VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/VMM.cpp@ 90992

Last change on this file since 90992 was 90992, checked in by vboxsync, 4 years ago

VMM: Eliminated VMMCALLRING3_PGM_LOCK. bugref:6695

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 111.1 KB
Line 
1/* $Id: VMM.cpp 90992 2021-08-30 09:52:14Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.215389.xyz. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18//#define NO_SUPCALLR0VMM
19
20/** @page pg_vmm VMM - The Virtual Machine Monitor
21 *
22 * The VMM component is two things at the moment, it's a component doing a few
23 * management and routing tasks, and it's the whole virtual machine monitor
24 * thing. For hysterical reasons, it is not doing all the management that one
25 * would expect, this is instead done by @ref pg_vm. We'll address this
26 * misdesign eventually, maybe.
27 *
28 * VMM is made up of these components:
29 * - @subpage pg_cfgm
30 * - @subpage pg_cpum
31 * - @subpage pg_dbgf
32 * - @subpage pg_em
33 * - @subpage pg_gim
34 * - @subpage pg_gmm
35 * - @subpage pg_gvmm
36 * - @subpage pg_hm
37 * - @subpage pg_iem
38 * - @subpage pg_iom
39 * - @subpage pg_mm
40 * - @subpage pg_nem
41 * - @subpage pg_pdm
42 * - @subpage pg_pgm
43 * - @subpage pg_selm
44 * - @subpage pg_ssm
45 * - @subpage pg_stam
46 * - @subpage pg_tm
47 * - @subpage pg_trpm
48 * - @subpage pg_vm
49 *
50 *
51 * @see @ref grp_vmm @ref grp_vm @subpage pg_vmm_guideline @subpage pg_raw
52 *
53 *
54 * @section sec_vmmstate VMM State
55 *
56 * @image html VM_Statechart_Diagram.gif
57 *
58 * To be written.
59 *
60 *
61 * @subsection subsec_vmm_init VMM Initialization
62 *
63 * To be written.
64 *
65 *
66 * @subsection subsec_vmm_term VMM Termination
67 *
68 * To be written.
69 *
70 *
71 * @section sec_vmm_limits VMM Limits
72 *
73 * There are various resource limits imposed by the VMM and it's
74 * sub-components. We'll list some of them here.
75 *
76 * On 64-bit hosts:
77 * - Max 8191 VMs. Imposed by GVMM's handle allocation (GVMM_MAX_HANDLES),
78 * can be increased up to 64K - 1.
79 * - Max 16TB - 64KB of the host memory can be used for backing VM RAM and
80 * ROM pages. The limit is imposed by the 32-bit page ID used by GMM.
81 * - A VM can be assigned all the memory we can use (16TB), however, the
82 * Main API will restrict this to 2TB (MM_RAM_MAX_IN_MB).
83 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
84 *
85 * On 32-bit hosts:
86 * - Max 127 VMs. Imposed by GMM's per page structure.
87 * - Max 64GB - 64KB of the host memory can be used for backing VM RAM and
88 * ROM pages. The limit is imposed by the 28-bit page ID used
89 * internally in GMM. It is also limited by PAE.
90 * - A VM can be assigned all the memory GMM can allocate, however, the
91 * Main API will restrict this to 3584MB (MM_RAM_MAX_IN_MB).
92 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
93 *
94 */
95
96
97/*********************************************************************************************************************************
98* Header Files *
99*********************************************************************************************************************************/
100#define LOG_GROUP LOG_GROUP_VMM
101#include <VBox/vmm/vmm.h>
102#include <VBox/vmm/vmapi.h>
103#include <VBox/vmm/pgm.h>
104#include <VBox/vmm/cfgm.h>
105#include <VBox/vmm/pdmqueue.h>
106#include <VBox/vmm/pdmcritsect.h>
107#include <VBox/vmm/pdmcritsectrw.h>
108#include <VBox/vmm/pdmapi.h>
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/gim.h>
111#include <VBox/vmm/mm.h>
112#include <VBox/vmm/nem.h>
113#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
114# include <VBox/vmm/iem.h>
115#endif
116#include <VBox/vmm/iom.h>
117#include <VBox/vmm/trpm.h>
118#include <VBox/vmm/selm.h>
119#include <VBox/vmm/em.h>
120#include <VBox/sup.h>
121#include <VBox/vmm/dbgf.h>
122#include <VBox/vmm/apic.h>
123#include <VBox/vmm/ssm.h>
124#include <VBox/vmm/tm.h>
125#include "VMMInternal.h"
126#include <VBox/vmm/vmcc.h>
127
128#include <VBox/err.h>
129#include <VBox/param.h>
130#include <VBox/version.h>
131#include <VBox/vmm/hm.h>
132#include <iprt/assert.h>
133#include <iprt/alloc.h>
134#include <iprt/asm.h>
135#include <iprt/time.h>
136#include <iprt/semaphore.h>
137#include <iprt/stream.h>
138#include <iprt/string.h>
139#include <iprt/stdarg.h>
140#include <iprt/ctype.h>
141#include <iprt/x86.h>
142
143
144/*********************************************************************************************************************************
145* Defined Constants And Macros *
146*********************************************************************************************************************************/
147/** The saved state version. */
148#define VMM_SAVED_STATE_VERSION 4
149/** The saved state version used by v3.0 and earlier. (Teleportation) */
150#define VMM_SAVED_STATE_VERSION_3_0 3
151
152/** Macro for flushing the ring-0 logging. */
153#define VMM_FLUSH_R0_LOG(a_pVM, a_pVCpu, a_pLogger, a_pR3Logger) \
154 do { \
155 size_t const idxBuf = (a_pLogger)->idxBuf % VMMLOGGER_BUFFER_COUNT; \
156 if ( (a_pLogger)->aBufs[idxBuf].AuxDesc.offBuf == 0 \
157 || (a_pLogger)->aBufs[idxBuf].AuxDesc.fFlushedIndicator) \
158 { /* likely? */ } \
159 else \
160 vmmR3LogReturnFlush(a_pVM, a_pVCpu, a_pLogger, idxBuf, a_pR3Logger); \
161 } while (0)
162
163
164/*********************************************************************************************************************************
165* Internal Functions *
166*********************************************************************************************************************************/
167static int vmmR3InitStacks(PVM pVM);
168static void vmmR3InitRegisterStats(PVM pVM);
169static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
170static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
171#if 0 /* pointless when timers doesn't run on EMT */
172static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser);
173#endif
174static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
175 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser);
176static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu);
177static FNRTTHREAD vmmR3LogFlusher;
178static void vmmR3LogReturnFlush(PVM pVM, PVMCPU pVCpu, PVMMR3CPULOGGER pShared, size_t idxBuf,
179 PRTLOGGER pDstLogger);
180static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
181
182
183
184/**
185 * Initializes the VMM.
186 *
187 * @returns VBox status code.
188 * @param pVM The cross context VM structure.
189 */
190VMMR3_INT_DECL(int) VMMR3Init(PVM pVM)
191{
192 LogFlow(("VMMR3Init\n"));
193
194 /*
195 * Assert alignment, sizes and order.
196 */
197 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
198 AssertCompile(RT_SIZEOFMEMB(VMCPU, vmm.s) <= RT_SIZEOFMEMB(VMCPU, vmm.padding));
199
200 /*
201 * Init basic VM VMM members.
202 */
203 pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL;
204 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
205 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
206 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
207 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
208 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
209 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
210 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
211 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
212 pVM->vmm.s.nsProgramStart = RTTimeProgramStartNanoTS();
213
214#if 0 /* pointless when timers doesn't run on EMT */
215 /** @cfgm{/YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms}
216 * The EMT yield interval. The EMT yielding is a hack we employ to play a
217 * bit nicer with the rest of the system (like for instance the GUI).
218 */
219 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies,
220 23 /* Value arrived at after experimenting with the grub boot prompt. */);
221 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
222#endif
223
224 /** @cfgm{/VMM/UsePeriodicPreemptionTimers, boolean, true}
225 * Controls whether we employ per-cpu preemption timers to limit the time
226 * spent executing guest code. This option is not available on all
227 * platforms and we will silently ignore this setting then. If we are
228 * running in VT-x mode, we will use the VMX-preemption timer instead of
229 * this one when possible.
230 */
231 PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM");
232 int rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true);
233 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc);
234
235 /*
236 * Initialize the VMM rendezvous semaphores.
237 */
238 pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus);
239 if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered)
240 return VERR_NO_MEMORY;
241 for (VMCPUID i = 0; i < pVM->cCpus; i++)
242 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
243 for (VMCPUID i = 0; i < pVM->cCpus; i++)
244 {
245 rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
246 AssertRCReturn(rc, rc);
247 }
248 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
249 AssertRCReturn(rc, rc);
250 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
251 AssertRCReturn(rc, rc);
252 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
253 AssertRCReturn(rc, rc);
254 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
255 AssertRCReturn(rc, rc);
256 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPush);
257 AssertRCReturn(rc, rc);
258 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPop);
259 AssertRCReturn(rc, rc);
260 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
261 AssertRCReturn(rc, rc);
262 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
263 AssertRCReturn(rc, rc);
264
265 /*
266 * Register the saved state data unit.
267 */
268 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
269 NULL, NULL, NULL,
270 NULL, vmmR3Save, NULL,
271 NULL, vmmR3Load, NULL);
272 if (RT_FAILURE(rc))
273 return rc;
274
275 /*
276 * Register the Ring-0 VM handle with the session for fast ioctl calls.
277 */
278 rc = SUPR3SetVMForFastIOCtl(VMCC_GET_VMR0_FOR_CALL(pVM));
279 if (RT_FAILURE(rc))
280 return rc;
281
282 /*
283 * Init various sub-components.
284 */
285 rc = vmmR3InitStacks(pVM);
286 if (RT_SUCCESS(rc))
287 {
288#ifdef VBOX_WITH_NMI
289 /*
290 * Allocate mapping for the host APIC.
291 */
292 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
293 AssertRC(rc);
294#endif
295 if (RT_SUCCESS(rc))
296 {
297 /*
298 * Start the log flusher thread.
299 */
300 rc = RTThreadCreate(&pVM->vmm.s.hLogFlusherThread, vmmR3LogFlusher, pVM, 0 /*cbStack*/,
301 RTTHREADTYPE_IO, RTTHREADFLAGS_WAITABLE, "R0LogWrk");
302 if (RT_SUCCESS(rc))
303 {
304
305 /*
306 * Debug info and statistics.
307 */
308 DBGFR3InfoRegisterInternal(pVM, "fflags", "Displays the current Forced actions Flags.", vmmR3InfoFF);
309 vmmR3InitRegisterStats(pVM);
310 vmmInitFormatTypes();
311
312 return VINF_SUCCESS;
313 }
314 }
315 }
316 /** @todo Need failure cleanup? */
317
318 return rc;
319}
320
321
322/**
323 * Allocate & setup the VMM RC stack(s) (for EMTs).
324 *
325 * The stacks are also used for long jumps in Ring-0.
326 *
327 * @returns VBox status code.
328 * @param pVM The cross context VM structure.
329 *
330 * @remarks The optional guard page gets it protection setup up during R3 init
331 * completion because of init order issues.
332 */
333static int vmmR3InitStacks(PVM pVM)
334{
335 int rc = VINF_SUCCESS;
336#ifdef VMM_R0_SWITCH_STACK
337 uint32_t fFlags = MMHYPER_AONR_FLAGS_KERNEL_MAPPING;
338#else
339 uint32_t fFlags = 0;
340#endif
341
342 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
343 {
344 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
345
346#ifdef VBOX_STRICT_VMM_STACK
347 rc = MMR3HyperAllocOnceNoRelEx(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE,
348#else
349 rc = MMR3HyperAllocOnceNoRelEx(pVM, VMM_STACK_SIZE,
350#endif
351 PAGE_SIZE, MM_TAG_VMM, fFlags, (void **)&pVCpu->vmm.s.pbEMTStackR3);
352 if (RT_SUCCESS(rc))
353 {
354#ifdef VBOX_STRICT_VMM_STACK
355 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
356#endif
357 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
358
359 }
360 }
361
362 return rc;
363}
364
365
366/**
367 * VMMR3Init worker that register the statistics with STAM.
368 *
369 * @param pVM The cross context VM structure.
370 */
371static void vmmR3InitRegisterStats(PVM pVM)
372{
373 RT_NOREF_PV(pVM);
374
375 /*
376 * Statistics.
377 */
378 STAM_REG(pVM, &pVM->vmm.s.StatRunGC, STAMTYPE_COUNTER, "/VMM/RunGC", STAMUNIT_OCCURENCES, "Number of context switches.");
379 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
380 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
381 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
382 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
383 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
384 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
385 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
386 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
387 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
388 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
389 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_READ returns.");
390 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_WRITE returns.");
391 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_COMMIT_WRITE returns.");
392 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ returns.");
393 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_WRITE returns.");
394 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_COMMIT_WRITE returns.");
395 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ_WRITE returns.");
396 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
397 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
398 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRRead, STAMTYPE_COUNTER, "/VMM/RZRet/MSRRead", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_READ returns.");
399 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MSRWrite", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_WRITE returns.");
400 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
401 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
402 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
403 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
404 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
405 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
406 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
407 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
408 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
409 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
410 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
411 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
412 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Total, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
413 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns without responsible force flag.");
414 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3FF, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TO_R3.");
415 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_TM_VIRTUAL_SYNC.");
416 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PGM_NEED_HANDY_PAGES.");
417 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_QUEUES.");
418 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_EMT_RENDEZVOUS.");
419 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TIMER.");
420 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_DMA.");
421 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3CritSect, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/CritSect", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_PDM_CRITSECT.");
422 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iem, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IEM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IEM.");
423 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iom, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IOM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IOM.");
424 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
425 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
426 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
427 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
428 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns.");
429 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
430 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HM_PATCH_TPR_INSTR returns.");
431 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
432 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_LOCK calls.");
433 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls.");
434 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls.");
435 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls.");
436 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMSetError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_ERROR calls.");
437 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetRuntimeError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMRuntimeError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_RUNTIME_ERROR calls.");
438
439 STAMR3Register(pVM, &pVM->vmm.s.StatLogFlusherFlushes, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, "/VMM/LogFlush/00-Flushes", STAMUNIT_OCCURENCES, "Total number of buffer flushes");
440 STAMR3Register(pVM, &pVM->vmm.s.StatLogFlusherNoWakeUp, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, "/VMM/LogFlush/00-NoWakups", STAMUNIT_OCCURENCES, "Times the flusher thread didn't need waking up.");
441
442#ifdef VBOX_WITH_STATISTICS
443 for (VMCPUID i = 0; i < pVM->cCpus; i++)
444 {
445 PVMCPU pVCpu = pVM->apCpusR3[i];
446 STAMR3RegisterF(pVM, &pVCpu->vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
447 STAMR3RegisterF(pVM, &pVCpu->vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
448 STAMR3RegisterF(pVM, &pVCpu->vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
449 }
450#endif
451 for (VMCPUID i = 0; i < pVM->cCpus; i++)
452 {
453 PVMCPU pVCpu = pVM->apCpusR3[i];
454 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlock, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlock", i);
455 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockOnTime, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOnTime", i);
456 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockOverslept, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOverslept", i);
457 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockInsomnia, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockInsomnia", i);
458 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExec, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec", i);
459 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExecFromSpin, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromSpin", i);
460 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExecFromBlock, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromBlock", i);
461 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3", i);
462 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3FromSpin, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/FromSpin", i);
463 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3Other, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/Other", i);
464 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PendingFF, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PendingFF", i);
465 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3SmallDelta, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/SmallDelta", i);
466 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PostNoInt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PostWaitNoInt", i);
467 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PostPendingFF,STAMTYPE_COUNTER,STAMVISIBILITY_ALWAYS,STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PostWaitPendingFF", i);
468 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0Halts, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryCounter", i);
469 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0HaltsSucceeded, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistorySucceeded", i);
470 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0HaltsToRing3, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryToRing3", i);
471
472 STAMR3RegisterF(pVM, &pVCpu->cEmtHashCollisions, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/VMM/EmtHashCollisions/Emt%02u", i);
473
474 PVMMR3CPULOGGER pShared = &pVCpu->vmm.s.u.s.Logger;
475 STAMR3RegisterF(pVM, &pShared->StatFlushes, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Reg", i);
476 STAMR3RegisterF(pVM, &pShared->StatCannotBlock, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Reg/CannotBlock", i);
477 STAMR3RegisterF(pVM, &pShared->StatWait, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Reg/Wait", i);
478 STAMR3RegisterF(pVM, &pShared->StatRaces, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Reg/Races", i);
479 STAMR3RegisterF(pVM, &pShared->StatRacesToR0, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Reg/RacesToR0", i);
480 STAMR3RegisterF(pVM, &pShared->cbDropped, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Reg/cbDropped", i);
481 STAMR3RegisterF(pVM, &pShared->cbBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Reg/cbBuf", i);
482 STAMR3RegisterF(pVM, &pShared->idxBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Reg/idxBuf", i);
483
484 pShared = &pVCpu->vmm.s.u.s.RelLogger;
485 STAMR3RegisterF(pVM, &pShared->StatFlushes, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Rel", i);
486 STAMR3RegisterF(pVM, &pShared->StatCannotBlock, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Rel/CannotBlock", i);
487 STAMR3RegisterF(pVM, &pShared->StatWait, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Rel/Wait", i);
488 STAMR3RegisterF(pVM, &pShared->StatRaces, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Rel/Races", i);
489 STAMR3RegisterF(pVM, &pShared->StatRacesToR0, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Rel/RacesToR0", i);
490 STAMR3RegisterF(pVM, &pShared->cbDropped, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Rel/cbDropped", i);
491 STAMR3RegisterF(pVM, &pShared->cbBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Rel/cbBuf", i);
492 STAMR3RegisterF(pVM, &pShared->idxBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Rel/idxBuf", i);
493 }
494}
495
496
497/**
498 * Worker for VMMR3InitR0 that calls ring-0 to do EMT specific initialization.
499 *
500 * @returns VBox status code.
501 * @param pVM The cross context VM structure.
502 * @param pVCpu The cross context per CPU structure.
503 * @thread EMT(pVCpu)
504 */
505static DECLCALLBACK(int) vmmR3InitR0Emt(PVM pVM, PVMCPU pVCpu)
506{
507 return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_VMMR0_INIT_EMT, 0, NULL);
508}
509
510
511/**
512 * Initializes the R0 VMM.
513 *
514 * @returns VBox status code.
515 * @param pVM The cross context VM structure.
516 */
517VMMR3_INT_DECL(int) VMMR3InitR0(PVM pVM)
518{
519 int rc;
520 PVMCPU pVCpu = VMMGetCpu(pVM);
521 Assert(pVCpu && pVCpu->idCpu == 0);
522
523 /*
524 * Make sure the ring-0 loggers are up to date.
525 */
526 rc = VMMR3UpdateLoggers(pVM);
527 if (RT_FAILURE(rc))
528 return rc;
529
530 /*
531 * Call Ring-0 entry with init code.
532 */
533 for (;;)
534 {
535#ifdef NO_SUPCALLR0VMM
536 //rc = VERR_GENERAL_FAILURE;
537 rc = VINF_SUCCESS;
538#else
539 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, RT_MAKE_U64(VMMGetSvnRev(), vmmGetBuildType()), NULL);
540#endif
541 /*
542 * Flush the logs.
543 */
544#ifdef LOG_ENABLED
545 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
546#endif
547 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
548 if (rc != VINF_VMM_CALL_HOST)
549 break;
550 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
551 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
552 break;
553 /* Resume R0 */
554 }
555
556 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
557 {
558 LogRel(("VMM: R0 init failed, rc=%Rra\n", rc));
559 if (RT_SUCCESS(rc))
560 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
561 }
562
563 /* Log whether thread-context hooks are used (on Linux this can depend on how the kernel is configured). */
564 if (pVM->vmm.s.fIsUsingContextHooks)
565 LogRel(("VMM: Enabled thread-context hooks\n"));
566 else
567 LogRel(("VMM: Thread-context hooks unavailable\n"));
568
569 /* Log RTThreadPreemptIsPendingTrusty() and RTThreadPreemptIsPossible() results. */
570 if (pVM->vmm.s.fIsPreemptPendingApiTrusty)
571 LogRel(("VMM: RTThreadPreemptIsPending() can be trusted\n"));
572 else
573 LogRel(("VMM: Warning! RTThreadPreemptIsPending() cannot be trusted! Need to update kernel info?\n"));
574 if (pVM->vmm.s.fIsPreemptPossible)
575 LogRel(("VMM: Kernel preemption is possible\n"));
576 else
577 LogRel(("VMM: Kernel preemption is not possible it seems\n"));
578
579 /*
580 * Send all EMTs to ring-0 to get their logger initialized.
581 */
582 for (VMCPUID idCpu = 0; RT_SUCCESS(rc) && idCpu < pVM->cCpus; idCpu++)
583 rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)vmmR3InitR0Emt, 2, pVM, pVM->apCpusR3[idCpu]);
584
585 return rc;
586}
587
588
589/**
590 * Called when an init phase completes.
591 *
592 * @returns VBox status code.
593 * @param pVM The cross context VM structure.
594 * @param enmWhat Which init phase.
595 */
596VMMR3_INT_DECL(int) VMMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
597{
598 int rc = VINF_SUCCESS;
599
600 switch (enmWhat)
601 {
602 case VMINITCOMPLETED_RING3:
603 {
604#if 0 /* pointless when timers doesn't run on EMT */
605 /*
606 * Create the EMT yield timer.
607 */
608 rc = TMR3TimerCreate(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, TMTIMER_FLAGS_NO_RING0,
609 "EMT Yielder", &pVM->vmm.s.hYieldTimer);
610 AssertRCReturn(rc, rc);
611
612 rc = TMTimerSetMillies(pVM, pVM->vmm.s.hYieldTimer, pVM->vmm.s.cYieldEveryMillies);
613 AssertRCReturn(rc, rc);
614#endif
615 break;
616 }
617
618 case VMINITCOMPLETED_HM:
619 {
620 /*
621 * Disable the periodic preemption timers if we can use the
622 * VMX-preemption timer instead.
623 */
624 if ( pVM->vmm.s.fUsePeriodicPreemptionTimers
625 && HMR3IsVmxPreemptionTimerUsed(pVM))
626 pVM->vmm.s.fUsePeriodicPreemptionTimers = false;
627 LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers));
628
629 /*
630 * Last chance for GIM to update its CPUID leaves if it requires
631 * knowledge/information from HM initialization.
632 */
633 rc = GIMR3InitCompleted(pVM);
634 AssertRCReturn(rc, rc);
635
636 /*
637 * CPUM's post-initialization (print CPUIDs).
638 */
639 CPUMR3LogCpuIdAndMsrFeatures(pVM);
640 break;
641 }
642
643 default: /* shuts up gcc */
644 break;
645 }
646
647 return rc;
648}
649
650
651/**
652 * Terminate the VMM bits.
653 *
654 * @returns VBox status code.
655 * @param pVM The cross context VM structure.
656 */
657VMMR3_INT_DECL(int) VMMR3Term(PVM pVM)
658{
659 PVMCPU pVCpu = VMMGetCpu(pVM);
660 Assert(pVCpu && pVCpu->idCpu == 0);
661
662 /*
663 * Call Ring-0 entry with termination code.
664 */
665 int rc;
666 for (;;)
667 {
668#ifdef NO_SUPCALLR0VMM
669 //rc = VERR_GENERAL_FAILURE;
670 rc = VINF_SUCCESS;
671#else
672 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
673#endif
674 /*
675 * Flush the logs.
676 */
677#ifdef LOG_ENABLED
678 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
679#endif
680 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
681 if (rc != VINF_VMM_CALL_HOST)
682 break;
683 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
684 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
685 break;
686 /* Resume R0 */
687 }
688 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
689 {
690 LogRel(("VMM: VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
691 if (RT_SUCCESS(rc))
692 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
693 }
694
695 for (VMCPUID i = 0; i < pVM->cCpus; i++)
696 {
697 RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
698 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
699 }
700 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
701 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
702 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
703 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
704 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
705 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
706 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
707 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
708 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
709 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
710 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
711 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
712 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
713 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
714 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
715 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
716
717 vmmTermFormatTypes();
718
719 /*
720 * Wait for the log flusher thread to complete.
721 */
722 if (pVM->vmm.s.hLogFlusherThread != NIL_RTTHREAD)
723 {
724 int rc2 = RTThreadWait(pVM->vmm.s.hLogFlusherThread, RT_MS_30SEC, NULL);
725 AssertLogRelRC(rc2);
726 if (RT_SUCCESS(rc2))
727 pVM->vmm.s.hLogFlusherThread = NIL_RTTHREAD;
728 }
729
730 return rc;
731}
732
733
734/**
735 * Applies relocations to data and code managed by this
736 * component. This function will be called at init and
737 * whenever the VMM need to relocate it self inside the GC.
738 *
739 * The VMM will need to apply relocations to the core code.
740 *
741 * @param pVM The cross context VM structure.
742 * @param offDelta The relocation delta.
743 */
744VMMR3_INT_DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
745{
746 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
747 RT_NOREF(offDelta);
748
749 /*
750 * Update the logger.
751 */
752 VMMR3UpdateLoggers(pVM);
753}
754
755
756/**
757 * Worker for VMMR3UpdateLoggers.
758 */
759static int vmmR3UpdateLoggersWorker(PVM pVM, PVMCPU pVCpu, PRTLOGGER pSrcLogger, bool fReleaseLogger)
760{
761 /*
762 * Get the group count.
763 */
764 uint32_t uGroupsCrc32 = 0;
765 uint32_t cGroups = 0;
766 uint64_t fFlags = 0;
767 int rc = RTLogQueryBulk(pSrcLogger, &fFlags, &uGroupsCrc32, &cGroups, NULL);
768 Assert(rc == VERR_BUFFER_OVERFLOW);
769
770 /*
771 * Allocate the request of the right size.
772 */
773 uint32_t const cbReq = RT_UOFFSETOF_DYN(VMMR0UPDATELOGGERSREQ, afGroups[cGroups]);
774 PVMMR0UPDATELOGGERSREQ pReq = (PVMMR0UPDATELOGGERSREQ)RTMemAllocZVar(cbReq);
775 if (pReq)
776 {
777 pReq->Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
778 pReq->Hdr.cbReq = cbReq;
779 pReq->cGroups = cGroups;
780 rc = RTLogQueryBulk(pSrcLogger, &pReq->fFlags, &pReq->uGroupCrc32, &pReq->cGroups, pReq->afGroups);
781 AssertRC(rc);
782 if (RT_SUCCESS(rc))
783 rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_VMMR0_UPDATE_LOGGERS, fReleaseLogger, &pReq->Hdr);
784
785 RTMemFree(pReq);
786 }
787 else
788 rc = VERR_NO_MEMORY;
789 return rc;
790}
791
792
793/**
794 * Updates the settings for the RC and R0 loggers.
795 *
796 * @returns VBox status code.
797 * @param pVM The cross context VM structure.
798 * @thread EMT
799 */
800VMMR3_INT_DECL(int) VMMR3UpdateLoggers(PVM pVM)
801{
802 VM_ASSERT_EMT(pVM);
803 PVMCPU pVCpu = VMMGetCpu(pVM);
804 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
805
806 /*
807 * Each EMT has each own logger instance.
808 */
809 /* Debug logging.*/
810 int rcDebug = VINF_SUCCESS;
811#ifdef LOG_ENABLED
812 PRTLOGGER const pDefault = RTLogDefaultInstance();
813 if (pDefault)
814 rcDebug = vmmR3UpdateLoggersWorker(pVM, pVCpu, pDefault, false /*fReleaseLogger*/);
815#else
816 RT_NOREF(pVM);
817#endif
818
819 /* Release logging. */
820 int rcRelease = VINF_SUCCESS;
821 PRTLOGGER const pRelease = RTLogRelGetDefaultInstance();
822 if (pRelease)
823 rcRelease = vmmR3UpdateLoggersWorker(pVM, pVCpu, pRelease, true /*fReleaseLogger*/);
824
825 return RT_SUCCESS(rcDebug) ? rcRelease : rcDebug;
826}
827
828
829/**
830 * @callback_method_impl{FNRTTHREAD, Ring-0 log flusher thread.}
831 */
832static DECLCALLBACK(int) vmmR3LogFlusher(RTTHREAD hThreadSelf, void *pvUser)
833{
834 PVM const pVM = (PVM)pvUser;
835 RT_NOREF(hThreadSelf);
836
837 /* Reset the flusher state before we start: */
838 pVM->vmm.s.LogFlusherItem.u32 = UINT32_MAX;
839
840 /*
841 * The work loop.
842 */
843 for (;;)
844 {
845 /*
846 * Wait for work.
847 */
848 int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), NIL_VMCPUID, VMMR0_DO_VMMR0_LOG_FLUSHER, 0, NULL);
849 if (RT_SUCCESS(rc))
850 {
851 /* Paranoia: Make another copy of the request, to make sure the validated data can't be changed. */
852 VMMLOGFLUSHERENTRY Item;
853 Item.u32 = pVM->vmm.s.LogFlusherItem.u32;
854 if ( Item.s.idCpu < pVM->cCpus
855 && Item.s.idxLogger < VMMLOGGER_IDX_MAX
856 && Item.s.idxBuffer < VMMLOGGER_BUFFER_COUNT)
857 {
858 /*
859 * Verify the request.
860 */
861 PVMCPU const pVCpu = pVM->apCpusR3[Item.s.idCpu];
862 PVMMR3CPULOGGER const pShared = &pVCpu->vmm.s.u.aLoggers[Item.s.idxLogger];
863 uint32_t const cbToFlush = pShared->aBufs[Item.s.idxBuffer].AuxDesc.offBuf;
864 if (cbToFlush > 0)
865 {
866 if (cbToFlush <= pShared->cbBuf)
867 {
868 char * const pchBufR3 = pShared->aBufs[Item.s.idxBuffer].pchBufR3;
869 if (pchBufR3)
870 {
871 /*
872 * Do the flushing.
873 */
874 PRTLOGGER const pLogger = Item.s.idxLogger == VMMLOGGER_IDX_REGULAR
875 ? RTLogGetDefaultInstance() : RTLogRelGetDefaultInstance();
876 if (pLogger)
877 {
878 char szBefore[128];
879 RTStrPrintf(szBefore, sizeof(szBefore),
880 "*FLUSH* idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x fFlushed=%RTbool cbDropped=%#x\n",
881 Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush,
882 pShared->aBufs[Item.s.idxBuffer].AuxDesc.fFlushedIndicator, pShared->cbDropped);
883 RTLogBulkWrite(pLogger, szBefore, pchBufR3, cbToFlush, "*FLUSH DONE*\n");
884 }
885 }
886 else
887 Log(("vmmR3LogFlusher: idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x: Warning! No ring-3 buffer pointer!\n",
888 Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush));
889 }
890 else
891 Log(("vmmR3LogFlusher: idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x: Warning! Exceeds %#x bytes buffer size!\n",
892 Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush, pShared->cbBuf));
893 }
894 else
895 Log(("vmmR3LogFlusher: idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x: Warning! Zero bytes to flush!\n",
896 Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush));
897
898 /*
899 * Mark the descriptor as flushed and set the request flag for same.
900 */
901 pShared->aBufs[Item.s.idxBuffer].AuxDesc.fFlushedIndicator = true;
902 }
903 else
904 {
905 Assert(Item.s.idCpu == UINT16_MAX);
906 Assert(Item.s.idxLogger == UINT8_MAX);
907 Assert(Item.s.idxBuffer == UINT8_MAX);
908 }
909 }
910 /*
911 * Interrupted can happen, just ignore it.
912 */
913 else if (rc == VERR_INTERRUPTED)
914 { /* ignore*/ }
915 /*
916 * The ring-0 termination code will set the shutdown flag and wake us
917 * up, and we should return with object destroyed. In case there is
918 * some kind of race, we might also get sempahore destroyed.
919 */
920 else if ( rc == VERR_OBJECT_DESTROYED
921 || rc == VERR_SEM_DESTROYED
922 || rc == VERR_INVALID_HANDLE)
923 {
924 LogRel(("vmmR3LogFlusher: Terminating (%Rrc)\n", rc));
925 return VINF_SUCCESS;
926 }
927 /*
928 * There shouldn't be any other errors...
929 */
930 else
931 {
932 LogRelMax(64, ("vmmR3LogFlusher: VMMR0_DO_VMMR0_LOG_FLUSHER -> %Rrc\n", rc));
933 AssertRC(rc);
934 RTThreadSleep(1);
935 }
936 }
937}
938
939
940/**
941 * Helper for VMM_FLUSH_R0_LOG that does the flushing.
942 *
943 * @param pVM The cross context VM structure.
944 * @param pVCpu The cross context virtual CPU structure of the calling
945 * EMT.
946 * @param pShared The shared logger data.
947 * @param idxBuf The buffer to flush.
948 * @param pDstLogger The destination IPRT logger.
949 */
950static void vmmR3LogReturnFlush(PVM pVM, PVMCPU pVCpu, PVMMR3CPULOGGER pShared, size_t idxBuf, PRTLOGGER pDstLogger)
951{
952 uint32_t const cbToFlush = pShared->aBufs[idxBuf].AuxDesc.offBuf;
953 const char *pszBefore = cbToFlush < 256 ? NULL : "*FLUSH*\n";
954 const char *pszAfter = cbToFlush < 256 ? NULL : "*END*\n";
955
956#if VMMLOGGER_BUFFER_COUNT > 1
957 /*
958 * When we have more than one log buffer, the flusher thread may still be
959 * working on the previous buffer when we get here.
960 */
961 char szBefore[64];
962 if (pShared->cFlushing > 0)
963 {
964 STAM_REL_PROFILE_START(&pShared->StatRaces, a);
965 uint64_t const nsStart = RTTimeNanoTS();
966
967 /* A no-op, but it takes the lock and the hope is that we end up waiting
968 on the flusher to finish up. */
969 RTLogBulkWrite(pDstLogger, NULL, "", 0, NULL);
970 if (pShared->cFlushing != 0)
971 {
972 RTLogBulkWrite(pDstLogger, NULL, "", 0, NULL);
973
974 /* If no luck, go to ring-0 and to proper waiting. */
975 if (pShared->cFlushing != 0)
976 {
977 STAM_REL_COUNTER_INC(&pShared->StatRacesToR0);
978 SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), pVCpu->idCpu, VMMR0_DO_VMMR0_LOG_WAIT_FLUSHED, 0, NULL);
979 }
980 }
981
982 RTStrPrintf(szBefore, sizeof(szBefore), "*%sFLUSH* waited %'RU64 ns\n",
983 pShared->cFlushing == 0 ? "" : " MISORDERED", RTTimeNanoTS() - nsStart);
984 pszBefore = szBefore;
985 STAM_REL_PROFILE_STOP(&pShared->StatRaces, a);
986 }
987#else
988 RT_NOREF(pVM, pVCpu);
989#endif
990
991 RTLogBulkWrite(pDstLogger, pszBefore, pShared->aBufs[idxBuf].pchBufR3, cbToFlush, pszAfter);
992 pShared->aBufs[idxBuf].AuxDesc.fFlushedIndicator = true;
993}
994
995
996/**
997 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output.
998 *
999 * @returns Pointer to the buffer.
1000 * @param pVM The cross context VM structure.
1001 */
1002VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
1003{
1004 return pVM->vmm.s.szRing0AssertMsg1;
1005}
1006
1007
1008/**
1009 * Returns the VMCPU of the specified virtual CPU.
1010 *
1011 * @returns The VMCPU pointer. NULL if @a idCpu or @a pUVM is invalid.
1012 *
1013 * @param pUVM The user mode VM handle.
1014 * @param idCpu The ID of the virtual CPU.
1015 */
1016VMMR3DECL(PVMCPU) VMMR3GetCpuByIdU(PUVM pUVM, RTCPUID idCpu)
1017{
1018 UVM_ASSERT_VALID_EXT_RETURN(pUVM, NULL);
1019 AssertReturn(idCpu < pUVM->cCpus, NULL);
1020 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, NULL);
1021 return pUVM->pVM->apCpusR3[idCpu];
1022}
1023
1024
1025/**
1026 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output.
1027 *
1028 * @returns Pointer to the buffer.
1029 * @param pVM The cross context VM structure.
1030 */
1031VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
1032{
1033 return pVM->vmm.s.szRing0AssertMsg2;
1034}
1035
1036
1037/**
1038 * Execute state save operation.
1039 *
1040 * @returns VBox status code.
1041 * @param pVM The cross context VM structure.
1042 * @param pSSM SSM operation handle.
1043 */
1044static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
1045{
1046 LogFlow(("vmmR3Save:\n"));
1047
1048 /*
1049 * Save the started/stopped state of all CPUs except 0 as it will always
1050 * be running. This avoids breaking the saved state version. :-)
1051 */
1052 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1053 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(pVM->apCpusR3[i])));
1054
1055 return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */
1056}
1057
1058
1059/**
1060 * Execute state load operation.
1061 *
1062 * @returns VBox status code.
1063 * @param pVM The cross context VM structure.
1064 * @param pSSM SSM operation handle.
1065 * @param uVersion Data layout version.
1066 * @param uPass The data pass.
1067 */
1068static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1069{
1070 LogFlow(("vmmR3Load:\n"));
1071 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1072
1073 /*
1074 * Validate version.
1075 */
1076 if ( uVersion != VMM_SAVED_STATE_VERSION
1077 && uVersion != VMM_SAVED_STATE_VERSION_3_0)
1078 {
1079 AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion));
1080 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1081 }
1082
1083 if (uVersion <= VMM_SAVED_STATE_VERSION_3_0)
1084 {
1085 /* Ignore the stack bottom, stack pointer and stack bits. */
1086 RTRCPTR RCPtrIgnored;
1087 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1088 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1089#ifdef RT_OS_DARWIN
1090 if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0)
1091 && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0)
1092 && SSMR3HandleRevision(pSSM) >= 48858
1093 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86")
1094 || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") )
1095 )
1096 SSMR3Skip(pSSM, 16384);
1097 else
1098 SSMR3Skip(pSSM, 8192);
1099#else
1100 SSMR3Skip(pSSM, 8192);
1101#endif
1102 }
1103
1104 /*
1105 * Restore the VMCPU states. VCPU 0 is always started.
1106 */
1107 VMCPU_SET_STATE(pVM->apCpusR3[0], VMCPUSTATE_STARTED);
1108 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1109 {
1110 bool fStarted;
1111 int rc = SSMR3GetBool(pSSM, &fStarted);
1112 if (RT_FAILURE(rc))
1113 return rc;
1114 VMCPU_SET_STATE(pVM->apCpusR3[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
1115 }
1116
1117 /* terminator */
1118 uint32_t u32;
1119 int rc = SSMR3GetU32(pSSM, &u32);
1120 if (RT_FAILURE(rc))
1121 return rc;
1122 if (u32 != UINT32_MAX)
1123 {
1124 AssertMsgFailed(("u32=%#x\n", u32));
1125 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1126 }
1127 return VINF_SUCCESS;
1128}
1129
1130
1131/**
1132 * Suspends the CPU yielder.
1133 *
1134 * @param pVM The cross context VM structure.
1135 */
1136VMMR3_INT_DECL(void) VMMR3YieldSuspend(PVM pVM)
1137{
1138#if 0 /* pointless when timers doesn't run on EMT */
1139 VMCPU_ASSERT_EMT(pVM->apCpusR3[0]);
1140 if (!pVM->vmm.s.cYieldResumeMillies)
1141 {
1142 uint64_t u64Now = TMTimerGet(pVM, pVM->vmm.s.hYieldTimer);
1143 uint64_t u64Expire = TMTimerGetExpire(pVM, pVM->vmm.s.hYieldTimer);
1144 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1145 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1146 else
1147 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM, pVM->vmm.s.hYieldTimer, u64Expire - u64Now);
1148 TMTimerStop(pVM, pVM->vmm.s.hYieldTimer);
1149 }
1150 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1151#else
1152 RT_NOREF(pVM);
1153#endif
1154}
1155
1156
1157/**
1158 * Stops the CPU yielder.
1159 *
1160 * @param pVM The cross context VM structure.
1161 */
1162VMMR3_INT_DECL(void) VMMR3YieldStop(PVM pVM)
1163{
1164#if 0 /* pointless when timers doesn't run on EMT */
1165 if (!pVM->vmm.s.cYieldResumeMillies)
1166 TMTimerStop(pVM, pVM->vmm.s.hYieldTimer);
1167 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1168 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1169#else
1170 RT_NOREF(pVM);
1171#endif
1172}
1173
1174
1175/**
1176 * Resumes the CPU yielder when it has been a suspended or stopped.
1177 *
1178 * @param pVM The cross context VM structure.
1179 */
1180VMMR3_INT_DECL(void) VMMR3YieldResume(PVM pVM)
1181{
1182#if 0 /* pointless when timers doesn't run on EMT */
1183 if (pVM->vmm.s.cYieldResumeMillies)
1184 {
1185 TMTimerSetMillies(pVM, pVM->vmm.s.hYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1186 pVM->vmm.s.cYieldResumeMillies = 0;
1187 }
1188#else
1189 RT_NOREF(pVM);
1190#endif
1191}
1192
1193
1194#if 0 /* pointless when timers doesn't run on EMT */
1195/**
1196 * @callback_method_impl{FNTMTIMERINT, EMT yielder}
1197 *
1198 * @todo This is a UNI core/thread thing, really... Should be reconsidered.
1199 */
1200static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser)
1201{
1202 NOREF(pvUser);
1203
1204 /*
1205 * This really needs some careful tuning. While we shouldn't be too greedy since
1206 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1207 * because that'll cause us to stop up.
1208 *
1209 * The current logic is to use the default interval when there is no lag worth
1210 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1211 *
1212 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1213 * so the lag is up to date.)
1214 */
1215 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1216 if ( u64Lag < 50000000 /* 50ms */
1217 || ( u64Lag < 1000000000 /* 1s */
1218 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1219 )
1220 {
1221 uint64_t u64Elapsed = RTTimeNanoTS();
1222 pVM->vmm.s.u64LastYield = u64Elapsed;
1223
1224 RTThreadYield();
1225
1226#ifdef LOG_ENABLED
1227 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1228 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1229#endif
1230 }
1231 TMTimerSetMillies(pVM, hTimer, pVM->vmm.s.cYieldEveryMillies);
1232}
1233#endif
1234
1235
1236/**
1237 * Executes guest code (Intel VT-x and AMD-V).
1238 *
1239 * @param pVM The cross context VM structure.
1240 * @param pVCpu The cross context virtual CPU structure.
1241 */
1242VMMR3_INT_DECL(int) VMMR3HmRunGC(PVM pVM, PVMCPU pVCpu)
1243{
1244 Log2(("VMMR3HmRunGC: (cs:rip=%04x:%RX64)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1245
1246 for (;;)
1247 {
1248 int rc;
1249 do
1250 {
1251#ifdef NO_SUPCALLR0VMM
1252 rc = VERR_GENERAL_FAILURE;
1253#else
1254 rc = SUPR3CallVMMR0Fast(VMCC_GET_VMR0_FOR_CALL(pVM), VMMR0_DO_HM_RUN, pVCpu->idCpu);
1255 if (RT_LIKELY(rc == VINF_SUCCESS))
1256 rc = pVCpu->vmm.s.iLastGZRc;
1257#endif
1258 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1259
1260#if 0 /** @todo triggers too often */
1261 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TO_R3));
1262#endif
1263
1264 /*
1265 * Flush the logs
1266 */
1267#ifdef LOG_ENABLED
1268 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
1269#endif
1270 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
1271 if (rc != VINF_VMM_CALL_HOST)
1272 {
1273 Log2(("VMMR3HmRunGC: returns %Rrc (cs:rip=%04x:%RX64)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1274 return rc;
1275 }
1276 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1277 if (RT_FAILURE(rc))
1278 return rc;
1279 /* Resume R0 */
1280 }
1281}
1282
1283
1284/**
1285 * Perform one of the fast I/O control VMMR0 operation.
1286 *
1287 * @returns VBox strict status code.
1288 * @param pVM The cross context VM structure.
1289 * @param pVCpu The cross context virtual CPU structure.
1290 * @param enmOperation The operation to perform.
1291 */
1292VMMR3_INT_DECL(VBOXSTRICTRC) VMMR3CallR0EmtFast(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation)
1293{
1294 for (;;)
1295 {
1296 VBOXSTRICTRC rcStrict;
1297 do
1298 {
1299#ifdef NO_SUPCALLR0VMM
1300 rcStrict = VERR_GENERAL_FAILURE;
1301#else
1302 rcStrict = SUPR3CallVMMR0Fast(VMCC_GET_VMR0_FOR_CALL(pVM), enmOperation, pVCpu->idCpu);
1303 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
1304 rcStrict = pVCpu->vmm.s.iLastGZRc;
1305#endif
1306 } while (rcStrict == VINF_EM_RAW_INTERRUPT_HYPER);
1307
1308 /*
1309 * Flush the logs
1310 */
1311#ifdef LOG_ENABLED
1312 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
1313#endif
1314 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
1315 if (rcStrict != VINF_VMM_CALL_HOST)
1316 return rcStrict;
1317 int rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1318 if (RT_FAILURE(rc))
1319 return rc;
1320 /* Resume R0 */
1321 }
1322}
1323
1324
1325/**
1326 * VCPU worker for VMMR3SendStartupIpi.
1327 *
1328 * @param pVM The cross context VM structure.
1329 * @param idCpu Virtual CPU to perform SIPI on.
1330 * @param uVector The SIPI vector.
1331 */
1332static DECLCALLBACK(int) vmmR3SendStarupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1333{
1334 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1335 VMCPU_ASSERT_EMT(pVCpu);
1336
1337 /*
1338 * In the INIT state, the target CPU is only responsive to an SIPI.
1339 * This is also true for when when the CPU is in VMX non-root mode.
1340 *
1341 * See AMD spec. 16.5 "Interprocessor Interrupts (IPI)".
1342 * See Intel spec. 26.6.2 "Activity State".
1343 */
1344 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1345 return VINF_SUCCESS;
1346
1347 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1348#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1349 if (CPUMIsGuestInVmxRootMode(pCtx))
1350 {
1351 /* If the CPU is in VMX non-root mode we must cause a VM-exit. */
1352 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1353 return VBOXSTRICTRC_TODO(IEMExecVmxVmexitStartupIpi(pVCpu, uVector));
1354
1355 /* If the CPU is in VMX root mode (and not in VMX non-root mode) SIPIs are blocked. */
1356 return VINF_SUCCESS;
1357 }
1358#endif
1359
1360 pCtx->cs.Sel = uVector << 8;
1361 pCtx->cs.ValidSel = uVector << 8;
1362 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1363 pCtx->cs.u64Base = uVector << 12;
1364 pCtx->cs.u32Limit = UINT32_C(0x0000ffff);
1365 pCtx->rip = 0;
1366
1367 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", idCpu, uVector));
1368
1369# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1370 EMSetState(pVCpu, EMSTATE_HALTED);
1371 return VINF_EM_RESCHEDULE;
1372# else /* And if we go the VMCPU::enmState way it can stay here. */
1373 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1374 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1375 return VINF_SUCCESS;
1376# endif
1377}
1378
1379
1380/**
1381 * VCPU worker for VMMR3SendInitIpi.
1382 *
1383 * @returns VBox status code.
1384 * @param pVM The cross context VM structure.
1385 * @param idCpu Virtual CPU to perform SIPI on.
1386 */
1387static DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1388{
1389 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1390 VMCPU_ASSERT_EMT(pVCpu);
1391
1392 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1393
1394 /** @todo r=ramshankar: We should probably block INIT signal when the CPU is in
1395 * wait-for-SIPI state. Verify. */
1396
1397 /* If the CPU is in VMX non-root mode, INIT signals cause VM-exits. */
1398#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1399 PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1400 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1401 return VBOXSTRICTRC_TODO(IEMExecVmxVmexit(pVCpu, VMX_EXIT_INIT_SIGNAL, 0 /* uExitQual */));
1402#endif
1403
1404 /** @todo Figure out how to handle a SVM nested-guest intercepts here for INIT
1405 * IPI (e.g. SVM_EXIT_INIT). */
1406
1407 PGMR3ResetCpu(pVM, pVCpu);
1408 PDMR3ResetCpu(pVCpu); /* Only clears pending interrupts force flags */
1409 APICR3InitIpi(pVCpu);
1410 TRPMR3ResetCpu(pVCpu);
1411 CPUMR3ResetCpu(pVM, pVCpu);
1412 EMR3ResetCpu(pVCpu);
1413 HMR3ResetCpu(pVCpu);
1414 NEMR3ResetCpu(pVCpu, true /*fInitIpi*/);
1415
1416 /* This will trickle up on the target EMT. */
1417 return VINF_EM_WAIT_SIPI;
1418}
1419
1420
1421/**
1422 * Sends a Startup IPI to the virtual CPU by setting CS:EIP into
1423 * vector-dependent state and unhalting processor.
1424 *
1425 * @param pVM The cross context VM structure.
1426 * @param idCpu Virtual CPU to perform SIPI on.
1427 * @param uVector SIPI vector.
1428 */
1429VMMR3_INT_DECL(void) VMMR3SendStartupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1430{
1431 AssertReturnVoid(idCpu < pVM->cCpus);
1432
1433 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendStarupIpi, 3, pVM, idCpu, uVector);
1434 AssertRC(rc);
1435}
1436
1437
1438/**
1439 * Sends init IPI to the virtual CPU.
1440 *
1441 * @param pVM The cross context VM structure.
1442 * @param idCpu Virtual CPU to perform int IPI on.
1443 */
1444VMMR3_INT_DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1445{
1446 AssertReturnVoid(idCpu < pVM->cCpus);
1447
1448 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1449 AssertRC(rc);
1450}
1451
1452
1453/**
1454 * Registers the guest memory range that can be used for patching.
1455 *
1456 * @returns VBox status code.
1457 * @param pVM The cross context VM structure.
1458 * @param pPatchMem Patch memory range.
1459 * @param cbPatchMem Size of the memory range.
1460 */
1461VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1462{
1463 VM_ASSERT_EMT(pVM);
1464 if (HMIsEnabled(pVM))
1465 return HMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1466
1467 return VERR_NOT_SUPPORTED;
1468}
1469
1470
1471/**
1472 * Deregisters the guest memory range that can be used for patching.
1473 *
1474 * @returns VBox status code.
1475 * @param pVM The cross context VM structure.
1476 * @param pPatchMem Patch memory range.
1477 * @param cbPatchMem Size of the memory range.
1478 */
1479VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1480{
1481 if (HMIsEnabled(pVM))
1482 return HMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1483
1484 return VINF_SUCCESS;
1485}
1486
1487
1488/**
1489 * Common recursion handler for the other EMTs.
1490 *
1491 * @returns Strict VBox status code.
1492 * @param pVM The cross context VM structure.
1493 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1494 * @param rcStrict Current status code to be combined with the one
1495 * from this recursion and returned.
1496 */
1497static VBOXSTRICTRC vmmR3EmtRendezvousCommonRecursion(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rcStrict)
1498{
1499 int rc2;
1500
1501 /*
1502 * We wait here while the initiator of this recursion reconfigures
1503 * everything. The last EMT to get in signals the initiator.
1504 */
1505 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) == pVM->cCpus)
1506 {
1507 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1508 AssertLogRelRC(rc2);
1509 }
1510
1511 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPush, RT_INDEFINITE_WAIT);
1512 AssertLogRelRC(rc2);
1513
1514 /*
1515 * Do the normal rendezvous processing.
1516 */
1517 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1518 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1519
1520 /*
1521 * Wait for the initiator to restore everything.
1522 */
1523 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPop, RT_INDEFINITE_WAIT);
1524 AssertLogRelRC(rc2);
1525
1526 /*
1527 * Last thread out of here signals the initiator.
1528 */
1529 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) == pVM->cCpus)
1530 {
1531 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1532 AssertLogRelRC(rc2);
1533 }
1534
1535 /*
1536 * Merge status codes and return.
1537 */
1538 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
1539 if ( rcStrict2 != VINF_SUCCESS
1540 && ( rcStrict == VINF_SUCCESS
1541 || rcStrict > rcStrict2))
1542 rcStrict = rcStrict2;
1543 return rcStrict;
1544}
1545
1546
1547/**
1548 * Count returns and have the last non-caller EMT wake up the caller.
1549 *
1550 * @returns VBox strict informational status code for EM scheduling. No failures
1551 * will be returned here, those are for the caller only.
1552 *
1553 * @param pVM The cross context VM structure.
1554 * @param rcStrict The current accumulated recursive status code,
1555 * to be merged with i32RendezvousStatus and
1556 * returned.
1557 */
1558DECL_FORCE_INLINE(VBOXSTRICTRC) vmmR3EmtRendezvousNonCallerReturn(PVM pVM, VBOXSTRICTRC rcStrict)
1559{
1560 VBOXSTRICTRC rcStrict2 = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus);
1561
1562 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1563 if (cReturned == pVM->cCpus - 1U)
1564 {
1565 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1566 AssertLogRelRC(rc);
1567 }
1568
1569 /*
1570 * Merge the status codes, ignoring error statuses in this code path.
1571 */
1572 AssertLogRelMsgReturn( rcStrict2 <= VINF_SUCCESS
1573 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1574 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)),
1575 VERR_IPE_UNEXPECTED_INFO_STATUS);
1576
1577 if (RT_SUCCESS(rcStrict2))
1578 {
1579 if ( rcStrict2 != VINF_SUCCESS
1580 && ( rcStrict == VINF_SUCCESS
1581 || rcStrict > rcStrict2))
1582 rcStrict = rcStrict2;
1583 }
1584 return rcStrict;
1585}
1586
1587
1588/**
1589 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1590 *
1591 * @returns VBox strict informational status code for EM scheduling. No failures
1592 * will be returned here, those are for the caller only. When
1593 * fIsCaller is set, VINF_SUCCESS is always returned.
1594 *
1595 * @param pVM The cross context VM structure.
1596 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1597 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1598 * not.
1599 * @param fFlags The flags.
1600 * @param pfnRendezvous The callback.
1601 * @param pvUser The user argument for the callback.
1602 */
1603static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1604 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1605{
1606 int rc;
1607 VBOXSTRICTRC rcStrictRecursion = VINF_SUCCESS;
1608
1609 /*
1610 * Enter, the last EMT triggers the next callback phase.
1611 */
1612 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1613 if (cEntered != pVM->cCpus)
1614 {
1615 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1616 {
1617 /* Wait for our turn. */
1618 for (;;)
1619 {
1620 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1621 AssertLogRelRC(rc);
1622 if (!pVM->vmm.s.fRendezvousRecursion)
1623 break;
1624 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1625 }
1626 }
1627 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1628 {
1629 /* Wait for the last EMT to arrive and wake everyone up. */
1630 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1631 AssertLogRelRC(rc);
1632 Assert(!pVM->vmm.s.fRendezvousRecursion);
1633 }
1634 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1635 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1636 {
1637 /* Wait for our turn. */
1638 for (;;)
1639 {
1640 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1641 AssertLogRelRC(rc);
1642 if (!pVM->vmm.s.fRendezvousRecursion)
1643 break;
1644 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1645 }
1646 }
1647 else
1648 {
1649 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1650
1651 /*
1652 * The execute once is handled specially to optimize the code flow.
1653 *
1654 * The last EMT to arrive will perform the callback and the other
1655 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1656 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1657 * returns, that EMT will initiate the normal return sequence.
1658 */
1659 if (!fIsCaller)
1660 {
1661 for (;;)
1662 {
1663 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1664 AssertLogRelRC(rc);
1665 if (!pVM->vmm.s.fRendezvousRecursion)
1666 break;
1667 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1668 }
1669
1670 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1671 }
1672 return VINF_SUCCESS;
1673 }
1674 }
1675 else
1676 {
1677 /*
1678 * All EMTs are waiting, clear the FF and take action according to the
1679 * execution method.
1680 */
1681 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1682
1683 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1684 {
1685 /* Wake up everyone. */
1686 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1687 AssertLogRelRC(rc);
1688 }
1689 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1690 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1691 {
1692 /* Figure out who to wake up and wake it up. If it's ourself, then
1693 it's easy otherwise wait for our turn. */
1694 VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1695 ? 0
1696 : pVM->cCpus - 1U;
1697 if (pVCpu->idCpu != iFirst)
1698 {
1699 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]);
1700 AssertLogRelRC(rc);
1701 for (;;)
1702 {
1703 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1704 AssertLogRelRC(rc);
1705 if (!pVM->vmm.s.fRendezvousRecursion)
1706 break;
1707 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1708 }
1709 }
1710 }
1711 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1712 }
1713
1714
1715 /*
1716 * Do the callback and update the status if necessary.
1717 */
1718 if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1719 || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) )
1720 {
1721 VBOXSTRICTRC rcStrict2 = pfnRendezvous(pVM, pVCpu, pvUser);
1722 if (rcStrict2 != VINF_SUCCESS)
1723 {
1724 AssertLogRelMsg( rcStrict2 <= VINF_SUCCESS
1725 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1726 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
1727 int32_t i32RendezvousStatus;
1728 do
1729 {
1730 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1731 if ( rcStrict2 == i32RendezvousStatus
1732 || RT_FAILURE(i32RendezvousStatus)
1733 || ( i32RendezvousStatus != VINF_SUCCESS
1734 && rcStrict2 > i32RendezvousStatus))
1735 break;
1736 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict2), i32RendezvousStatus));
1737 }
1738 }
1739
1740 /*
1741 * Increment the done counter and take action depending on whether we're
1742 * the last to finish callback execution.
1743 */
1744 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1745 if ( cDone != pVM->cCpus
1746 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1747 {
1748 /* Signal the next EMT? */
1749 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1750 {
1751 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1752 AssertLogRelRC(rc);
1753 }
1754 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1755 {
1756 Assert(cDone == pVCpu->idCpu + 1U);
1757 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]);
1758 AssertLogRelRC(rc);
1759 }
1760 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1761 {
1762 Assert(pVM->cCpus - cDone == pVCpu->idCpu);
1763 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]);
1764 AssertLogRelRC(rc);
1765 }
1766
1767 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1768 if (!fIsCaller)
1769 {
1770 for (;;)
1771 {
1772 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1773 AssertLogRelRC(rc);
1774 if (!pVM->vmm.s.fRendezvousRecursion)
1775 break;
1776 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1777 }
1778 }
1779 }
1780 else
1781 {
1782 /* Callback execution is all done, tell the rest to return. */
1783 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1784 AssertLogRelRC(rc);
1785 }
1786
1787 if (!fIsCaller)
1788 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1789 return rcStrictRecursion;
1790}
1791
1792
1793/**
1794 * Called in response to VM_FF_EMT_RENDEZVOUS.
1795 *
1796 * @returns VBox strict status code - EM scheduling. No errors will be returned
1797 * here, nor will any non-EM scheduling status codes be returned.
1798 *
1799 * @param pVM The cross context VM structure.
1800 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1801 *
1802 * @thread EMT
1803 */
1804VMMR3_INT_DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1805{
1806 Assert(!pVCpu->vmm.s.fInRendezvous);
1807 Log(("VMMR3EmtRendezvousFF: EMT%#u\n", pVCpu->idCpu));
1808 pVCpu->vmm.s.fInRendezvous = true;
1809 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1810 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1811 pVCpu->vmm.s.fInRendezvous = false;
1812 Log(("VMMR3EmtRendezvousFF: EMT%#u returns %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
1813 return VBOXSTRICTRC_TODO(rcStrict);
1814}
1815
1816
1817/**
1818 * Helper for resetting an single wakeup event sempahore.
1819 *
1820 * @returns VERR_TIMEOUT on success, RTSemEventWait status otherwise.
1821 * @param hEvt The event semaphore to reset.
1822 */
1823static int vmmR3HlpResetEvent(RTSEMEVENT hEvt)
1824{
1825 for (uint32_t cLoops = 0; ; cLoops++)
1826 {
1827 int rc = RTSemEventWait(hEvt, 0 /*cMsTimeout*/);
1828 if (rc != VINF_SUCCESS || cLoops > _4K)
1829 return rc;
1830 }
1831}
1832
1833
1834/**
1835 * Worker for VMMR3EmtRendezvous that handles recursion.
1836 *
1837 * @returns VBox strict status code. This will be the first error,
1838 * VINF_SUCCESS, or an EM scheduling status code.
1839 *
1840 * @param pVM The cross context VM structure.
1841 * @param pVCpu The cross context virtual CPU structure of the
1842 * calling EMT.
1843 * @param fFlags Flags indicating execution methods. See
1844 * grp_VMMR3EmtRendezvous_fFlags.
1845 * @param pfnRendezvous The callback.
1846 * @param pvUser User argument for the callback.
1847 *
1848 * @thread EMT(pVCpu)
1849 */
1850static VBOXSTRICTRC vmmR3EmtRendezvousRecursive(PVM pVM, PVMCPU pVCpu, uint32_t fFlags,
1851 PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1852{
1853 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d\n", fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions));
1854 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
1855 Assert(pVCpu->vmm.s.fInRendezvous);
1856
1857 /*
1858 * Save the current state.
1859 */
1860 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
1861 uint32_t const cParentDone = pVM->vmm.s.cRendezvousEmtsDone;
1862 int32_t const iParentStatus = pVM->vmm.s.i32RendezvousStatus;
1863 PFNVMMEMTRENDEZVOUS const pfnParent = pVM->vmm.s.pfnRendezvous;
1864 void * const pvParentUser = pVM->vmm.s.pvRendezvousUser;
1865
1866 /*
1867 * Check preconditions and save the current state.
1868 */
1869 AssertReturn( (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1870 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1871 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
1872 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
1873 VERR_INTERNAL_ERROR);
1874 AssertReturn(pVM->vmm.s.cRendezvousEmtsEntered == pVM->cCpus, VERR_INTERNAL_ERROR_2);
1875 AssertReturn(pVM->vmm.s.cRendezvousEmtsReturned == 0, VERR_INTERNAL_ERROR_3);
1876
1877 /*
1878 * Reset the recursion prep and pop semaphores.
1879 */
1880 int rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
1881 AssertLogRelRCReturn(rc, rc);
1882 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
1883 AssertLogRelRCReturn(rc, rc);
1884 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1885 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
1886 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1887 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
1888
1889 /*
1890 * Usher the other thread into the recursion routine.
1891 */
1892 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush, 0);
1893 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, true);
1894
1895 uint32_t cLeft = pVM->cCpus - (cParentDone + 1U);
1896 if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1897 while (cLeft-- > 0)
1898 {
1899 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1900 AssertLogRelRC(rc);
1901 }
1902 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1903 {
1904 Assert(cLeft == pVM->cCpus - (pVCpu->idCpu + 1U));
1905 for (VMCPUID iCpu = pVCpu->idCpu + 1U; iCpu < pVM->cCpus; iCpu++)
1906 {
1907 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu]);
1908 AssertLogRelRC(rc);
1909 }
1910 }
1911 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1912 {
1913 Assert(cLeft == pVCpu->idCpu);
1914 for (VMCPUID iCpu = pVCpu->idCpu; iCpu > 0; iCpu--)
1915 {
1916 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu - 1U]);
1917 AssertLogRelRC(rc);
1918 }
1919 }
1920 else
1921 AssertLogRelReturn((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
1922 VERR_INTERNAL_ERROR_4);
1923
1924 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1925 AssertLogRelRC(rc);
1926 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1927 AssertLogRelRC(rc);
1928
1929
1930 /*
1931 * Wait for the EMTs to wake up and get out of the parent rendezvous code.
1932 */
1933 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) != pVM->cCpus)
1934 {
1935 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPushCaller, RT_INDEFINITE_WAIT);
1936 AssertLogRelRC(rc);
1937 }
1938
1939 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, false);
1940
1941 /*
1942 * Clear the slate and setup the new rendezvous.
1943 */
1944 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1945 {
1946 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
1947 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1948 }
1949 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1950 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1951 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1952 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1953
1954 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1955 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1956 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1957 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1958 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1959 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1960 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1961 ASMAtomicIncU32(&pVM->vmm.s.cRendezvousRecursions);
1962
1963 /*
1964 * We're ready to go now, do normal rendezvous processing.
1965 */
1966 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
1967 AssertLogRelRC(rc);
1968
1969 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /*fIsCaller*/, fFlags, pfnRendezvous, pvUser);
1970
1971 /*
1972 * The caller waits for the other EMTs to be done, return and waiting on the
1973 * pop semaphore.
1974 */
1975 for (;;)
1976 {
1977 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1978 AssertLogRelRC(rc);
1979 if (!pVM->vmm.s.fRendezvousRecursion)
1980 break;
1981 rcStrict = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict);
1982 }
1983
1984 /*
1985 * Get the return code and merge it with the above recursion status.
1986 */
1987 VBOXSTRICTRC rcStrict2 = pVM->vmm.s.i32RendezvousStatus;
1988 if ( rcStrict2 != VINF_SUCCESS
1989 && ( rcStrict == VINF_SUCCESS
1990 || rcStrict > rcStrict2))
1991 rcStrict = rcStrict2;
1992
1993 /*
1994 * Restore the parent rendezvous state.
1995 */
1996 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1997 {
1998 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
1999 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2000 }
2001 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2002 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
2003 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
2004 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2005
2006 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, pVM->cCpus);
2007 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
2008 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, cParentDone);
2009 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, iParentStatus);
2010 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fParentFlags);
2011 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvParentUser);
2012 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnParent);
2013
2014 /*
2015 * Usher the other EMTs back to their parent recursion routine, waiting
2016 * for them to all get there before we return (makes sure they've been
2017 * scheduled and are past the pop event sem, see below).
2018 */
2019 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop, 0);
2020 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
2021 AssertLogRelRC(rc);
2022
2023 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) != pVM->cCpus)
2024 {
2025 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPopCaller, RT_INDEFINITE_WAIT);
2026 AssertLogRelRC(rc);
2027 }
2028
2029 /*
2030 * We must reset the pop semaphore on the way out (doing the pop caller too,
2031 * just in case). The parent may be another recursion.
2032 */
2033 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop); AssertLogRelRC(rc);
2034 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2035
2036 ASMAtomicDecU32(&pVM->vmm.s.cRendezvousRecursions);
2037
2038 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d returns %Rrc\n",
2039 fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions, VBOXSTRICTRC_VAL(rcStrict)));
2040 return rcStrict;
2041}
2042
2043
2044/**
2045 * EMT rendezvous.
2046 *
2047 * Gathers all the EMTs and execute some code on each of them, either in a one
2048 * by one fashion or all at once.
2049 *
2050 * @returns VBox strict status code. This will be the first error,
2051 * VINF_SUCCESS, or an EM scheduling status code.
2052 *
2053 * @retval VERR_DEADLOCK if recursion is attempted using a rendezvous type that
2054 * doesn't support it or if the recursion is too deep.
2055 *
2056 * @param pVM The cross context VM structure.
2057 * @param fFlags Flags indicating execution methods. See
2058 * grp_VMMR3EmtRendezvous_fFlags. The one-by-one,
2059 * descending and ascending rendezvous types support
2060 * recursion from inside @a pfnRendezvous.
2061 * @param pfnRendezvous The callback.
2062 * @param pvUser User argument for the callback.
2063 *
2064 * @thread Any.
2065 */
2066VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
2067{
2068 /*
2069 * Validate input.
2070 */
2071 AssertReturn(pVM, VERR_INVALID_VM_HANDLE);
2072 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
2073 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2074 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
2075 AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
2076 || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE
2077 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE),
2078 ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK));
2079
2080 VBOXSTRICTRC rcStrict;
2081 PVMCPU pVCpu = VMMGetCpu(pVM);
2082 if (!pVCpu)
2083 {
2084 /*
2085 * Forward the request to an EMT thread.
2086 */
2087 Log(("VMMR3EmtRendezvous: %#x non-EMT\n", fFlags));
2088 if (!(fFlags & VMMEMTRENDEZVOUS_FLAGS_PRIORITY))
2089 rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
2090 else
2091 rcStrict = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
2092 Log(("VMMR3EmtRendezvous: %#x non-EMT returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
2093 }
2094 else if ( pVM->cCpus == 1
2095 || ( pVM->enmVMState == VMSTATE_DESTROYING
2096 && VMR3GetActiveEmts(pVM->pUVM) < pVM->cCpus ) )
2097 {
2098 /*
2099 * Shortcut for the single EMT case.
2100 *
2101 * We also ends up here if EMT(0) (or others) tries to issue a rendezvous
2102 * during vmR3Destroy after other emulation threads have started terminating.
2103 */
2104 if (!pVCpu->vmm.s.fInRendezvous)
2105 {
2106 Log(("VMMR3EmtRendezvous: %#x EMT (uni)\n", fFlags));
2107 pVCpu->vmm.s.fInRendezvous = true;
2108 pVM->vmm.s.fRendezvousFlags = fFlags;
2109 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
2110 pVCpu->vmm.s.fInRendezvous = false;
2111 }
2112 else
2113 {
2114 /* Recursion. Do the same checks as in the SMP case. */
2115 Log(("VMMR3EmtRendezvous: %#x EMT (uni), recursion depth=%d\n", fFlags, pVM->vmm.s.cRendezvousRecursions));
2116 uint32_t fType = pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK;
2117 AssertLogRelReturn( !pVCpu->vmm.s.fInRendezvous
2118 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
2119 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2120 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
2121 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
2122 , VERR_DEADLOCK);
2123
2124 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
2125 pVM->vmm.s.cRendezvousRecursions++;
2126 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
2127 pVM->vmm.s.fRendezvousFlags = fFlags;
2128
2129 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
2130
2131 pVM->vmm.s.fRendezvousFlags = fParentFlags;
2132 pVM->vmm.s.cRendezvousRecursions--;
2133 }
2134 Log(("VMMR3EmtRendezvous: %#x EMT (uni) returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
2135 }
2136 else
2137 {
2138 /*
2139 * Spin lock. If busy, check for recursion, if not recursing wait for
2140 * the other EMT to finish while keeping a lookout for the RENDEZVOUS FF.
2141 */
2142 int rc;
2143 rcStrict = VINF_SUCCESS;
2144 if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)))
2145 {
2146 /* Allow recursion in some cases. */
2147 if ( pVCpu->vmm.s.fInRendezvous
2148 && ( (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
2149 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2150 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
2151 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
2152 ))
2153 return VBOXSTRICTRC_TODO(vmmR3EmtRendezvousRecursive(pVM, pVCpu, fFlags, pfnRendezvous, pvUser));
2154
2155 AssertLogRelMsgReturn(!pVCpu->vmm.s.fInRendezvous, ("fRendezvousFlags=%#x\n", pVM->vmm.s.fRendezvousFlags),
2156 VERR_DEADLOCK);
2157
2158 Log(("VMMR3EmtRendezvous: %#x EMT#%u, waiting for lock...\n", fFlags, pVCpu->idCpu));
2159 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
2160 {
2161 if (VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS))
2162 {
2163 rc = VMMR3EmtRendezvousFF(pVM, pVCpu);
2164 if ( rc != VINF_SUCCESS
2165 && ( rcStrict == VINF_SUCCESS
2166 || rcStrict > rc))
2167 rcStrict = rc;
2168 /** @todo Perhaps deal with termination here? */
2169 }
2170 ASMNopPause();
2171 }
2172 }
2173
2174 Log(("VMMR3EmtRendezvous: %#x EMT#%u\n", fFlags, pVCpu->idCpu));
2175 Assert(!VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS));
2176 Assert(!pVCpu->vmm.s.fInRendezvous);
2177 pVCpu->vmm.s.fInRendezvous = true;
2178
2179 /*
2180 * Clear the slate and setup the rendezvous. This is a semaphore ping-pong orgy. :-)
2181 */
2182 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2183 {
2184 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0);
2185 AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2186 }
2187 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2188 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
2189 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
2190 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2191 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
2192 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
2193 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
2194 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
2195 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
2196 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
2197 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
2198
2199 /*
2200 * Set the FF and poke the other EMTs.
2201 */
2202 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
2203 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
2204
2205 /*
2206 * Do the same ourselves.
2207 */
2208 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
2209
2210 /*
2211 * The caller waits for the other EMTs to be done and return before doing
2212 * the cleanup. This makes away with wakeup / reset races we would otherwise
2213 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
2214 */
2215 for (;;)
2216 {
2217 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
2218 AssertLogRelRC(rc);
2219 if (!pVM->vmm.s.fRendezvousRecursion)
2220 break;
2221 rcStrict2 = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict2);
2222 }
2223
2224 /*
2225 * Get the return code and clean up a little bit.
2226 */
2227 VBOXSTRICTRC rcStrict3 = pVM->vmm.s.i32RendezvousStatus;
2228 ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous);
2229
2230 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
2231 pVCpu->vmm.s.fInRendezvous = false;
2232
2233 /*
2234 * Merge rcStrict, rcStrict2 and rcStrict3.
2235 */
2236 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
2237 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
2238 if ( rcStrict2 != VINF_SUCCESS
2239 && ( rcStrict == VINF_SUCCESS
2240 || rcStrict > rcStrict2))
2241 rcStrict = rcStrict2;
2242 if ( rcStrict3 != VINF_SUCCESS
2243 && ( rcStrict == VINF_SUCCESS
2244 || rcStrict > rcStrict3))
2245 rcStrict = rcStrict3;
2246 Log(("VMMR3EmtRendezvous: %#x EMT#%u returns %Rrc\n", fFlags, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
2247 }
2248
2249 AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS
2250 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
2251 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)),
2252 VERR_IPE_UNEXPECTED_INFO_STATUS);
2253 return VBOXSTRICTRC_VAL(rcStrict);
2254}
2255
2256
2257/**
2258 * Interface for vmR3SetHaltMethodU.
2259 *
2260 * @param pVCpu The cross context virtual CPU structure of the
2261 * calling EMT.
2262 * @param fMayHaltInRing0 The new state.
2263 * @param cNsSpinBlockThreshold The spin-vs-blocking threashold.
2264 * @thread EMT(pVCpu)
2265 *
2266 * @todo Move the EMT handling to VMM (or EM). I soooooo regret that VM
2267 * component.
2268 */
2269VMMR3_INT_DECL(void) VMMR3SetMayHaltInRing0(PVMCPU pVCpu, bool fMayHaltInRing0, uint32_t cNsSpinBlockThreshold)
2270{
2271 LogFlow(("VMMR3SetMayHaltInRing0(#%u, %d, %u)\n", pVCpu->idCpu, fMayHaltInRing0, cNsSpinBlockThreshold));
2272 pVCpu->vmm.s.fMayHaltInRing0 = fMayHaltInRing0;
2273 pVCpu->vmm.s.cNsSpinBlockThreshold = cNsSpinBlockThreshold;
2274}
2275
2276
2277/**
2278 * Read from the ring 0 jump buffer stack.
2279 *
2280 * @returns VBox status code.
2281 *
2282 * @param pVM The cross context VM structure.
2283 * @param idCpu The ID of the source CPU context (for the address).
2284 * @param R0Addr Where to start reading.
2285 * @param pvBuf Where to store the data we've read.
2286 * @param cbRead The number of bytes to read.
2287 */
2288VMMR3_INT_DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead)
2289{
2290 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
2291 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
2292 AssertReturn(cbRead < ~(size_t)0 / 2, VERR_INVALID_PARAMETER);
2293
2294 int rc;
2295#ifdef VMM_R0_SWITCH_STACK
2296 RTHCUINTPTR off = R0Addr - MMHyperCCToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
2297#else
2298 RTHCUINTPTR off = pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - (pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - R0Addr);
2299#endif
2300 if ( off < VMM_STACK_SIZE
2301 && off + cbRead <= VMM_STACK_SIZE)
2302 {
2303 memcpy(pvBuf, &pVCpu->vmm.s.pbEMTStackR3[off], cbRead);
2304 rc = VINF_SUCCESS;
2305 }
2306 else
2307 rc = VERR_INVALID_POINTER;
2308
2309 /* Supply the setjmp return RIP/EIP. */
2310 if ( pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation + sizeof(RTR0UINTPTR) > R0Addr
2311 && pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation < R0Addr + cbRead)
2312 {
2313 uint8_t const *pbSrc = (uint8_t const *)&pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcValue;
2314 size_t cbSrc = sizeof(pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcValue);
2315 size_t offDst = 0;
2316 if (R0Addr < pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation)
2317 offDst = pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation - R0Addr;
2318 else if (R0Addr > pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation)
2319 {
2320 size_t offSrc = R0Addr - pVCpu->vmm.s.CallRing3JmpBufR0.UnwindRetPcLocation;
2321 Assert(offSrc < cbSrc);
2322 pbSrc -= offSrc;
2323 cbSrc -= offSrc;
2324 }
2325 if (cbSrc > cbRead - offDst)
2326 cbSrc = cbRead - offDst;
2327 memcpy((uint8_t *)pvBuf + offDst, pbSrc, cbSrc);
2328
2329 if (cbSrc == cbRead)
2330 rc = VINF_SUCCESS;
2331 }
2332
2333 return rc;
2334}
2335
2336
2337/**
2338 * Used by the DBGF stack unwinder to initialize the register state.
2339 *
2340 * @param pUVM The user mode VM handle.
2341 * @param idCpu The ID of the CPU being unwound.
2342 * @param pState The unwind state to initialize.
2343 */
2344VMMR3_INT_DECL(void) VMMR3InitR0StackUnwindState(PUVM pUVM, VMCPUID idCpu, struct RTDBGUNWINDSTATE *pState)
2345{
2346 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, idCpu);
2347 AssertReturnVoid(pVCpu);
2348
2349 /*
2350 * Locate the resume point on the stack.
2351 */
2352#ifdef VMM_R0_SWITCH_STACK
2353 uintptr_t off = pVCpu->vmm.s.CallRing3JmpBufR0.SpResume - MMHyperCCToR0(pVCpu->pVMR3, pVCpu->vmm.s.pbEMTStackR3);
2354 AssertReturnVoid(off < VMM_STACK_SIZE);
2355#else
2356 uintptr_t off = 0;
2357#endif
2358
2359#ifdef RT_ARCH_AMD64
2360 /*
2361 * This code must match the .resume stuff in VMMR0JmpA-amd64.asm exactly.
2362 */
2363# ifdef VBOX_STRICT
2364 Assert(*(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off] == UINT32_C(0x7eadf00d));
2365 off += 8; /* RESUME_MAGIC */
2366# endif
2367# ifdef RT_OS_WINDOWS
2368 off += 0xa0; /* XMM6 thru XMM15 */
2369# endif
2370 pState->u.x86.uRFlags = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2371 off += 8;
2372 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2373 off += 8;
2374# ifdef RT_OS_WINDOWS
2375 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2376 off += 8;
2377 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2378 off += 8;
2379# endif
2380 pState->u.x86.auRegs[X86_GREG_x12] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2381 off += 8;
2382 pState->u.x86.auRegs[X86_GREG_x13] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2383 off += 8;
2384 pState->u.x86.auRegs[X86_GREG_x14] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2385 off += 8;
2386 pState->u.x86.auRegs[X86_GREG_x15] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2387 off += 8;
2388 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2389 off += 8;
2390 pState->uPc = *(uint64_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2391 off += 8;
2392
2393#elif defined(RT_ARCH_X86)
2394 /*
2395 * This code must match the .resume stuff in VMMR0JmpA-x86.asm exactly.
2396 */
2397# ifdef VBOX_STRICT
2398 Assert(*(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off] == UINT32_C(0x7eadf00d));
2399 off += 4; /* RESUME_MAGIC */
2400# endif
2401 pState->u.x86.uRFlags = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2402 off += 4;
2403 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2404 off += 4;
2405 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2406 off += 4;
2407 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2408 off += 4;
2409 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2410 off += 4;
2411 pState->uPc = *(uint32_t const *)&pVCpu->vmm.s.pbEMTStackR3[off];
2412 off += 4;
2413#else
2414# error "Port me"
2415#endif
2416
2417 /*
2418 * This is all we really need here, though the above helps if the assembly
2419 * doesn't contain unwind info (currently only on win/64, so that is useful).
2420 */
2421 pState->u.x86.auRegs[X86_GREG_xBP] = pVCpu->vmm.s.CallRing3JmpBufR0.SavedEbp;
2422 pState->u.x86.auRegs[X86_GREG_xSP] = pVCpu->vmm.s.CallRing3JmpBufR0.SpResume;
2423}
2424
2425
2426/**
2427 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2428 *
2429 * @returns VBox status code.
2430 * @param pVM The cross context VM structure.
2431 * @param uOperation Operation to execute.
2432 * @param u64Arg Constant argument.
2433 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2434 * details.
2435 */
2436VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2437{
2438 PVMCPU pVCpu = VMMGetCpu(pVM);
2439 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
2440 return VMMR3CallR0Emt(pVM, pVCpu, (VMMR0OPERATION)uOperation, u64Arg, pReqHdr);
2441}
2442
2443
2444/**
2445 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2446 *
2447 * @returns VBox status code.
2448 * @param pVM The cross context VM structure.
2449 * @param pVCpu The cross context VM structure.
2450 * @param enmOperation Operation to execute.
2451 * @param u64Arg Constant argument.
2452 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2453 * details.
2454 */
2455VMMR3_INT_DECL(int) VMMR3CallR0Emt(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2456{
2457 int rc;
2458 for (;;)
2459 {
2460#ifdef NO_SUPCALLR0VMM
2461 rc = VERR_GENERAL_FAILURE;
2462#else
2463 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), pVCpu->idCpu, enmOperation, u64Arg, pReqHdr);
2464#endif
2465 /*
2466 * Flush the logs.
2467 */
2468#ifdef LOG_ENABLED
2469 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
2470#endif
2471 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
2472 if (rc != VINF_VMM_CALL_HOST)
2473 break;
2474 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2475 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
2476 break;
2477 /* Resume R0 */
2478 }
2479
2480 AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc),
2481 ("enmOperation=%u rc=%Rrc\n", enmOperation, rc),
2482 VERR_IPE_UNEXPECTED_INFO_STATUS);
2483 return rc;
2484}
2485
2486
2487/**
2488 * Service a call to the ring-3 host code.
2489 *
2490 * @returns VBox status code.
2491 * @param pVM The cross context VM structure.
2492 * @param pVCpu The cross context virtual CPU structure.
2493 * @remarks Careful with critsects.
2494 */
2495static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu)
2496{
2497 /*
2498 * We must also check for pending critsect exits or else we can deadlock
2499 * when entering other critsects here.
2500 */
2501 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PDM_CRITSECT))
2502 PDMCritSectBothFF(pVM, pVCpu);
2503
2504 switch (pVCpu->vmm.s.enmCallRing3Operation)
2505 {
2506 /*
2507 * Grow the PGM pool.
2508 */
2509 case VMMCALLRING3_PGM_POOL_GROW:
2510 {
2511 pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM, pVCpu);
2512 break;
2513 }
2514
2515 /*
2516 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
2517 */
2518 case VMMCALLRING3_PGM_MAP_CHUNK:
2519 {
2520 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2521 break;
2522 }
2523
2524 /*
2525 * Allocates more handy pages.
2526 */
2527 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
2528 {
2529 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM);
2530 break;
2531 }
2532
2533 /*
2534 * Allocates a large page.
2535 */
2536 case VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE:
2537 {
2538 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateLargeHandyPage(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2539 break;
2540 }
2541
2542 /*
2543 * Set the VM error message.
2544 */
2545 case VMMCALLRING3_VM_SET_ERROR:
2546 VMR3SetErrorWorker(pVM);
2547 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2548 break;
2549
2550 /*
2551 * Set the VM runtime error message.
2552 */
2553 case VMMCALLRING3_VM_SET_RUNTIME_ERROR:
2554 pVCpu->vmm.s.rcCallRing3 = VMR3SetRuntimeErrorWorker(pVM);
2555 break;
2556
2557 /*
2558 * Signal a ring 0 hypervisor assertion.
2559 * Cancel the longjmp operation that's in progress.
2560 */
2561 case VMMCALLRING3_VM_R0_ASSERTION:
2562 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2563 pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false;
2564#ifdef RT_ARCH_X86
2565 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0;
2566#else
2567 pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0;
2568#endif
2569#ifdef VMM_R0_SWITCH_STACK
2570 *(uint64_t *)pVCpu->vmm.s.pbEMTStackR3 = 0; /* clear marker */
2571#endif
2572 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg1));
2573 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg2));
2574 return VERR_VMM_RING0_ASSERTION;
2575
2576 default:
2577 AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation));
2578 return VERR_VMM_UNKNOWN_RING3_CALL;
2579 }
2580
2581 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2582 return VINF_SUCCESS;
2583}
2584
2585
2586/**
2587 * Displays the Force action Flags.
2588 *
2589 * @param pVM The cross context VM structure.
2590 * @param pHlp The output helpers.
2591 * @param pszArgs The additional arguments (ignored).
2592 */
2593static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2594{
2595 int c;
2596 uint32_t f;
2597 NOREF(pszArgs);
2598
2599#define PRINT_FLAG(prf,flag) do { \
2600 if (f & (prf##flag)) \
2601 { \
2602 static const char *s_psz = #flag; \
2603 if (!(c % 6)) \
2604 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2605 else \
2606 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2607 c++; \
2608 f &= ~(prf##flag); \
2609 } \
2610 } while (0)
2611
2612#define PRINT_GROUP(prf,grp,sfx) do { \
2613 if (f & (prf##grp##sfx)) \
2614 { \
2615 static const char *s_psz = #grp; \
2616 if (!(c % 5)) \
2617 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2618 else \
2619 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2620 c++; \
2621 } \
2622 } while (0)
2623
2624 /*
2625 * The global flags.
2626 */
2627 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2628 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2629
2630 /* show the flag mnemonics */
2631 c = 0;
2632 f = fGlobalForcedActions;
2633 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2634 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2635 PRINT_FLAG(VM_FF_,PDM_DMA);
2636 PRINT_FLAG(VM_FF_,DBGF);
2637 PRINT_FLAG(VM_FF_,REQUEST);
2638 PRINT_FLAG(VM_FF_,CHECK_VM_STATE);
2639 PRINT_FLAG(VM_FF_,RESET);
2640 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2641 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2642 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2643 PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING);
2644 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2645 if (f)
2646 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2647 else
2648 pHlp->pfnPrintf(pHlp, "\n");
2649
2650 /* the groups */
2651 c = 0;
2652 f = fGlobalForcedActions;
2653 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2654 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2655 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2656 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2657 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2658 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2659 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2660 PRINT_GROUP(VM_FF_,ALL_REM,_MASK);
2661 if (c)
2662 pHlp->pfnPrintf(pHlp, "\n");
2663
2664 /*
2665 * Per CPU flags.
2666 */
2667 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2668 {
2669 PVMCPU pVCpu = pVM->apCpusR3[i];
2670 const uint64_t fLocalForcedActions = pVCpu->fLocalForcedActions;
2671 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX64", i, fLocalForcedActions);
2672
2673 /* show the flag mnemonics */
2674 c = 0;
2675 f = fLocalForcedActions;
2676 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2677 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2678 PRINT_FLAG(VMCPU_FF_,TIMER);
2679 PRINT_FLAG(VMCPU_FF_,INTERRUPT_NMI);
2680 PRINT_FLAG(VMCPU_FF_,INTERRUPT_SMI);
2681 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2682 PRINT_FLAG(VMCPU_FF_,UNHALT);
2683 PRINT_FLAG(VMCPU_FF_,IEM);
2684 PRINT_FLAG(VMCPU_FF_,UPDATE_APIC);
2685 PRINT_FLAG(VMCPU_FF_,DBGF);
2686 PRINT_FLAG(VMCPU_FF_,REQUEST);
2687 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_CR3);
2688 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_PAE_PDPES);
2689 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2690 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2691 PRINT_FLAG(VMCPU_FF_,TLB_FLUSH);
2692 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
2693 PRINT_FLAG(VMCPU_FF_,BLOCK_NMIS);
2694 PRINT_FLAG(VMCPU_FF_,TO_R3);
2695 PRINT_FLAG(VMCPU_FF_,IOM);
2696 if (f)
2697 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX64\n", c ? "," : "", f);
2698 else
2699 pHlp->pfnPrintf(pHlp, "\n");
2700
2701 if (fLocalForcedActions & VMCPU_FF_INHIBIT_INTERRUPTS)
2702 pHlp->pfnPrintf(pHlp, " intr inhibit RIP: %RGp\n", EMGetInhibitInterruptsPC(pVCpu));
2703
2704 /* the groups */
2705 c = 0;
2706 f = fLocalForcedActions;
2707 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2708 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2709 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2710 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2711 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2712 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2713 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2714 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2715 PRINT_GROUP(VMCPU_FF_,HM_TO_R3,_MASK);
2716 PRINT_GROUP(VMCPU_FF_,ALL_REM,_MASK);
2717 if (c)
2718 pHlp->pfnPrintf(pHlp, "\n");
2719 }
2720
2721#undef PRINT_FLAG
2722#undef PRINT_GROUP
2723}
2724
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette