VM structure.
654 */
655VMMR3_INT_DECL(int) VMMR3Term(PVM pVM)
656{
657 PVMCPU pVCpu = VMMGetCpu(pVM);
658 Assert(pVCpu && pVCpu->idCpu == 0);
659
660 /*
661 * Call Ring-0 entry with termination code.
662 */
663 int rc;
664 for (;;)
665 {
666#ifdef NO_SUPCALLR0VMM
667 //rc = VERR_GENERAL_FAILURE;
668 rc = VINF_SUCCESS;
669#else
670 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
671#endif
672 /*
673 * Flush the logs.
674 */
675#ifdef LOG_ENABLED
676 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
677#endif
678 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
679 if (rc != VINF_VMM_CALL_HOST)
680 break;
681 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
682 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
683 break;
684 /* Resume R0 */
685 }
686 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
687 {
688 LogRel(("VMM: VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
689 if (RT_SUCCESS(rc))
690 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
691 }
692
693 for (VMCPUID i = 0; i < pVM->cCpus; i++)
694 {
695 RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
696 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
697 }
698 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
699 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
700 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
701 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
702 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
703 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
704 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
705 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
706 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
707 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
708 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
709 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
710 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
711 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
712 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
713 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
714
715 vmmTermFormatTypes();
716
717 /*
718 * Wait for the log flusher thread to complete.
719 */
720 if (pVM->vmm.s.hLogFlusherThread != NIL_RTTHREAD)
721 {
722 int rc2 = RTThreadWait(pVM->vmm.s.hLogFlusherThread, RT_MS_30SEC, NULL);
723 AssertLogRelRC(rc2);
724 if (RT_SUCCESS(rc2))
725 pVM->vmm.s.hLogFlusherThread = NIL_RTTHREAD;
726 }
727
728 return rc;
729}
730
731
732/**
733 * Applies relocations to data and code managed by this
734 * component. This function will be called at init and
735 * whenever the VMM need to relocate it self inside the GC.
736 *
737 * The VMM will need to apply relocations to the core code.
738 *
739 * @param pVM The cross context VM structure.
740 * @param offDelta The relocation delta.
741 */
742VMMR3_INT_DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
743{
744 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
745 RT_NOREF(offDelta);
746
747 /*
748 * Update the logger.
749 */
750 VMMR3UpdateLoggers(pVM);
751}
752
753
754/**
755 * Worker for VMMR3UpdateLoggers.
756 */
757static int vmmR3UpdateLoggersWorker(PVM pVM, PVMCPU pVCpu, PRTLOGGER pSrcLogger, bool fReleaseLogger)
758{
759 /*
760 * Get the group count.
761 */
762 uint32_t uGroupsCrc32 = 0;
763 uint32_t cGroups = 0;
764 uint64_t fFlags = 0;
765 int rc = RTLogQueryBulk(pSrcLogger, &fFlags, &uGroupsCrc32, &cGroups, NULL);
766 Assert(rc == VERR_BUFFER_OVERFLOW);
767
768 /*
769 * Allocate the request of the right size.
770 */
771 uint32_t const cbReq = RT_UOFFSETOF_DYN(VMMR0UPDATELOGGERSREQ, afGroups[cGroups]);
772 PVMMR0UPDATELOGGERSREQ pReq = (PVMMR0UPDATELOGGERSREQ)RTMemAllocZVar(cbReq);
773 if (pReq)
774 {
775 pReq->Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
776 pReq->Hdr.cbReq = cbReq;
777 pReq->cGroups = cGroups;
778 rc = RTLogQueryBulk(pSrcLogger, &pReq->fFlags, &pReq->uGroupCrc32, &pReq->cGroups, pReq->afGroups);
779 AssertRC(rc);
780 if (RT_SUCCESS(rc))
781 rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_VMMR0_UPDATE_LOGGERS, fReleaseLogger, &pReq->Hdr);
782
783 RTMemFree(pReq);
784 }
785 else
786 rc = VERR_NO_MEMORY;
787 return rc;
788}
789
790
791/**
792 * Updates the settings for the RC and R0 loggers.
793 *
794 * @returns VBox status code.
795 * @param pVM The cross context VM structure.
796 * @thread EMT
797 */
798VMMR3_INT_DECL(int) VMMR3UpdateLoggers(PVM pVM)
799{
800 VM_ASSERT_EMT(pVM);
801 PVMCPU pVCpu = VMMGetCpu(pVM);
802 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
803
804 /*
805 * Each EMT has each own logger instance.
806 */
807 /* Debug logging.*/
808 int rcDebug = VINF_SUCCESS;
809#ifdef LOG_ENABLED
810 PRTLOGGER const pDefault = RTLogDefaultInstance();
811 if (pDefault)
812 rcDebug = vmmR3UpdateLoggersWorker(pVM, pVCpu, pDefault, false /*fReleaseLogger*/);
813#else
814 RT_NOREF(pVM);
815#endif
816
817 /* Release logging. */
818 int rcRelease = VINF_SUCCESS;
819 PRTLOGGER const pRelease = RTLogRelGetDefaultInstance();
820 if (pRelease)
821 rcRelease = vmmR3UpdateLoggersWorker(pVM, pVCpu, pRelease, true /*fReleaseLogger*/);
822
823 return RT_SUCCESS(rcDebug) ? rcRelease : rcDebug;
824}
825
826
827/**
828 * @callback_method_impl{FNRTTHREAD, Ring-0 log flusher thread.}
829 */
830static DECLCALLBACK(int) vmmR3LogFlusher(RTTHREAD hThreadSelf, void *pvUser)
831{
832 PVM const pVM = (PVM)pvUser;
833 RT_NOREF(hThreadSelf);
834
835 /* Reset the flusher state before we start: */
836 pVM->vmm.s.LogFlusherItem.u32 = UINT32_MAX;
837
838 /*
839 * The work loop.
840 */
841 for (;;)
842 {
843 /*
844 * Wait for work.
845 */
846 int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), NIL_VMCPUID, VMMR0_DO_VMMR0_LOG_FLUSHER, 0, NULL);
847 if (RT_SUCCESS(rc))
848 {
849 /* Paranoia: Make another copy of the request, to make sure the validated data can't be changed. */
850 VMMLOGFLUSHERENTRY Item;
851 Item.u32 = pVM->vmm.s.LogFlusherItem.u32;
852 if ( Item.s.idCpu < pVM->cCpus
853 && Item.s.idxLogger < VMMLOGGER_IDX_MAX
854 && Item.s.idxBuffer < VMMLOGGER_BUFFER_COUNT)
855 {
856 /*
857 * Verify the request.
858 */
859 PVMCPU const pVCpu = pVM->apCpusR3[Item.s.idCpu];
860 PVMMR3CPULOGGER const pShared = &pVCpu->vmm.s.u.aLoggers[Item.s.idxLogger];
861 uint32_t const cbToFlush = pShared->aBufs[Item.s.idxBuffer].AuxDesc.offBuf;
862 if (cbToFlush > 0)
863 {
864 if (cbToFlush <= pShared->cbBuf)
865 {
866 char * const pchBufR3 = pShared->aBufs[Item.s.idxBuffer].pchBufR3;
867 if (pchBufR3)
868 {
869 /*
870 * Do the flushing.
871 */
872 PRTLOGGER const pLogger = Item.s.idxLogger == VMMLOGGER_IDX_REGULAR
873 ? RTLogGetDefaultInstance() : RTLogRelGetDefaultInstance();
874 if (pLogger)
875 {
876 char szBefore[128];
877 RTStrPrintf(szBefore, sizeof(szBefore),
878 "*FLUSH* idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x fFlushed=%RTbool cbDropped=%#x\n",
879 Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush,
880 pShared->aBufs[Item.s.idxBuffer].AuxDesc.fFlushedIndicator, pShared->cbDropped);
881 RTLogBulkWrite(pLogger, szBefore, pchBufR3, cbToFlush, "*FLUSH DONE*\n");
882 }
883 }
884 else
885 Log(("vmmR3LogFlusher: idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x: Warning! No ring-3 buffer pointer!\n",
886 Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush));
887 }
888 else
889 Log(("vmmR3LogFlusher: idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x: Warning! Exceeds %#x bytes buffer size!\n",
890 Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush, pShared->cbBuf));
891 }
892 else
893 Log(("vmmR3LogFlusher: idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x: Warning! Zero bytes to flush!\n",
894 Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush));
895
896 /*
897 * Mark the descriptor as flushed and set the request flag for same.
898 */
899 pShared->aBufs[Item.s.idxBuffer].AuxDesc.fFlushedIndicator = true;
900 }
901 else
902 {
903 Assert(Item.s.idCpu == UINT16_MAX);
904 Assert(Item.s.idxLogger == UINT8_MAX);
905 Assert(Item.s.idxBuffer == UINT8_MAX);
906 }
907 }
908 /*
909 * Interrupted can happen, just ignore it.
910 */
911 else if (rc == VERR_INTERRUPTED)
912 { /* ignore*/ }
913 /*
914 * The ring-0 termination code will set the shutdown flag and wake us
915 * up, and we should return with object destroyed. In case there is
916 * some kind of race, we might also get sempahore destroyed.
917 */
918 else if ( rc == VERR_OBJECT_DESTROYED
919 || rc == VERR_SEM_DESTROYED
920 || rc == VERR_INVALID_HANDLE)
921 {
922 LogRel(("vmmR3LogFlusher: Terminating (%Rrc)\n", rc));
923 return VINF_SUCCESS;
924 }
925 /*
926 * There shouldn't be any other errors...
927 */
928 else
929 {
930 LogRelMax(64, ("vmmR3LogFlusher: VMMR0_DO_VMMR0_LOG_FLUSHER -> %Rrc\n", rc));
931 AssertRC(rc);
932 RTThreadSleep(1);
933 }
934 }
935}
936
937
938/**
939 * Helper for VMM_FLUSH_R0_LOG that does the flushing.
940 *
941 * @param pVM The cross context VM structure.
942 * @param pVCpu The cross context virtual CPU structure of the calling
943 * EMT.
944 * @param pShared The shared logger data.
945 * @param idxBuf The buffer to flush.
946 * @param pDstLogger The destination IPRT logger.
947 */
948static void vmmR3LogReturnFlush(PVM pVM, PVMCPU pVCpu, PVMMR3CPULOGGER pShared, size_t idxBuf, PRTLOGGER pDstLogger)
949{
950 uint32_t const cbToFlush = pShared->aBufs[idxBuf].AuxDesc.offBuf;
951 const char *pszBefore = cbToFlush < 256 ? NULL : "*FLUSH*\n";
952 const char *pszAfter = cbToFlush < 256 ? NULL : "*END*\n";
953
954#if VMMLOGGER_BUFFER_COUNT > 1
955 /*
956 * When we have more than one log buffer, the flusher thread may still be
957 * working on the previous buffer when we get here.
958 */
959 char szBefore[64];
960 if (pShared->cFlushing > 0)
961 {
962 STAM_REL_PROFILE_START(&pShared->StatRaces, a);
963 uint64_t const nsStart = RTTimeNanoTS();
964
965 /* A no-op, but it takes the lock and the hope is that we end up waiting
966 on the flusher to finish up. */
967 RTLogBulkWrite(pDstLogger, NULL, "", 0, NULL);
968 if (pShared->cFlushing != 0)
969 {
970 RTLogBulkWrite(pDstLogger, NULL, "", 0, NULL);
971
972 /* If no luck, go to ring-0 and to proper waiting. */
973 if (pShared->cFlushing != 0)
974 {
975 STAM_REL_COUNTER_INC(&pShared->StatRacesToR0);
976 SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), pVCpu->idCpu, VMMR0_DO_VMMR0_LOG_WAIT_FLUSHED, 0, NULL);
977 }
978 }
979
980 RTStrPrintf(szBefore, sizeof(szBefore), "*%sFLUSH* waited %'RU64 ns\n",
981 pShared->cFlushing == 0 ? "" : " MISORDERED", RTTimeNanoTS() - nsStart);
982 pszBefore = szBefore;
983 STAM_REL_PROFILE_STOP(&pShared->StatRaces, a);
984 }
985#else
986 RT_NOREF(pVM, pVCpu);
987#endif
988
989 RTLogBulkWrite(pDstLogger, pszBefore, pShared->aBufs[idxBuf].pchBufR3, cbToFlush, pszAfter);
990 pShared->aBufs[idxBuf].AuxDesc.fFlushedIndicator = true;
991}
992
993
994/**
995 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output.
996 *
997 * @returns Pointer to the buffer.
998 * @param pVM The cross context VM structure.
999 */
1000VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
1001{
1002 return pVM->vmm.s.szRing0AssertMsg1;
1003}
1004
1005
1006/**
1007 * Returns the VMCPU of the specified virtual CPU.
1008 *
1009 * @returns The VMCPU pointer. NULL if @a idCpu or @a pUVM is invalid.
1010 *
1011 * @param pUVM The user mode VM handle.
1012 * @param idCpu The ID of the virtual CPU.
1013 */
1014VMMR3DECL(PVMCPU) VMMR3GetCpuByIdU(PUVM pUVM, RTCPUID idCpu)
1015{
1016 UVM_ASSERT_VALID_EXT_RETURN(pUVM, NULL);
1017 AssertReturn(idCpu < pUVM->cCpus, NULL);
1018 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, NULL);
1019 return pUVM->pVM->apCpusR3[idCpu];
1020}
1021
1022
1023/**
1024 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output.
1025 *
1026 * @returns Pointer to the buffer.
1027 * @param pVM The cross context VM structure.
1028 */
1029VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
1030{
1031 return pVM->vmm.s.szRing0AssertMsg2;
1032}
1033
1034
1035/**
1036 * Execute state save operation.
1037 *
1038 * @returns VBox status code.
1039 * @param pVM The cross context VM structure.
1040 * @param pSSM SSM operation handle.
1041 */
1042static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
1043{
1044 LogFlow(("vmmR3Save:\n"));
1045
1046 /*
1047 * Save the started/stopped state of all CPUs except 0 as it will always
1048 * be running. This avoids breaking the saved state version. :-)
1049 */
1050 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1051 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(pVM->apCpusR3[i])));
1052
1053 return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */
1054}
1055
1056
1057/**
1058 * Execute state load operation.
1059 *
1060 * @returns VBox status code.
1061 * @param pVM The cross context VM structure.
1062 * @param pSSM SSM operation handle.
1063 * @param uVersion Data layout version.
1064 * @param uPass The data pass.
1065 */
1066static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1067{
1068 LogFlow(("vmmR3Load:\n"));
1069 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1070
1071 /*
1072 * Validate version.
1073 */
1074 if ( uVersion != VMM_SAVED_STATE_VERSION
1075 && uVersion != VMM_SAVED_STATE_VERSION_3_0)
1076 {
1077 AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion));
1078 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1079 }
1080
1081 if (uVersion <= VMM_SAVED_STATE_VERSION_3_0)
1082 {
1083 /* Ignore the stack bottom, stack pointer and stack bits. */
1084 RTRCPTR RCPtrIgnored;
1085 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1086 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1087#ifdef RT_OS_DARWIN
1088 if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0)
1089 && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0)
1090 && SSMR3HandleRevision(pSSM) >= 48858
1091 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86")
1092 || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") )
1093 )
1094 SSMR3Skip(pSSM, 16384);
1095 else
1096 SSMR3Skip(pSSM, 8192);
1097#else
1098 SSMR3Skip(pSSM, 8192);
1099#endif
1100 }
1101
1102 /*
1103 * Restore the VMCPU states. VCPU 0 is always started.
1104 */
1105 VMCPU_SET_STATE(pVM->apCpusR3[0], VMCPUSTATE_STARTED);
1106 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1107 {
1108 bool fStarted;
1109 int rc = SSMR3GetBool(pSSM, &fStarted);
1110 if (RT_FAILURE(rc))
1111 return rc;
1112 VMCPU_SET_STATE(pVM->apCpusR3[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
1113 }
1114
1115 /* terminator */
1116 uint32_t u32;
1117 int rc = SSMR3GetU32(pSSM, &u32);
1118 if (RT_FAILURE(rc))
1119 return rc;
1120 if (u32 != UINT32_MAX)
1121 {
1122 AssertMsgFailed(("u32=%#x\n", u32));
1123 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1124 }
1125 return VINF_SUCCESS;
1126}
1127
1128
1129/**
1130 * Suspends the CPU yielder.
1131 *
1132 * @param pVM The cross context VM structure.
1133 */
1134VMMR3_INT_DECL(void) VMMR3YieldSuspend(PVM pVM)
1135{
1136#if 0 /* pointless when timers doesn't run on EMT */
1137 VMCPU_ASSERT_EMT(pVM->apCpusR3[0]);
1138 if (!pVM->vmm.s.cYieldResumeMillies)
1139 {
1140 uint64_t u64Now = TMTimerGet(pVM, pVM->vmm.s.hYieldTimer);
1141 uint64_t u64Expire = TMTimerGetExpire(pVM, pVM->vmm.s.hYieldTimer);
1142 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1143 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1144 else
1145 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM, pVM->vmm.s.hYieldTimer, u64Expire - u64Now);
1146 TMTimerStop(pVM, pVM->vmm.s.hYieldTimer);
1147 }
1148 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1149#else
1150 RT_NOREF(pVM);
1151#endif
1152}
1153
1154
1155/**
1156 * Stops the CPU yielder.
1157 *
1158 * @param pVM The cross context VM structure.
1159 */
1160VMMR3_INT_DECL(void) VMMR3YieldStop(PVM pVM)
1161{
1162#if 0 /* pointless when timers doesn't run on EMT */
1163 if (!pVM->vmm.s.cYieldResumeMillies)
1164 TMTimerStop(pVM, pVM->vmm.s.hYieldTimer);
1165 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1166 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1167#else
1168 RT_NOREF(pVM);
1169#endif
1170}
1171
1172
1173/**
1174 * Resumes the CPU yielder when it has been a suspended or stopped.
1175 *
1176 * @param pVM The cross context VM structure.
1177 */
1178VMMR3_INT_DECL(void) VMMR3YieldResume(PVM pVM)
1179{
1180#if 0 /* pointless when timers doesn't run on EMT */
1181 if (pVM->vmm.s.cYieldResumeMillies)
1182 {
1183 TMTimerSetMillies(pVM, pVM->vmm.s.hYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1184 pVM->vmm.s.cYieldResumeMillies = 0;
1185 }
1186#else
1187 RT_NOREF(pVM);
1188#endif
1189}
1190
1191
1192#if 0 /* pointless when timers doesn't run on EMT */
1193/**
1194 * @callback_method_impl{FNTMTIMERINT, EMT yielder}
1195 *
1196 * @todo This is a UNI core/thread thing, really... Should be reconsidered.
1197 */
1198static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser)
1199{
1200 NOREF(pvUser);
1201
1202 /*
1203 * This really needs some careful tuning. While we shouldn't be too greedy since
1204 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1205 * because that'll cause us to stop up.
1206 *
1207 * The current logic is to use the default interval when there is no lag worth
1208 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1209 *
1210 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1211 * so the lag is up to date.)
1212 */
1213 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1214 if ( u64Lag < 50000000 /* 50ms */
1215 || ( u64Lag < 1000000000 /* 1s */
1216 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1217 )
1218 {
1219 uint64_t u64Elapsed = RTTimeNanoTS();
1220 pVM->vmm.s.u64LastYield = u64Elapsed;
1221
1222 RTThreadYield();
1223
1224#ifdef LOG_ENABLED
1225 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1226 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1227#endif
1228 }
1229 TMTimerSetMillies(pVM, hTimer, pVM->vmm.s.cYieldEveryMillies);
1230}
1231#endif
1232
1233
1234/**
1235 * Executes guest code (Intel VT-x and AMD-V).
1236 *
1237 * @param pVM The cross context VM structure.
1238 * @param pVCpu The cross context virtual CPU structure.
1239 */
1240VMMR3_INT_DECL(int) VMMR3HmRunGC(PVM pVM, PVMCPU pVCpu)
1241{
1242 Log2(("VMMR3HmRunGC: (cs:rip=%04x:%RX64)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1243
1244 for (;;)
1245 {
1246 int rc;
1247 do
1248 {
1249#ifdef NO_SUPCALLR0VMM
1250 rc = VERR_GENERAL_FAILURE;
1251#else
1252 rc = SUPR3CallVMMR0Fast(VMCC_GET_VMR0_FOR_CALL(pVM), VMMR0_DO_HM_RUN, pVCpu->idCpu);
1253 if (RT_LIKELY(rc == VINF_SUCCESS))
1254 rc = pVCpu->vmm.s.iLastGZRc;
1255#endif
1256 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1257
1258#if 0 /** @todo triggers too often */
1259 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TO_R3));
1260#endif
1261
1262 /*
1263 * Flush the logs
1264 */
1265#ifdef LOG_ENABLED
1266 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
1267#endif
1268 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
1269 if (rc != VINF_VMM_CALL_HOST)
1270 {
1271 Log2(("VMMR3HmRunGC: returns %Rrc (cs:rip=%04x:%RX64)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1272 return rc;
1273 }
1274 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1275 if (RT_FAILURE(rc))
1276 return rc;
1277 /* Resume R0 */
1278 }
1279}
1280
1281
1282/**
1283 * Perform one of the fast I/O control VMMR0 operation.
1284 *
1285 * @returns VBox strict status code.
1286 * @param pVM The cross context VM structure.
1287 * @param pVCpu The cross context virtual CPU structure.
1288 * @param enmOperation The operation to perform.
1289 */
1290VMMR3_INT_DECL(VBOXSTRICTRC) VMMR3CallR0EmtFast(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation)
1291{
1292 for (;;)
1293 {
1294 VBOXSTRICTRC rcStrict;
1295 do
1296 {
1297#ifdef NO_SUPCALLR0VMM
1298 rcStrict = VERR_GENERAL_FAILURE;
1299#else
1300 rcStrict = SUPR3CallVMMR0Fast(VMCC_GET_VMR0_FOR_CALL(pVM), enmOperation, pVCpu->idCpu);
1301 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
1302 rcStrict = pVCpu->vmm.s.iLastGZRc;
1303#endif
1304 } while (rcStrict == VINF_EM_RAW_INTERRUPT_HYPER);
1305
1306 /*
1307 * Flush the logs
1308 */
1309#ifdef LOG_ENABLED
1310 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
1311#endif
1312 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
1313 if (rcStrict != VINF_VMM_CALL_HOST)
1314 return rcStrict;
1315 int rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1316 if (RT_FAILURE(rc))
1317 return rc;
1318 /* Resume R0 */
1319 }
1320}
1321
1322
1323/**
1324 * VCPU worker for VMMR3SendStartupIpi.
1325 *
1326 * @param pVM The cross context VM structure.
1327 * @param idCpu Virtual CPU to perform SIPI on.
1328 * @param uVector The SIPI vector.
1329 */
1330static DECLCALLBACK(int) vmmR3SendStarupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1331{
1332 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1333 VMCPU_ASSERT_EMT(pVCpu);
1334
1335 /*
1336 * In the INIT state, the target CPU is only responsive to an SIPI.
1337 * This is also true for when when the CPU is in VMX non-root mode.
1338 *
1339 * See AMD spec. 16.5 "Interprocessor Interrupts (IPI)".
1340 * See Intel spec. 26.6.2 "Activity State".
1341 */
1342 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1343 return VINF_SUCCESS;
1344
1345 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1346#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1347 if (CPUMIsGuestInVmxRootMode(pCtx))
1348 {
1349 /* If the CPU is in VMX non-root mode we must cause a VM-exit. */
1350 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1351 return VBOXSTRICTRC_TODO(IEMExecVmxVmexitStartupIpi(pVCpu, uVector));
1352
1353 /* If the CPU is in VMX root mode (and not in VMX non-root mode) SIPIs are blocked. */
1354 return VINF_SUCCESS;
1355 }
1356#endif
1357
1358 pCtx->cs.Sel = uVector << 8;
1359 pCtx->cs.ValidSel = uVector << 8;
1360 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1361 pCtx->cs.u64Base = uVector << 12;
1362 pCtx->cs.u32Limit = UINT32_C(0x0000ffff);
1363 pCtx->rip = 0;
1364
1365 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", idCpu, uVector));
1366
1367# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1368 EMSetState(pVCpu, EMSTATE_HALTED);
1369 return VINF_EM_RESCHEDULE;
1370# else /* And if we go the VMCPU::enmState way it can stay here. */
1371 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1372 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1373 return VINF_SUCCESS;
1374# endif
1375}
1376
1377
1378/**
1379 * VCPU worker for VMMR3SendInitIpi.
1380 *
1381 * @returns VBox status code.
1382 * @param pVM The cross context VM structure.
1383 * @param idCpu Virtual CPU to perform SIPI on.
1384 */
1385static DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1386{
1387 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1388 VMCPU_ASSERT_EMT(pVCpu);
1389
1390 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1391
1392 /** @todo r=ramshankar: We should probably block INIT signal when the CPU is in
1393 * wait-for-SIPI state. Verify. */
1394
1395 /* If the CPU is in VMX non-root mode, INIT signals cause VM-exits. */
1396#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1397 PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1398 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1399 return VBOXSTRICTRC_TODO(IEMExecVmxVmexit(pVCpu, VMX_EXIT_INIT_SIGNAL, 0 /* uExitQual */));
1400#endif
1401
1402 /** @todo Figure out how to handle a SVM nested-guest intercepts here for INIT
1403 * IPI (e.g. SVM_EXIT_INIT). */
1404
1405 PGMR3ResetCpu(pVM, pVCpu);
1406 PDMR3ResetCpu(pVCpu); /* Only clears pending interrupts force flags */
1407 APICR3InitIpi(pVCpu);
1408 TRPMR3ResetCpu(pVCpu);
1409 CPUMR3ResetCpu(pVM, pVCpu);
1410 EMR3ResetCpu(pVCpu);
1411 HMR3ResetCpu(pVCpu);
1412 NEMR3ResetCpu(pVCpu, true /*fInitIpi*/);
1413
1414 /* This will trickle up on the target EMT. */
1415 return VINF_EM_WAIT_SIPI;
1416}
1417
1418
1419/**
1420 * Sends a Startup IPI to the virtual CPU by setting CS:EIP into
1421 * vector-dependent state and unhalting processor.
1422 *
1423 * @param pVM The cross context VM structure.
1424 * @param idCpu Virtual CPU to perform SIPI on.
1425 * @param uVector SIPI vector.
1426 */
1427VMMR3_INT_DECL(void) VMMR3SendStartupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1428{
1429 AssertReturnVoid(idCpu < pVM->cCpus);
1430
1431 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendStarupIpi, 3, pVM, idCpu, uVector);
1432 AssertRC(rc);
1433}
1434
1435
1436/**
1437 * Sends init IPI to the virtual CPU.
1438 *
1439 * @param pVM The cross context VM structure.
1440 * @param idCpu Virtual CPU to perform int IPI on.
1441 */
1442VMMR3_INT_DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1443{
1444 AssertReturnVoid(idCpu < pVM->cCpus);
1445
1446 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1447 AssertRC(rc);
1448}
1449
1450
1451/**
1452 * Registers the guest memory range that can be used for patching.
1453 *
1454 * @returns VBox status code.
1455 * @param pVM The cross context VM structure.
1456 * @param pPatchMem Patch memory range.
1457 * @param cbPatchMem Size of the memory range.
1458 */
1459VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1460{
1461 VM_ASSERT_EMT(pVM);
1462 if (HMIsEnabled(pVM))
1463 return HMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1464
1465 return VERR_NOT_SUPPORTED;
1466}
1467
1468
1469/**
1470 * Deregisters the guest memory range that can be used for patching.
1471 *
1472 * @returns VBox status code.
1473 * @param pVM The cross context VM structure.
1474 * @param pPatchMem Patch memory range.
1475 * @param cbPatchMem Size of the memory range.
1476 */
1477VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1478{
1479 if (HMIsEnabled(pVM))
1480 return HMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1481
1482 return VINF_SUCCESS;
1483}
1484
1485
1486/**
1487 * Common recursion handler for the other EMTs.
1488 *
1489 * @returns Strict VBox status code.
1490 * @param pVM The cross context VM structure.
1491 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1492 * @param rcStrict Current status code to be combined with the one
1493 * from this recursion and returned.
1494 */
1495static VBOXSTRICTRC vmmR3EmtRendezvousCommonRecursion(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rcStrict)
1496{
1497 int rc2;
1498
1499 /*
1500 * We wait here while the initiator of this recursion reconfigures
1501 * everything. The last EMT to get in signals the initiator.
1502 */
1503 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) == pVM->cCpus)
1504 {
1505 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1506 AssertLogRelRC(rc2);
1507 }
1508
1509 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPush, RT_INDEFINITE_WAIT);
1510 AssertLogRelRC(rc2);
1511
1512 /*
1513 * Do the normal rendezvous processing.
1514 */
1515 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1516 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1517
1518 /*
1519 * Wait for the initiator to restore everything.
1520 */
1521 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPop, RT_INDEFINITE_WAIT);
1522 AssertLogRelRC(rc2);
1523
1524 /*
1525 * Last thread out of here signals the initiator.
1526 */
1527 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) == pVM->cCpus)
1528 {
1529 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1530 AssertLogRelRC(rc2);
1531 }
1532
1533 /*
1534 * Merge status codes and return.
1535 */
1536 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
1537 if ( rcStrict2 != VINF_SUCCESS
1538 && ( rcStrict == VINF_SUCCESS
1539 || rcStrict > rcStrict2))
1540 rcStrict = rcStrict2;
1541 return rcStrict;
1542}
1543
1544
1545/**
1546 * Count returns and have the last non-caller EMT wake up the caller.
1547 *
1548 * @returns VBox strict informational status code for EM scheduling. No failures
1549 * will be returned here, those are for the caller only.
1550 *
1551 * @param pVM The cross context VM structure.
1552 * @param rcStrict The current accumulated recursive status code,
1553 * to be merged with i32RendezvousStatus and
1554 * returned.
1555 */
1556DECL_FORCE_INLINE(VBOXSTRICTRC) vmmR3EmtRendezvousNonCallerReturn(PVM pVM, VBOXSTRICTRC rcStrict)
1557{
1558 VBOXSTRICTRC rcStrict2 = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus);
1559
1560 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1561 if (cReturned == pVM->cCpus - 1U)
1562 {
1563 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1564 AssertLogRelRC(rc);
1565 }
1566
1567 /*
1568 * Merge the status codes, ignoring error statuses in this code path.
1569 */
1570 AssertLogRelMsgReturn( rcStrict2 <= VINF_SUCCESS
1571 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1572 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)),
1573 VERR_IPE_UNEXPECTED_INFO_STATUS);
1574
1575 if (RT_SUCCESS(rcStrict2))
1576 {
1577 if ( rcStrict2 != VINF_SUCCESS
1578 && ( rcStrict == VINF_SUCCESS
1579 || rcStrict > rcStrict2))
1580 rcStrict = rcStrict2;
1581 }
1582 return rcStrict;
1583}
1584
1585
1586/**
1587 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1588 *
1589 * @returns VBox strict informational status code for EM scheduling. No failures
1590 * will be returned here, those are for the caller only. When
1591 * fIsCaller is set, VINF_SUCCESS is always returned.
1592 *
1593 * @param pVM The cross context VM structure.
1594 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1595 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1596 * not.
1597 * @param fFlags The flags.
1598 * @param pfnRendezvous The callback.
1599 * @param pvUser The user argument for the callback.
1600 */
1601static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1602 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1603{
1604 int rc;
1605 VBOXSTRICTRC rcStrictRecursion = VINF_SUCCESS;
1606
1607 /*
1608 * Enter, the last EMT triggers the next callback phase.
1609 */
1610 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1611 if (cEntered != pVM->cCpus)
1612 {
1613 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1614 {
1615 /* Wait for our turn. */
1616 for (;;)
1617 {
1618 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1619 AssertLogRelRC(rc);
1620 if (!pVM->vmm.s.fRendezvousRecursion)
1621 break;
1622 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1623 }
1624 }
1625 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1626 {
1627 /* Wait for the last EMT to arrive and wake everyone up. */
1628 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1629 AssertLogRelRC(rc);
1630 Assert(!pVM->vmm.s.fRendezvousRecursion);
1631 }
1632 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1633 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1634 {
1635 /* Wait for our turn. */
1636 for (;;)
1637 {
1638 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1639 AssertLogRelRC(rc);
1640 if (!pVM->vmm.s.fRendezvousRecursion)
1641 break;
1642 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1643 }
1644 }
1645 else
1646 {
1647 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1648
1649 /*
1650 * The execute once is handled specially to optimize the code flow.
1651 *
1652 * The last EMT to arrive will perform the callback and the other
1653 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1654 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1655 * returns, that EMT will initiate the normal return sequence.
1656 */
1657 if (!fIsCaller)
1658 {
1659 for (;;)
1660 {
1661 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1662 AssertLogRelRC(rc);
1663 if (!pVM->vmm.s.fRendezvousRecursion)
1664 break;
1665 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1666 }
1667
1668 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1669 }
1670 return VINF_SUCCESS;
1671 }
1672 }
1673 else
1674 {
1675 /*
1676 * All EMTs are waiting, clear the FF and take action according to the
1677 * execution method.
1678 */
1679 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1680
1681 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1682 {
1683 /* Wake up everyone. */
1684 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1685 AssertLogRelRC(rc);
1686 }
1687 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1688 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1689 {
1690 /* Figure out who to wake up and wake it up. If it's ourself, then
1691 it's easy otherwise wait for our turn. */
1692 VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1693 ? 0
1694 : pVM->cCpus - 1U;
1695 if (pVCpu->idCpu != iFirst)
1696 {
1697 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]);
1698 AssertLogRelRC(rc);
1699 for (;;)
1700 {
1701 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1702 AssertLogRelRC(rc);
1703 if (!pVM->vmm.s.fRendezvousRecursion)
1704 break;
1705 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1706 }
1707 }
1708 }
1709 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1710 }
1711
1712
1713 /*
1714 * Do the callback and update the status if necessary.
1715 */
1716 if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1717 || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) )
1718 {
1719 VBOXSTRICTRC rcStrict2 = pfnRendezvous(pVM, pVCpu, pvUser);
1720 if (rcStrict2 != VINF_SUCCESS)
1721 {
1722 AssertLogRelMsg( rcStrict2 <= VINF_SUCCESS
1723 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1724 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
1725 int32_t i32RendezvousStatus;
1726 do
1727 {
1728 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1729 if ( rcStrict2 == i32RendezvousStatus
1730 || RT_FAILURE(i32RendezvousStatus)
1731 || ( i32RendezvousStatus != VINF_SUCCESS
1732 && rcStrict2 > i32RendezvousStatus))
1733 break;
1734 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict2), i32RendezvousStatus));
1735 }
1736 }
1737
1738 /*
1739 * Increment the done counter and take action depending on whether we're
1740 * the last to finish callback execution.
1741 */
1742 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1743 if ( cDone != pVM->cCpus
1744 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1745 {
1746 /* Signal the next EMT? */
1747 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1748 {
1749 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1750 AssertLogRelRC(rc);
1751 }
1752 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1753 {
1754 Assert(cDone == pVCpu->idCpu + 1U);
1755 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]);
1756 AssertLogRelRC(rc);
1757 }
1758 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1759 {
1760 Assert(pVM->cCpus - cDone == pVCpu->idCpu);
1761 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]);
1762 AssertLogRelRC(rc);
1763 }
1764
1765 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1766 if (!fIsCaller)
1767 {
1768 for (;;)
1769 {
1770 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1771 AssertLogRelRC(rc);
1772 if (!pVM->vmm.s.fRendezvousRecursion)
1773 break;
1774 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1775 }
1776 }
1777 }
1778 else
1779 {
1780 /* Callback execution is all done, tell the rest to return. */
1781 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1782 AssertLogRelRC(rc);
1783 }
1784
1785 if (!fIsCaller)
1786 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1787 return rcStrictRecursion;
1788}
1789
1790
1791/**
1792 * Called in response to VM_FF_EMT_RENDEZVOUS.
1793 *
1794 * @returns VBox strict status code - EM scheduling. No errors will be returned
1795 * here, nor will any non-EM scheduling status codes be returned.
1796 *
1797 * @param pVM The cross context VM structure.
1798 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1799 *
1800 * @thread EMT
1801 */
1802VMMR3_INT_DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1803{
1804 Assert(!pVCpu->vmm.s.fInRendezvous);
1805 Log(("VMMR3EmtRendezvousFF: EMT%#u\n", pVCpu->idCpu));
1806 pVCpu->vmm.s.fInRendezvous = true;
1807 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1808 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1809 pVCpu->vmm.s.fInRendezvous = false;
1810 Log(("VMMR3EmtRendezvousFF: EMT%#u returns %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
1811 return VBOXSTRICTRC_TODO(rcStrict);
1812}
1813
1814
1815/**
1816 * Helper for resetting an single wakeup event sempahore.
1817 *
1818 * @returns VERR_TIMEOUT on success, RTSemEventWait status otherwise.
1819 * @param hEvt The event semaphore to reset.
1820 */
1821static int vmmR3HlpResetEvent(RTSEMEVENT hEvt)
1822{
1823 for (uint32_t cLoops = 0; ; cLoops++)
1824 {
1825 int rc = RTSemEventWait(hEvt, 0 /*cMsTimeout*/);
1826 if (rc != VINF_SUCCESS || cLoops > _4K)
1827 return rc;
1828 }
1829}
1830
1831
1832/**
1833 * Worker for VMMR3EmtRendezvous that handles recursion.
1834 *
1835 * @returns VBox strict status code. This will be the first error,
1836 * VINF_SUCCESS, or an EM scheduling status code.
1837 *
1838 * @param pVM The cross context VM structure.
1839 * @param pVCpu The cross context virtual CPU structure of the
1840 * calling EMT.
1841 * @param fFlags Flags indicating execution methods. See
1842 * grp_VMMR3EmtRendezvous_fFlags.
1843 * @param pfnRendezvous The callback.
1844 * @param pvUser User argument for the callback.
1845 *
1846 * @thread EMT(pVCpu)
1847 */
1848static VBOXSTRICTRC vmmR3EmtRendezvousRecursive(PVM pVM, PVMCPU pVCpu, uint32_t fFlags,
1849 PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1850{
1851 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d\n", fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions));
1852 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
1853 Assert(pVCpu->vmm.s.fInRendezvous);
1854
1855 /*
1856 * Save the current state.
1857 */
1858 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
1859 uint32_t const cParentDone = pVM->vmm.s.cRendezvousEmtsDone;
1860 int32_t const iParentStatus = pVM->vmm.s.i32RendezvousStatus;
1861 PFNVMMEMTRENDEZVOUS const pfnParent = pVM->vmm.s.pfnRendezvous;
1862 void * const pvParentUser = pVM->vmm.s.pvRendezvousUser;
1863
1864 /*
1865 * Check preconditions and save the current state.
1866 */
1867 AssertReturn( (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1868 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1869 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
1870 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
1871 VERR_INTERNAL_ERROR);
1872 AssertReturn(pVM->vmm.s.cRendezvousEmtsEntered == pVM->cCpus, VERR_INTERNAL_ERROR_2);
1873 AssertReturn(pVM->vmm.s.cRendezvousEmtsReturned == 0, VERR_INTERNAL_ERROR_3);
1874
1875 /*
1876 * Reset the recursion prep and pop semaphores.
1877 */
1878 int rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
1879 AssertLogRelRCReturn(rc, rc);
1880 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
1881 AssertLogRelRCReturn(rc, rc);
1882 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1883 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
1884 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1885 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
1886
1887 /*
1888 * Usher the other thread into the recursion routine.
1889 */
1890 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush, 0);
1891 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, true);
1892
1893 uint32_t cLeft = pVM->cCpus - (cParentDone + 1U);
1894 if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1895 while (cLeft-- > 0)
1896 {
1897 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1898 AssertLogRelRC(rc);
1899 }
1900 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1901 {
1902 Assert(cLeft == pVM->cCpus - (pVCpu->idCpu + 1U));
1903 for (VMCPUID iCpu = pVCpu->idCpu + 1U; iCpu < pVM->cCpus; iCpu++)
1904 {
1905 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu]);
1906 AssertLogRelRC(rc);
1907 }
1908 }
1909 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1910 {
1911 Assert(cLeft == pVCpu->idCpu);
1912 for (VMCPUID iCpu = pVCpu->idCpu; iCpu > 0; iCpu--)
1913 {
1914 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu - 1U]);
1915 AssertLogRelRC(rc);
1916 }
1917 }
1918 else
1919 AssertLogRelReturn((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
1920 VERR_INTERNAL_ERROR_4);
1921
1922 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1923 AssertLogRelRC(rc);
1924 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1925 AssertLogRelRC(rc);
1926
1927
1928 /*
1929 * Wait for the EMTs to wake up and get out of the parent rendezvous code.
1930 */
1931 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) != pVM->cCpus)
1932 {
1933 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPushCaller, RT_INDEFINITE_WAIT);
1934 AssertLogRelRC(rc);
1935 }
1936
1937 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, false);
1938
1939 /*
1940 * Clear the slate and setup the new rendezvous.
1941 */
1942 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1943 {
1944 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
1945 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1946 }
1947 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1948 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1949 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1950 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1951
1952 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1953 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1954 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1955 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1956 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1957 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1958 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1959 ASMAtomicIncU32(&pVM->vmm.s.cRendezvousRecursions);
1960
1961 /*
1962 * We're ready to go now, do normal rendezvous processing.
1963 */
1964 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
1965 AssertLogRelRC(rc);
1966
1967 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /*fIsCaller*/, fFlags, pfnRendezvous, pvUser);
1968
1969 /*
1970 * The caller waits for the other EMTs to be done, return and waiting on the
1971 * pop semaphore.
1972 */
1973 for (;;)
1974 {
1975 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1976 AssertLogRelRC(rc);
1977 if (!pVM->vmm.s.fRendezvousRecursion)
1978 break;
1979 rcStrict = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict);
1980 }
1981
1982 /*
1983 * Get the return code and merge it with the above recursion status.
1984 */
1985 VBOXSTRICTRC rcStrict2 = pVM->vmm.s.i32RendezvousStatus;
1986 if ( rcStrict2 != VINF_SUCCESS
1987 && ( rcStrict == VINF_SUCCESS
1988 || rcStrict > rcStrict2))
1989 rcStrict = rcStrict2;
1990
1991 /*
1992 * Restore the parent rendezvous state.
1993 */
1994 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1995 {
1996 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
1997 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1998 }
1999 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2000 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
2001 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
2002 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2003
2004 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, pVM->cCpus);
2005 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
2006 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, cParentDone);
2007 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, iParentStatus);
2008 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fParentFlags);
2009 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvParentUser);
2010 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnParent);
2011
2012 /*
2013 * Usher the other EMTs back to their parent recursion routine, waiting
2014 * for them to all get there before we return (makes sure they've been
2015 * scheduled and are past the pop event sem, see below).
2016 */
2017 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop, 0);
2018 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
2019 AssertLogRelRC(rc);
2020
2021 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) != pVM->cCpus)
2022 {
2023 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPopCaller, RT_INDEFINITE_WAIT);
2024 AssertLogRelRC(rc);
2025 }
2026
2027 /*
2028 * We must reset the pop semaphore on the way out (doing the pop caller too,
2029 * just in case). The parent may be another recursion.
2030 */
2031 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop); AssertLogRelRC(rc);
2032 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2033
2034 ASMAtomicDecU32(&pVM->vmm.s.cRendezvousRecursions);
2035
2036 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d returns %Rrc\n",
2037 fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions, VBOXSTRICTRC_VAL(rcStrict)));
2038 return rcStrict;
2039}
2040
2041
2042/**
2043 * EMT rendezvous.
2044 *
2045 * Gathers all the EMTs and execute some code on each of them, either in a one
2046 * by one fashion or all at once.
2047 *
2048 * @returns VBox strict status code. This will be the first error,
2049 * VINF_SUCCESS, or an EM scheduling status code.
2050 *
2051 * @retval VERR_DEADLOCK if recursion is attempted using a rendezvous type that
2052 * doesn't support it or if the recursion is too deep.
2053 *
2054 * @param pVM The cross context VM structure.
2055 * @param fFlags Flags indicating execution methods. See
2056 * grp_VMMR3EmtRendezvous_fFlags. The one-by-one,
2057 * descending and ascending rendezvous types support
2058 * recursion from inside @a pfnRendezvous.
2059 * @param pfnRendezvous The callback.
2060 * @param pvUser User argument for the callback.
2061 *
2062 * @thread Any.
2063 */
2064VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
2065{
2066 /*
2067 * Validate input.
2068 */
2069 AssertReturn(pVM, VERR_INVALID_VM_HANDLE);
2070 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
2071 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2072 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
2073 AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
2074 || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE
2075 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE),
2076 ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK));
2077
2078 VBOXSTRICTRC rcStrict;
2079 PVMCPU pVCpu = VMMGetCpu(pVM);
2080 if (!pVCpu)
2081 {
2082 /*
2083 * Forward the request to an EMT thread.
2084 */
2085 Log(("VMMR3EmtRendezvous: %#x non-EMT\n", fFlags));
2086 if (!(fFlags & VMMEMTRENDEZVOUS_FLAGS_PRIORITY))
2087 rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
2088 else
2089 rcStrict = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
2090 Log(("VMMR3EmtRendezvous: %#x non-EMT returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
2091 }
2092 else if ( pVM->cCpus == 1
2093 || ( pVM->enmVMState == VMSTATE_DESTROYING
2094 && VMR3GetActiveEmts(pVM->pUVM) < pVM->cCpus ) )
2095 {
2096 /*
2097 * Shortcut for the single EMT case.
2098 *
2099 * We also ends up here if EMT(0) (or others) tries to issue a rendezvous
2100 * during vmR3Destroy after other emulation threads have started terminating.
2101 */
2102 if (!pVCpu->vmm.s.fInRendezvous)
2103 {
2104 Log(("VMMR3EmtRendezvous: %#x EMT (uni)\n", fFlags));
2105 pVCpu->vmm.s.fInRendezvous = true;
2106 pVM->vmm.s.fRendezvousFlags = fFlags;
2107 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
2108 pVCpu->vmm.s.fInRendezvous = false;
2109 }
2110 else
2111 {
2112 /* Recursion. Do the same checks as in the SMP case. */
2113 Log(("VMMR3EmtRendezvous: %#x EMT (uni), recursion depth=%d\n", fFlags, pVM->vmm.s.cRendezvousRecursions));
2114 uint32_t fType = pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK;
2115 AssertLogRelReturn( !pVCpu->vmm.s.fInRendezvous
2116 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
2117 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2118 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
2119 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
2120 , VERR_DEADLOCK);
2121
2122 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
2123 pVM->vmm.s.cRendezvousRecursions++;
2124 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
2125 pVM->vmm.s.fRendezvousFlags = fFlags;
2126
2127 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
2128
2129 pVM->vmm.s.fRendezvousFlags = fParentFlags;
2130 pVM->vmm.s.cRendezvousRecursions--;
2131 }
2132 Log(("VMMR3EmtRendezvous: %#x EMT (uni) returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
2133 }
2134 else
2135 {
2136 /*
2137 * Spin lock. If busy, check for recursion, if not recursing wait for
2138 * the other EMT to finish while keeping a lookout for the RENDEZVOUS FF.
2139 */
2140 int rc;
2141 rcStrict = VINF_SUCCESS;
2142 if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)))
2143 {
2144 /* Allow recursion in some cases. */
2145 if ( pVCpu->vmm.s.fInRendezvous
2146 && ( (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
2147 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2148 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
2149 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
2150 ))
2151 return VBOXSTRICTRC_TODO(vmmR3EmtRendezvousRecursive(pVM, pVCpu, fFlags, pfnRendezvous, pvUser));
2152
2153 AssertLogRelMsgReturn(!pVCpu->vmm.s.fInRendezvous, ("fRendezvousFlags=%#x\n", pVM->vmm.s.fRendezvousFlags),
2154 VERR_DEADLOCK);
2155
2156 Log(("VMMR3EmtRendezvous: %#x EMT#%u, waiting for lock...\n", fFlags, pVCpu->idCpu));
2157 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
2158 {
2159 if (VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS))
2160 {
2161 rc = VMMR3EmtRendezvousFF(pVM, pVCpu);
2162 if ( rc != VINF_SUCCESS
2163 && ( rcStrict == VINF_SUCCESS
2164 || rcStrict > rc))
2165 rcStrict = rc;
2166 /** @todo Perhaps deal with termination here? */
2167 }
2168 ASMNopPause();
2169 }
2170 }
2171
2172 Log(("VMMR3EmtRendezvous: %#x EMT#%u\n", fFlags, pVCpu->idCpu));
2173 Assert(!VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS));
2174 Assert(!pVCpu->vmm.s.fInRendezvous);
2175 pVCpu->vmm.s.fInRendezvous = true;
2176
2177 /*
2178 * Clear the slate and setup the rendezvous. This is a semaphore ping-pong orgy. :-)
2179 */
2180 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2181 {
2182 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0);
2183 AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2184 }
2185 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2186 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
2187 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
2188 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2189 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
2190 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
2191 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
2192 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
2193 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
2194 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
2195 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
2196
2197 /*
2198 * Set the FF and poke the other EMTs.
2199 */
2200 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
2201 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
2202
2203 /*
2204 * Do the same ourselves.
2205 */
2206 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
2207
2208 /*
2209 * The caller waits for the other EMTs to be done and return before doing
2210 * the cleanup. This makes away with wakeup / reset races we would otherwise
2211 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
2212 */
2213 for (;;)
2214 {
2215 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
2216 AssertLogRelRC(rc);
2217 if (!pVM->vmm.s.fRendezvousRecursion)
2218 break;
2219 rcStrict2 = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict2);
2220 }
2221
2222 /*
2223 * Get the return code and clean up a little bit.
2224 */
2225 VBOXSTRICTRC rcStrict3 = pVM->vmm.s.i32RendezvousStatus;
2226 ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous);
2227
2228 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
2229 pVCpu->vmm.s.fInRendezvous = false;
2230
2231 /*
2232 * Merge rcStrict, rcStrict2 and rcStrict3.
2233 */
2234 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
2235 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
2236 if ( rcStrict2 != VINF_SUCCESS
2237 && ( rcStrict == VINF_SUCCESS
2238 || rcStrict > rcStrict2))
2239 rcStrict = rcStrict2;
2240 if ( rcStrict3 != VINF_SUCCESS
2241 && ( rcStrict == VINF_SUCCESS
2242 || rcStrict > rcStrict3))
2243 rcStrict = rcStrict3;
2244 Log(("VMMR3EmtRendezvous: %#x EMT#%u returns %Rrc\n", fFlags, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
2245 }
2246
2247 AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS
2248 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
2249 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)),
2250 VERR_IPE_UNEXPECTED_INFO_STATUS);
2251 return VBOXSTRICTRC_VAL(rcStrict);
2252}
2253
2254
2255/**
2256 * Interface for vmR3SetHaltMethodU.
2257 *
2258 * @param pVCpu The cross context virtual CPU structure of the
2259 * calling EMT.
2260 * @param fMayHaltInRing0 The new state.
2261 * @param cNsSpinBlockThreshold The spin-vs-blocking threashold.
2262 * @thread EMT(pVCpu)
2263 *
2264 * @todo Move the EMT handling to VMM (or EM). I soooooo regret that VM
2265 * component.
2266 */
2267VMMR3_INT_DECL(void) VMMR3SetMayHaltInRing0(PVMCPU pVCpu, bool fMayHaltInRing0, uint32_t cNsSpinBlockThreshold)
2268{
2269 LogFlow(("VMMR3SetMayHaltInRing0(#%u, %d, %u)\n", pVCpu->idCpu, fMayHaltInRing0, cNsSpinBlockThreshold));
2270 pVCpu->vmm.s.fMayHaltInRing0 = fMayHaltInRing0;
2271 pVCpu->vmm.s.cNsSpinBlockThreshold = cNsSpinBlockThreshold;
2272}
2273
2274
2275/**
2276 * Read from the ring 0 jump buffer stack.
2277 *
2278 * @returns VBox status code.
2279 *
2280 * @param pVM The cross context VM structure.
2281 * @param idCpu The ID of the source CPU context (for the address).
2282 * @param R0Addr Where to start reading.
2283 * @param pvBuf Where to store the data we've read.
2284 * @param cbRead The number of bytes to read.
2285 */
2286VMMR3_INT_DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead)
2287{
2288 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
2289 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
2290 AssertReturn(cbRead < ~(size_t)0 / 2, VERR_INVALID_PARAMETER);
2291
2292 int rc;
2293#ifdef VMM_R0_SWITCH_STACK
2294 RTHCUINTPTR off = R0Addr - MMHyperCCToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
2295#else
2296 RTHCUINTPTR off = pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - (pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - R0Addr);
2297#endif
2298 if ( off < VMM_STACK_SIZE
2299 && off + cbRead <= VMM_STACK_SIZE)
2300 {
2301 memcpy(pvBuf, &pVCpu->vmm.s.pbEMTStackR3[off], cbRead);
2302 rc = VINF_SUCCESS;
2303 }
2304 else
2305 rc = VERR_INVALID_POINTER;
2306
2307 /* Supply the setjmp return RIP/EIP. */
2308 if ( pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation + sizeof(RTR0UINTPTR) > R0Addr
2309 && pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation < R0Addr + cbRead)
2310 {
2311 uint8_t const *pbSrc = (uint8_t const *)&pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcValue;
2312 size_t cbSrc = sizeof(pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcValue);
2313 size_t offDst = 0;
2314 if (R0Addr < pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation)
2315 offDst = pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation - R0Addr;
2316 else if (R0Addr > pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation)
2317 {
2318 size_t offSrc = R0Addr - pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation;
2319 Assert(offSrc < cbSrc);
2320 pbSrc -= offSrc;
2321 cbSrc -= offSrc;
2322 }
2323 if (cbSrc > cbRead - offDst)
2324 cbSrc = cbRead - offDst;
2325 memcpy((uint8_t *)pvBuf + offDst, pbSrc, cbSrc);
2326
2327 if (cbSrc == cbRead)
2328 rc = VINF_SUCCESS;
2329 }
2330
2331 return rc;
2332}
2333
2334
2335/**
2336 * Used by the DBGF stack unwinder to initialize the register state.
2337 *
2338 * @param pUVM The user mode VM handle.
2339 * @param idCpu The ID of the CPU being unwound.
2340 * @param pState The unwind state to initialize.
2341 */
2342VMMR3_INT_DECL(void) VMMR3InitR0StackUnwindState(PUVM pUVM, VMCPUID idCpu, struct RTDBGUNWINDSTATE *pState)
2343{
2344 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, idCpu);
2345 AssertReturnVoid(pVCpu);
2346
2347 /*
2348 * Locate the resume point on the stack.
2349 */
2350#ifdef VMM_R0_SWITCH_STACK
2351 uintptr_t off = pVCpu->vmm.s.CallRing3JmpBufR0.SpResume - MMHyperCCToR0(pVCpu->pVMR3, pVCpu->vmm.s.pbEMTStackR3);
2352 AssertReturnVoid(off < VMM_STACK_SIZE);
2353#else
2354 uintptr_t off = 0;
2355#endif
2356
2357#ifdef RT_ARCH_AMD64
2358 /*
2359 * This code must match the .resume stuff in VMMR0JmpA-amd64.asm exactly.
2360 */
2361# ifdef VBOX_STRICT
2362 Assert(*(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off] == UINT32_C(0x7eadf00d));
2363 off += 8; /* RESUME_MAGIC */
2364# endif
2365# ifdef RT_OS_WINDOWS
2366 off += 0xa0; /* XMM6 thru XMM15 */
2367# endif
2368 pState->u.x86.uRFlags = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2369 off += 8;
2370 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2371 off += 8;
2372# ifdef RT_OS_WINDOWS
2373 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2374 off += 8;
2375 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2376 off += 8;
2377# endif
2378 pState->u.x86.auRegs[X86_GREG_x12] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2379 off += 8;
2380 pState->u.x86.auRegs[X86_GREG_x13] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2381 off += 8;
2382 pState->u.x86.auRegs[X86_GREG_x14] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2383 off += 8;
2384 pState->u.x86.auRegs[X86_GREG_x15] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2385 off += 8;
2386 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2387 off += 8;
2388 pState->uPc = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2389 off += 8;
2390
2391#elif defined(RT_ARCH_X86)
2392 /*
2393 * This code must match the .resume stuff in VMMR0JmpA-x86.asm exactly.
2394 */
2395# ifdef VBOX_STRICT
2396 Assert(*(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off] == UINT32_C(0x7eadf00d));
2397 off += 4; /* RESUME_MAGIC */
2398# endif
2399 pState->u.x86.uRFlags = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2400 off += 4;
2401 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2402 off += 4;
2403 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2404 off += 4;
2405 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2406 off += 4;
2407 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2408 off += 4;
2409 pState->uPc = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2410 off += 4;
2411#else
2412# error "Port me"
2413#endif
2414
2415 /*
2416 * This is all we really need here, though the above helps if the assembly
2417 * doesn't contain unwind info (currently only on win/64, so that is useful).
2418 */
2419 pState->u.x86.auRegs[X86_GREG_xBP] = pVCpu->vmm.s.CallRing3JmpBufR0.SavedEbp;
2420 pState->u.x86.auRegs[X86_GREG_xSP] = pVCpu->vmm.s.CallRing3JmpBufR0.SpResume;
2421}
2422
2423
2424/**
2425 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2426 *
2427 * @returns VBox status code.
2428 * @param pVM The cross context VM structure.
2429 * @param uOperation Operation to execute.
2430 * @param u64Arg Constant argument.
2431 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2432 * details.
2433 */
2434VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2435{
2436 PVMCPU pVCpu = VMMGetCpu(pVM);
2437 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
2438 return VMMR3CallR0Emt(pVM, pVCpu, (VMMR0OPERATION)uOperation, u64Arg, pReqHdr);
2439}
2440
2441
2442/**
2443 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2444 *
2445 * @returns VBox status code.
2446 * @param pVM The cross context VM structure.
2447 * @param pVCpu The cross context VM structure.
2448 * @param enmOperation Operation to execute.
2449 * @param u64Arg Constant argument.
2450 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2451 * details.
2452 */
2453VMMR3_INT_DECL(int) VMMR3CallR0Emt(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2454{
2455 int rc;
2456 for (;;)
2457 {
2458#ifdef NO_SUPCALLR0VMM
2459 rc = VERR_GENERAL_FAILURE;
2460#else
2461 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), pVCpu->idCpu, enmOperation, u64Arg, pReqHdr);
2462#endif
2463 /*
2464 * Flush the logs.
2465 */
2466#ifdef LOG_ENABLED
2467 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
2468#endif
2469 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
2470 if (rc != VINF_VMM_CALL_HOST)
2471 break;
2472 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2473 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
2474 break;
2475 /* Resume R0 */
2476 }
2477
2478 AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc),
2479 ("enmOperation=%u rc=%Rrc\n", enmOperation, rc),
2480 VERR_IPE_UNEXPECTED_INFO_STATUS);
2481 return rc;
2482}
2483
2484
2485/**
2486 * Service a call to the ring-3 host code.
2487 *
2488 * @returns VBox status code.
2489 * @param pVM The cross context VM structure.
2490 * @param pVCpu The cross context virtual CPU structure.
2491 * @remarks Careful with critsects.
2492 */
2493static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu)
2494{
2495 /*
2496 * We must also check for pending critsect exits or else we can deadlock
2497 * when entering other critsects here.
2498 */
2499 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PDM_CRITSECT))
2500 PDMCritSectBothFF(pVM, pVCpu);
2501
2502 switch (pVCpu->vmm.s.enmCallRing3Operation)
2503 {
2504 /*
2505 * Grow the PGM pool.
2506 */
2507 case VMMCALLRING3_PGM_POOL_GROW:
2508 {
2509 pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM, pVCpu);
2510 break;
2511 }
2512
2513 /*
2514 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
2515 */
2516 case VMMCALLRING3_PGM_MAP_CHUNK:
2517 {
2518 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2519 break;
2520 }
2521
2522 /*
2523 * Allocates more handy pages.
2524 */
2525 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
2526 {
2527 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM);
2528 break;
2529 }
2530
2531 /*
2532 * Allocates a large page.
2533 */
2534 case VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE:
2535 {
2536 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateLargeHandyPage(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2537 break;
2538 }
2539
2540 /*
2541 * Signal a ring 0 hypervisor assertion.
2542 * Cancel the longjmp operation that's in progress.
2543 */
2544 case VMMCALLRING3_VM_R0_ASSERTION:
2545 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2546 pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false;
2547#ifdef RT_ARCH_X86
2548 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0;
2549#else
2550 pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0;
2551#endif
2552#ifdef VMM_R0_SWITCH_STACK
2553 *(uint64_t *)pVCpu->vmm.s.pbEMTStackR3 = 0; /* clear marker */
2554#endif
2555 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg1));
2556 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg2));
2557 return VERR_VMM_RING0_ASSERTION;
2558
2559 default:
2560 AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation));
2561 return VERR_VMM_UNKNOWN_RING3_CALL;
2562 }
2563
2564 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2565 return VINF_SUCCESS;
2566}
2567
2568
2569/**
2570 * Displays the Force action Flags.
2571 *
2572 * @param pVM The cross context VM structure.
2573 * @param pHlp The output helpers.
2574 * @param pszArgs The additional arguments (ignored).
2575 */
2576static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2577{
2578 int c;
2579 uint32_t f;
2580 NOREF(pszArgs);
2581
2582#define PRINT_FLAG(prf,flag) do { \
2583 if (f & (prf##flag)) \
2584 { \
2585 static const char *s_psz = #flag; \
2586 if (!(c % 6)) \
2587 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2588 else \
2589 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2590 c++; \
2591 f &= ~(prf##flag); \
2592 } \
2593 } while (0)
2594
2595#define PRINT_GROUP(prf,grp,sfx) do { \
2596 if (f & (prf##grp##sfx)) \
2597 { \
2598 static const char *s_psz = #grp; \
2599 if (!(c % 5)) \
2600 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2601 else \
2602 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2603 c++; \
2604 } \
2605 } while (0)
2606
2607 /*
2608 * The global flags.
2609 */
2610 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2611 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2612
2613 /* show the flag mnemonics */
2614 c = 0;
2615 f = fGlobalForcedActions;
2616 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2617 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2618 PRINT_FLAG(VM_FF_,PDM_DMA);
2619 PRINT_FLAG(VM_FF_,DBGF);
2620 PRINT_FLAG(VM_FF_,REQUEST);
2621 PRINT_FLAG(VM_FF_,CHECK_VM_STATE);
2622 PRINT_FLAG(VM_FF_,RESET);
2623 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2624 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2625 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2626 PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING);
2627 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2628 if (f)
2629 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2630 else
2631 pHlp->pfnPrintf(pHlp, "\n");
2632
2633 /* the groups */
2634 c = 0;
2635 f = fGlobalForcedActions;
2636 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2637 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2638 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2639 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2640 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2641 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2642 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2643 PRINT_GROUP(VM_FF_,ALL_REM,_MASK);
2644 if (c)
2645 pHlp->pfnPrintf(pHlp, "\n");
2646
2647 /*
2648 * Per CPU flags.
2649 */
2650 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2651 {
2652 PVMCPU pVCpu = pVM->apCpusR3[i];
2653 const uint64_t fLocalForcedActions = pVCpu->fLocalForcedActions;
2654 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX64", i, fLocalForcedActions);
2655
2656 /* show the flag mnemonics */
2657 c = 0;
2658 f = fLocalForcedActions;
2659 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2660 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2661 PRINT_FLAG(VMCPU_FF_,TIMER);
2662 PRINT_FLAG(VMCPU_FF_,INTERRUPT_NMI);
2663 PRINT_FLAG(VMCPU_FF_,INTERRUPT_SMI);
2664 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2665 PRINT_FLAG(VMCPU_FF_,UNHALT);
2666 PRINT_FLAG(VMCPU_FF_,IEM);
2667 PRINT_FLAG(VMCPU_FF_,UPDATE_APIC);
2668 PRINT_FLAG(VMCPU_FF_,DBGF);
2669 PRINT_FLAG(VMCPU_FF_,REQUEST);
2670 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_CR3);
2671 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_PAE_PDPES);
2672 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2673 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2674 PRINT_FLAG(VMCPU_FF_,TLB_FLUSH);
2675 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
2676 PRINT_FLAG(VMCPU_FF_,BLOCK_NMIS);
2677 PRINT_FLAG(VMCPU_FF_,TO_R3);
2678 PRINT_FLAG(VMCPU_FF_,IOM);
2679 if (f)
2680 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX64\n", c ? "," : "", f);
2681 else
2682 pHlp->pfnPrintf(pHlp, "\n");
2683
2684 if (fLocalForcedActions & VMCPU_FF_INHIBIT_INTERRUPTS)
2685 pHlp->pfnPrintf(pHlp, " intr inhibit RIP: %RGp\n", EMGetInhibitInterruptsPC(pVCpu));
2686
2687 /* the groups */
2688 c = 0;
2689 f = fLocalForcedActions;
2690 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2691 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2692 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2693 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2694 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2695 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2696 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2697 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2698 PRINT_GROUP(VMCPU_FF_,HM_TO_R3,_MASK);
2699 PRINT_GROUP(VMCPU_FF_,ALL_REM,_MASK);
2700 if (c)
2701 pHlp->pfnPrintf(pHlp, "\n");
2702 }
2703
2704#undef PRINT_FLAG
2705#undef PRINT_GROUP
2706}
2707
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette