VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGM.cpp@ 107171

Last change on this file since 107171 was 107171, checked in by vboxsync, 6 months ago

VMM/PGM: Introducing VBOX_WITH_ONLY_PGM_NEM_MODE to disable lots unused code on *.arm64 and darwin. jiraref:VBP-1466

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 147.7 KB
Line 
1/* $Id: PGM.cpp 107171 2024-11-28 10:38:10Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.215389.xyz.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/** @page pg_pgm PGM - The Page Manager and Monitor
30 *
31 * @sa @ref grp_pgm
32 * @subpage pg_pgm_pool
33 * @subpage pg_pgm_phys
34 *
35 *
36 * @section sec_pgm_modes Paging Modes
37 *
38 * There are three memory contexts: Host Context (HC), Guest Context (GC)
39 * and intermediate context. When talking about paging HC can also be referred
40 * to as "host paging", and GC referred to as "shadow paging".
41 *
42 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
43 * is defined by the host operating system. The mode used in the shadow paging mode
44 * depends on the host paging mode and what the mode the guest is currently in. The
45 * following relation between the two is defined:
46 *
47 * @verbatim
48 Host > 32-bit | PAE | AMD64 |
49 Guest | | | |
50 ==v================================
51 32-bit 32-bit PAE PAE
52 -------|--------|--------|--------|
53 PAE PAE PAE PAE
54 -------|--------|--------|--------|
55 AMD64 AMD64 AMD64 AMD64
56 -------|--------|--------|--------| @endverbatim
57 *
58 * All configuration except those in the diagonal (upper left) are expected to
59 * require special effort from the switcher (i.e. a bit slower).
60 *
61 *
62 *
63 *
64 * @section sec_pgm_shw The Shadow Memory Context
65 *
66 *
67 * [..]
68 *
69 * Because of guest context mappings requires PDPT and PML4 entries to allow
70 * writing on AMD64, the two upper levels will have fixed flags whatever the
71 * guest is thinking of using there. So, when shadowing the PD level we will
72 * calculate the effective flags of PD and all the higher levels. In legacy
73 * PAE mode this only applies to the PWT and PCD bits (the rest are
74 * ignored/reserved/MBZ). We will ignore those bits for the present.
75 *
76 *
77 *
78 * @section sec_pgm_int The Intermediate Memory Context
79 *
80 * The world switch goes thru an intermediate memory context which purpose it is
81 * to provide different mappings of the switcher code. All guest mappings are also
82 * present in this context.
83 *
84 * The switcher code is mapped at the same location as on the host, at an
85 * identity mapped location (physical equals virtual address), and at the
86 * hypervisor location. The identity mapped location is for when the world
87 * switches that involves disabling paging.
88 *
89 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
90 * simplifies switching guest CPU mode and consistency at the cost of more
91 * code to do the work. All memory use for those page tables is located below
92 * 4GB (this includes page tables for guest context mappings).
93 *
94 * Note! The intermediate memory context is also used for 64-bit guest
95 * execution on 32-bit hosts. Because we need to load 64-bit registers
96 * prior to switching to guest context, we need to be in 64-bit mode
97 * first. So, HM has some 64-bit worker routines in VMMRC.rc that get
98 * invoked via the special world switcher code in LegacyToAMD64.asm.
99 *
100 *
101 * @subsection subsec_pgm_int_gc Guest Context Mappings
102 *
103 * During assignment and relocation of a guest context mapping the intermediate
104 * memory context is used to verify the new location.
105 *
106 * Guest context mappings are currently restricted to below 4GB, for reasons
107 * of simplicity. This may change when we implement AMD64 support.
108 *
109 *
110 *
111 *
112 * @section sec_pgm_misc Misc
113 *
114 *
115 * @subsection sec_pgm_misc_A20 The A20 Gate
116 *
117 * PGM implements the A20 gate masking when translating a virtual guest address
118 * into a physical address for CPU access, i.e. PGMGstGetPage (and friends) and
119 * the code reading the guest page table entries during shadowing. The masking
120 * is done consistenly for all CPU modes, paged ones included. Large pages are
121 * also masked correctly. (On current CPUs, experiments indicates that AMD does
122 * not apply A20M in paged modes and intel only does it for the 2nd MB of
123 * memory.)
124 *
125 * The A20 gate implementation is per CPU core. It can be configured on a per
126 * core basis via the keyboard device and PC architecture device. This is
127 * probably not exactly how real CPUs do it, but SMP and A20 isn't a place where
128 * guest OSes try pushing things anyway, so who cares. (On current real systems
129 * the A20M signal is probably only sent to the boot CPU and it affects all
130 * thread and probably all cores in that package.)
131 *
132 * The keyboard device and the PC architecture device doesn't OR their A20
133 * config bits together, rather they are currently implemented such that they
134 * mirror the CPU state. So, flipping the bit in either of them will change the
135 * A20 state. (On real hardware the bits of the two devices should probably be
136 * ORed together to indicate enabled, i.e. both needs to be cleared to disable
137 * A20 masking.)
138 *
139 * The A20 state will change immediately, transmeta fashion. There is no delays
140 * due to buses, wiring or other physical stuff. (On real hardware there are
141 * normally delays, the delays differs between the two devices and probably also
142 * between chipsets and CPU generations. Note that it's said that transmeta CPUs
143 * does the change immediately like us, they apparently intercept/handles the
144 * port accesses in microcode. Neat.)
145 *
146 * @sa http://en.wikipedia.org/wiki/A20_line#The_80286_and_the_high_memory_area
147 *
148 *
149 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
150 *
151 * The differences between legacy PAE and long mode PAE are:
152 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
153 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
154 * usual meanings while 6 is ignored (AMD). This means that upon switching to
155 * legacy PAE mode we'll have to clear these bits and when going to long mode
156 * they must be set. This applies to both intermediate and shadow contexts,
157 * however we don't need to do it for the intermediate one since we're
158 * executing with CR0.WP at that time.
159 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
160 * a page aligned one is required.
161 *
162 *
163 * @section sec_pgm_handlers Access Handlers
164 *
165 * Placeholder.
166 *
167 *
168 * @subsection sec_pgm_handlers_phys Physical Access Handlers
169 *
170 * Placeholder.
171 *
172 *
173 * @subsection sec_pgm_handlers_virt Virtual Access Handlers (obsolete)
174 *
175 * We currently implement three types of virtual access handlers: ALL, WRITE
176 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERKIND for some more details.
177 *
178 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
179 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
180 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
181 * rest of this section is going to be about these handlers.
182 *
183 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
184 * how successful this is gonna be...
185 *
186 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
187 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
188 * and create a new node that is inserted into the AVL tree (range key). Then
189 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
190 *
191 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
192 *
193 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
194 * via the current guest CR3 and update the physical page -> virtual handler
195 * translation. Needless to say, this doesn't exactly scale very well. If any changes
196 * are detected, it will flag a virtual bit update just like we did on registration.
197 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
198 *
199 * 2b. The virtual bit update process will iterate all the pages covered by all the
200 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
201 * virtual handlers on that page.
202 *
203 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
204 * we don't miss any alias mappings of the monitored pages.
205 *
206 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
207 *
208 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
209 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
210 * will call the handlers like in the next step. If the physical mapping has
211 * changed we will - some time in the future - perform a handler callback
212 * (optional) and update the physical -> virtual handler cache.
213 *
214 * 4. \#PF(,write) on a page in the range. This will cause the handler to
215 * be invoked.
216 *
217 * 5. The guest invalidates the page and changes the physical backing or
218 * unmaps it. This should cause the invalidation callback to be invoked
219 * (it might not yet be 100% perfect). Exactly what happens next... is
220 * this where we mess up and end up out of sync for a while?
221 *
222 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
223 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
224 * this handler to NONE and trigger a full PGM resync (basically the same
225 * as int step 1). Which means 2 is executed again.
226 *
227 *
228 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
229 *
230 * There is a bunch of things that needs to be done to make the virtual handlers
231 * work 100% correctly and work more efficiently.
232 *
233 * The first bit hasn't been implemented yet because it's going to slow the
234 * whole mess down even more, and besides it seems to be working reliably for
235 * our current uses. OTOH, some of the optimizations might end up more or less
236 * implementing the missing bits, so we'll see.
237 *
238 * On the optimization side, the first thing to do is to try avoid unnecessary
239 * cache flushing. Then try team up with the shadowing code to track changes
240 * in mappings by means of access to them (shadow in), updates to shadows pages,
241 * invlpg, and shadow PT discarding (perhaps).
242 *
243 * Some idea that have popped up for optimization for current and new features:
244 * - bitmap indicating where there are virtual handlers installed.
245 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
246 * - Further optimize this by min/max (needs min/max avl getters).
247 * - Shadow page table entry bit (if any left)?
248 *
249 */
250
251
252/** @page pg_pgm_phys PGM Physical Guest Memory Management
253 *
254 *
255 * Objectives:
256 * - Guest RAM over-commitment using memory ballooning,
257 * zero pages and general page sharing.
258 * - Moving or mirroring a VM onto a different physical machine.
259 *
260 *
261 * @section sec_pgmPhys_Definitions Definitions
262 *
263 * Allocation chunk - A RTR0MemObjAllocPhysNC or RTR0MemObjAllocPhys allocate
264 * memory object and the tracking machinery associated with it.
265 *
266 *
267 *
268 *
269 * @section sec_pgmPhys_AllocPage Allocating a page.
270 *
271 * Initially we map *all* guest memory to the (per VM) zero page, which
272 * means that none of the read functions will cause pages to be allocated.
273 *
274 * Exception, access bit in page tables that have been shared. This must
275 * be handled, but we must also make sure PGMGst*Modify doesn't make
276 * unnecessary modifications.
277 *
278 * Allocation points:
279 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
280 * - Replacing a zero page mapping at \#PF.
281 * - Replacing a shared page mapping at \#PF.
282 * - ROM registration (currently MMR3RomRegister).
283 * - VM restore (pgmR3Load).
284 *
285 * For the first three it would make sense to keep a few pages handy
286 * until we've reached the max memory commitment for the VM.
287 *
288 * For the ROM registration, we know exactly how many pages we need
289 * and will request these from ring-0. For restore, we will save
290 * the number of non-zero pages in the saved state and allocate
291 * them up front. This would allow the ring-0 component to refuse
292 * the request if the isn't sufficient memory available for VM use.
293 *
294 * Btw. for both ROM and restore allocations we won't be requiring
295 * zeroed pages as they are going to be filled instantly.
296 *
297 *
298 * @section sec_pgmPhys_FreePage Freeing a page
299 *
300 * There are a few points where a page can be freed:
301 * - After being replaced by the zero page.
302 * - After being replaced by a shared page.
303 * - After being ballooned by the guest additions.
304 * - At reset.
305 * - At restore.
306 *
307 * When freeing one or more pages they will be returned to the ring-0
308 * component and replaced by the zero page.
309 *
310 * The reasoning for clearing out all the pages on reset is that it will
311 * return us to the exact same state as on power on, and may thereby help
312 * us reduce the memory load on the system. Further it might have a
313 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
314 *
315 * On restore, as mention under the allocation topic, pages should be
316 * freed / allocated depending on how many is actually required by the
317 * new VM state. The simplest approach is to do like on reset, and free
318 * all non-ROM pages and then allocate what we need.
319 *
320 * A measure to prevent some fragmentation, would be to let each allocation
321 * chunk have some affinity towards the VM having allocated the most pages
322 * from it. Also, try make sure to allocate from allocation chunks that
323 * are almost full. Admittedly, both these measures might work counter to
324 * our intentions and its probably not worth putting a lot of effort,
325 * cpu time or memory into this.
326 *
327 *
328 * @section sec_pgmPhys_SharePage Sharing a page
329 *
330 * The basic idea is that there there will be a idle priority kernel
331 * thread walking the non-shared VM pages hashing them and looking for
332 * pages with the same checksum. If such pages are found, it will compare
333 * them byte-by-byte to see if they actually are identical. If found to be
334 * identical it will allocate a shared page, copy the content, check that
335 * the page didn't change while doing this, and finally request both the
336 * VMs to use the shared page instead. If the page is all zeros (special
337 * checksum and byte-by-byte check) it will request the VM that owns it
338 * to replace it with the zero page.
339 *
340 * To make this efficient, we will have to make sure not to try share a page
341 * that will change its contents soon. This part requires the most work.
342 * A simple idea would be to request the VM to write monitor the page for
343 * a while to make sure it isn't modified any time soon. Also, it may
344 * make sense to skip pages that are being write monitored since this
345 * information is readily available to the thread if it works on the
346 * per-VM guest memory structures (presently called PGMRAMRANGE).
347 *
348 *
349 * @section sec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
350 *
351 * The pages are organized in allocation chunks in ring-0, this is a necessity
352 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
353 * could easily work on a page-by-page basis if we liked. Whether this is possible
354 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
355 * become a problem as part of the idea here is that we wish to return memory to
356 * the host system.
357 *
358 * For instance, starting two VMs at the same time, they will both allocate the
359 * guest memory on-demand and if permitted their page allocations will be
360 * intermixed. Shut down one of the two VMs and it will be difficult to return
361 * any memory to the host system because the page allocation for the two VMs are
362 * mixed up in the same allocation chunks.
363 *
364 * To further complicate matters, when pages are freed because they have been
365 * ballooned or become shared/zero the whole idea is that the page is supposed
366 * to be reused by another VM or returned to the host system. This will cause
367 * allocation chunks to contain pages belonging to different VMs and prevent
368 * returning memory to the host when one of those VM shuts down.
369 *
370 * The only way to really deal with this problem is to move pages. This can
371 * either be done at VM shutdown and or by the idle priority worker thread
372 * that will be responsible for finding sharable/zero pages. The mechanisms
373 * involved for coercing a VM to move a page (or to do it for it) will be
374 * the same as when telling it to share/zero a page.
375 *
376 *
377 * @section sec_pgmPhys_Tracking Tracking Structures And Their Cost
378 *
379 * There's a difficult balance between keeping the per-page tracking structures
380 * (global and guest page) easy to use and keeping them from eating too much
381 * memory. We have limited virtual memory resources available when operating in
382 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
383 * tracking structures will be attempted designed such that we can deal with up
384 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
385 *
386 *
387 * @subsection subsec_pgmPhys_Tracking_Kernel Kernel Space
388 *
389 * @see pg_GMM
390 *
391 * @subsection subsec_pgmPhys_Tracking_PerVM Per-VM
392 *
393 * Fixed info is the physical address of the page (HCPhys) and the page id
394 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
395 * Today we've restricting ourselves to 40(-12) bits because this is the current
396 * restrictions of all AMD64 implementations (I think Barcelona will up this
397 * to 48(-12) bits, not that it really matters) and I needed the bits for
398 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
399 * decent range for the page id: 2^(28+12) = 1024TB.
400 *
401 * In additions to these, we'll have to keep maintaining the page flags as we
402 * currently do. Although it wouldn't harm to optimize these quite a bit, like
403 * for instance the ROM shouldn't depend on having a write handler installed
404 * in order for it to become read-only. A RO/RW bit should be considered so
405 * that the page syncing code doesn't have to mess about checking multiple
406 * flag combinations (ROM || RW handler || write monitored) in order to
407 * figure out how to setup a shadow PTE. But this of course, is second
408 * priority at present. Current this requires 12 bits, but could probably
409 * be optimized to ~8.
410 *
411 * Then there's the 24 bits used to track which shadow page tables are
412 * currently mapping a page for the purpose of speeding up physical
413 * access handlers, and thereby the page pool cache. More bit for this
414 * purpose wouldn't hurt IIRC.
415 *
416 * Then there is a new bit in which we need to record what kind of page
417 * this is, shared, zero, normal or write-monitored-normal. This'll
418 * require 2 bits. One bit might be needed for indicating whether a
419 * write monitored page has been written to. And yet another one or
420 * two for tracking migration status. 3-4 bits total then.
421 *
422 * Whatever is left will can be used to record the sharabilitiy of a
423 * page. The page checksum will not be stored in the per-VM table as
424 * the idle thread will not be permitted to do modifications to it.
425 * It will instead have to keep its own working set of potentially
426 * shareable pages and their check sums and stuff.
427 *
428 * For the present we'll keep the current packing of the
429 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
430 * we'll have to change it to a struct with a total of 128-bits at
431 * our disposal.
432 *
433 * The initial layout will be like this:
434 * @verbatim
435 RTHCPHYS HCPhys; The current stuff.
436 63:40 Current shadow PT tracking stuff.
437 39:12 The physical page frame number.
438 11:0 The current flags.
439 uint32_t u28PageId : 28; The page id.
440 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
441 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
442 uint32_t u1Reserved : 1; Reserved for later.
443 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
444 @endverbatim
445 *
446 * The final layout will be something like this:
447 * @verbatim
448 RTHCPHYS HCPhys; The current stuff.
449 63:48 High page id (12+).
450 47:12 The physical page frame number.
451 11:0 Low page id.
452 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
453 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
454 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
455 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
456 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
457 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
458 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
459 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
460 @endverbatim
461 *
462 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
463 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
464 * to one or more VMs is: (32GB >> GUEST_PAGE_SHIFT) * 16 bytes, or 128MBs. Or
465 * another example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
466 *
467 * A couple of cost examples for the total cost per-VM + kernel.
468 * 32-bit Windows and 32-bit linux:
469 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
470 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
471 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
472 * 64-bit Windows and 64-bit linux:
473 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
474 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
475 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
476 *
477 * UPDATE - 2007-09-27:
478 * Will need a ballooned flag/state too because we cannot
479 * trust the guest 100% and reporting the same page as ballooned more
480 * than once will put the GMM off balance.
481 *
482 *
483 * @section sec_pgmPhys_Serializing Serializing Access
484 *
485 * Initially, we'll try a simple scheme:
486 *
487 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
488 * by the EMT thread of that VM while in the pgm critsect.
489 * - Other threads in the VM process that needs to make reliable use of
490 * the per-VM RAM tracking structures will enter the critsect.
491 * - No process external thread or kernel thread will ever try enter
492 * the pgm critical section, as that just won't work.
493 * - The idle thread (and similar threads) doesn't not need 100% reliable
494 * data when performing it tasks as the EMT thread will be the one to
495 * do the actual changes later anyway. So, as long as it only accesses
496 * the main ram range, it can do so by somehow preventing the VM from
497 * being destroyed while it works on it...
498 *
499 * - The over-commitment management, including the allocating/freeing
500 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
501 * more mundane mutex implementation is broken on Linux).
502 * - A separate mutex is protecting the set of allocation chunks so
503 * that pages can be shared or/and freed up while some other VM is
504 * allocating more chunks. This mutex can be take from under the other
505 * one, but not the other way around.
506 *
507 *
508 * @section sec_pgmPhys_Request VM Request interface
509 *
510 * When in ring-0 it will become necessary to send requests to a VM so it can
511 * for instance move a page while defragmenting during VM destroy. The idle
512 * thread will make use of this interface to request VMs to setup shared
513 * pages and to perform write monitoring of pages.
514 *
515 * I would propose an interface similar to the current VMReq interface, similar
516 * in that it doesn't require locking and that the one sending the request may
517 * wait for completion if it wishes to. This shouldn't be very difficult to
518 * realize.
519 *
520 * The requests themselves are also pretty simple. They are basically:
521 * -# Check that some precondition is still true.
522 * -# Do the update.
523 * -# Update all shadow page tables involved with the page.
524 *
525 * The 3rd step is identical to what we're already doing when updating a
526 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
527 *
528 *
529 *
530 * @section sec_pgmPhys_MappingCaches Mapping Caches
531 *
532 * In order to be able to map in and out memory and to be able to support
533 * guest with more RAM than we've got virtual address space, we'll employing
534 * a mapping cache. Normally ring-0 and ring-3 can share the same cache,
535 * however on 32-bit darwin the ring-0 code is running in a different memory
536 * context and therefore needs a separate cache. In raw-mode context we also
537 * need a separate cache. The 32-bit darwin mapping cache and the one for
538 * raw-mode context share a lot of code, see PGMRZDYNMAP.
539 *
540 *
541 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
542 *
543 * We've considered implementing the ring-3 mapping cache page based but found
544 * that this was bother some when one had to take into account TLBs+SMP and
545 * portability (missing the necessary APIs on several platforms). There were
546 * also some performance concerns with this approach which hadn't quite been
547 * worked out.
548 *
549 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
550 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
551 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
552 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
553 * costly than a single page, although how much more costly is uncertain. We'll
554 * try address this by using a very big cache, preferably bigger than the actual
555 * VM RAM size if possible. The current VM RAM sizes should give some idea for
556 * 32-bit boxes, while on 64-bit we can probably get away with employing an
557 * unlimited cache.
558 *
559 * The cache have to parts, as already indicated, the ring-3 side and the
560 * ring-0 side.
561 *
562 * The ring-0 will be tied to the page allocator since it will operate on the
563 * memory objects it contains. It will therefore require the first ring-0 mutex
564 * discussed in @ref sec_pgmPhys_Serializing. We some double house keeping wrt
565 * to who has mapped what I think, since both VMMR0.r0 and RTR0MemObj will keep
566 * track of mapping relations
567 *
568 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
569 * require anyone that desires to do changes to the mapping cache to do that
570 * from within this critsect. Alternatively, we could employ a separate critsect
571 * for serializing changes to the mapping cache as this would reduce potential
572 * contention with other threads accessing mappings unrelated to the changes
573 * that are in process. We can see about this later, contention will show
574 * up in the statistics anyway, so it'll be simple to tell.
575 *
576 * The organization of the ring-3 part will be very much like how the allocation
577 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
578 * having to walk the tree all the time, we'll have a couple of lookaside entries
579 * like in we do for I/O ports and MMIO in IOM.
580 *
581 * The simplified flow of a PGMPhysRead/Write function:
582 * -# Enter the PGM critsect.
583 * -# Lookup GCPhys in the ram ranges and get the Page ID.
584 * -# Calc the Allocation Chunk ID from the Page ID.
585 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
586 * If not found in cache:
587 * -# Call ring-0 and request it to be mapped and supply
588 * a chunk to be unmapped if the cache is maxed out already.
589 * -# Insert the new mapping into the AVL tree (id + R3 address).
590 * -# Update the relevant lookaside entry and return the mapping address.
591 * -# Do the read/write according to monitoring flags and everything.
592 * -# Leave the critsect.
593 *
594 *
595 * @section sec_pgmPhys_Changes Changes
596 *
597 * Breakdown of the changes involved?
598 */
599
600
601/*********************************************************************************************************************************
602* Header Files *
603*********************************************************************************************************************************/
604#define LOG_GROUP LOG_GROUP_PGM
605#define VBOX_WITHOUT_PAGING_BIT_FIELDS /* 64-bit bitfields are just asking for trouble. See @bugref{9841} and others. */
606#include <VBox/vmm/dbgf.h>
607#include <VBox/vmm/pgm.h>
608#include <VBox/vmm/cpum.h>
609#include <VBox/vmm/iom.h>
610#include <VBox/sup.h>
611#include <VBox/vmm/mm.h>
612#include <VBox/vmm/em.h>
613#include <VBox/vmm/stam.h>
614#include <VBox/vmm/selm.h>
615#include <VBox/vmm/ssm.h>
616#include <VBox/vmm/hm.h>
617#include "PGMInternal.h"
618#include <VBox/vmm/vmcc.h>
619#include <VBox/vmm/uvm.h>
620#include "PGMInline.h"
621
622#include <VBox/dbg.h>
623#include <VBox/param.h>
624#include <VBox/err.h>
625
626#include <iprt/asm.h>
627#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
628# include <iprt/asm-amd64-x86.h>
629#endif
630#include <iprt/assert.h>
631#include <iprt/env.h>
632#include <iprt/file.h>
633#include <iprt/mem.h>
634#include <iprt/rand.h>
635#include <iprt/string.h>
636#include <iprt/thread.h>
637#ifdef RT_OS_LINUX
638# include <iprt/linux/sysfs.h>
639#endif
640
641
642/*********************************************************************************************************************************
643* Structures and Typedefs *
644*********************************************************************************************************************************/
645/**
646 * Argument package for pgmR3RElocatePhysHnadler, pgmR3RelocateVirtHandler and
647 * pgmR3RelocateHyperVirtHandler.
648 */
649typedef struct PGMRELOCHANDLERARGS
650{
651 RTGCINTPTR offDelta;
652 PVM pVM;
653} PGMRELOCHANDLERARGS;
654/** Pointer to a page access handlere relocation argument package. */
655typedef PGMRELOCHANDLERARGS const *PCPGMRELOCHANDLERARGS;
656
657
658/*********************************************************************************************************************************
659* Internal Functions *
660*********************************************************************************************************************************/
661static int pgmR3InitPaging(PVM pVM);
662static int pgmR3InitStats(PVM pVM);
663static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
664static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
665static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
666#ifdef VBOX_STRICT
667static FNVMATSTATE pgmR3ResetNoMorePhysWritesFlag;
668#endif
669
670#ifdef VBOX_WITH_DEBUGGER
671static FNDBGCCMD pgmR3CmdError;
672static FNDBGCCMD pgmR3CmdSync;
673static FNDBGCCMD pgmR3CmdSyncAlways;
674# ifdef VBOX_STRICT
675static FNDBGCCMD pgmR3CmdAssertCR3;
676# endif
677static FNDBGCCMD pgmR3CmdPhysToFile;
678#endif
679
680
681/*********************************************************************************************************************************
682* Global Variables *
683*********************************************************************************************************************************/
684#ifdef VBOX_WITH_DEBUGGER
685/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
686static const DBGCVARDESC g_aPgmErrorArgs[] =
687{
688 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
689 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
690};
691
692static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
693{
694 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
695 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
696 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
697};
698
699# ifdef DEBUG_sandervl
700static const DBGCVARDESC g_aPgmCountPhysWritesArgs[] =
701{
702 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
703 { 1, 1, DBGCVAR_CAT_STRING, 0, "enabled", "on/off." },
704 { 1, 1, DBGCVAR_CAT_NUMBER_NO_RANGE, 0, "interval", "Interval in ms." },
705};
706# endif
707
708/** Command descriptors. */
709static const DBGCCMD g_aCmds[] =
710{
711 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
712 { "pgmsync", 0, 0, NULL, 0, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
713 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
714 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
715# ifdef VBOX_STRICT
716 { "pgmassertcr3", 0, 0, NULL, 0, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
717# ifdef VBOX_WITH_PAGE_SHARING
718 { "pgmcheckduppages", 0, 0, NULL, 0, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
719 { "pgmsharedmodules", 0, 0, NULL, 0, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
720# endif
721# endif
722 { "pgmsyncalways", 0, 0, NULL, 0, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
723 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
724};
725#endif
726
727#ifdef VBOX_WITH_PGM_NEM_MODE
728
729/**
730 * Interface that NEM uses to switch PGM into simplified memory managment mode.
731 *
732 * This call occurs before PGMR3Init.
733 *
734 * @param pVM The cross context VM structure.
735 */
736VMMR3_INT_DECL(void) PGMR3EnableNemMode(PVM pVM)
737{
738 AssertFatal(!PDMCritSectIsInitialized(&pVM->pgm.s.CritSectX));
739# ifndef VBOX_WITH_ONLY_PGM_NEM_MODE
740 if (!pVM->pgm.s.fNemMode)
741 {
742 LogRel(("PGM: Enabling NEM mode\n"));
743 pVM->pgm.s.fNemMode = true;
744 }
745# endif
746}
747
748
749/**
750 * Checks whether the simplificed memory management mode for NEM is enabled.
751 *
752 * @returns true if enabled, false if not.
753 * @param pVM The cross context VM structure.
754 */
755VMMR3_INT_DECL(bool) PGMR3IsNemModeEnabled(PVM pVM)
756{
757 RT_NOREF(pVM);
758 return PGM_IS_IN_NEM_MODE(pVM);
759}
760
761#endif /* VBOX_WITH_PGM_NEM_MODE */
762
763/**
764 * Initiates the paging of VM.
765 *
766 * @returns VBox status code.
767 * @param pVM The cross context VM structure.
768 */
769VMMR3DECL(int) PGMR3Init(PVM pVM)
770{
771 LogFlow(("PGMR3Init:\n"));
772 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
773 int rc;
774
775 /*
776 * Assert alignment and sizes.
777 */
778 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
779 AssertCompile(sizeof(pVM->apCpusR3[0]->pgm.s) <= sizeof(pVM->apCpusR3[0]->pgm.padding));
780 AssertCompileMemberAlignment(PGM, CritSectX, sizeof(uintptr_t));
781
782 /*
783 * If we're in driveless mode we have to use the simplified memory mode.
784 */
785 bool const fDriverless = SUPR3IsDriverless();
786 if (fDriverless)
787 {
788#ifdef VBOX_WITH_PGM_NEM_MODE
789# ifndef VBOX_WITH_ONLY_PGM_NEM_MODE
790 if (!PGM_IS_IN_NEM_MODE(pVM))
791 {
792 LogRel(("PGM: Enabling NEM mode (driverless)\n"));
793 pVM->pgm.s.fNemMode = true;
794 }
795# endif
796#else
797 return VMR3SetError(pVM->pUVM, VERR_SUP_DRIVERLESS, RT_SRC_POS,
798 "Driverless requires that VBox is built with VBOX_WITH_PGM_NEM_MODE defined");
799#endif
800 }
801
802 /*
803 * Init the structure.
804 */
805 /*pVM->pgm.s.fRestoreRomPagesAtReset = false;*/
806
807 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
808 {
809 pVM->pgm.s.aHandyPages[i].HCPhysGCPhys = NIL_GMMPAGEDESC_PHYS;
810 pVM->pgm.s.aHandyPages[i].fZeroed = false;
811 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
812 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
813 }
814
815 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aLargeHandyPage); i++)
816 {
817 pVM->pgm.s.aLargeHandyPage[i].HCPhysGCPhys = NIL_GMMPAGEDESC_PHYS;
818 pVM->pgm.s.aLargeHandyPage[i].fZeroed = false;
819 pVM->pgm.s.aLargeHandyPage[i].idPage = NIL_GMM_PAGEID;
820 pVM->pgm.s.aLargeHandyPage[i].idSharedPage = NIL_GMM_PAGEID;
821 }
822
823 AssertReleaseReturn(pVM->pgm.s.cPhysHandlerTypes == 0, VERR_WRONG_ORDER);
824 for (size_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aPhysHandlerTypes); i++)
825 {
826 if (fDriverless)
827 pVM->pgm.s.aPhysHandlerTypes[i].hType = i | (RTRandU64() & ~(uint64_t)PGMPHYSHANDLERTYPE_IDX_MASK);
828 pVM->pgm.s.aPhysHandlerTypes[i].enmKind = PGMPHYSHANDLERKIND_INVALID;
829 pVM->pgm.s.aPhysHandlerTypes[i].pfnHandler = pgmR3HandlerPhysicalHandlerInvalid;
830 }
831
832 /* Init the per-CPU part. */
833 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
834 {
835 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
836 PPGMCPU pPGM = &pVCpu->pgm.s;
837
838 pPGM->enmShadowMode = PGMMODE_INVALID;
839 pPGM->enmGuestMode = PGMMODE_INVALID;
840 pPGM->enmGuestSlatMode = PGMSLAT_INVALID;
841 pPGM->idxGuestModeData = UINT8_MAX;
842 pPGM->idxShadowModeData = UINT8_MAX;
843 pPGM->idxBothModeData = UINT8_MAX;
844
845 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
846 pPGM->GCPhysNstGstCR3 = NIL_RTGCPHYS;
847 pPGM->GCPhysPaeCR3 = NIL_RTGCPHYS;
848
849 pPGM->pGst32BitPdR3 = NULL;
850 pPGM->pGstPaePdptR3 = NULL;
851 pPGM->pGstAmd64Pml4R3 = NULL;
852 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
853 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
854 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
855#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
856 pPGM->pGstEptPml4R3 = NULL;
857 pPGM->pGstEptPml4R0 = NIL_RTR0PTR;
858 pPGM->uEptPtr = 0;
859#endif
860 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
861 {
862 pPGM->apGstPaePDsR3[i] = NULL;
863 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
864 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
865 }
866
867 pPGM->fA20Enabled = true;
868 pPGM->GCPhysA20Mask = ~((RTGCPHYS)!pPGM->fA20Enabled << 20);
869 }
870
871 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
872 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
873
874 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
875#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
876 true
877#else
878 false
879#endif
880 );
881 AssertLogRelRCReturn(rc, rc);
882
883#if HC_ARCH_BITS == 32
884# ifdef RT_OS_DARWIN
885 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE * 3);
886# else
887 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
888# endif
889#else
890 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
891#endif
892 AssertLogRelRCReturn(rc, rc);
893 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
894 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
895
896 /*
897 * Get the configured RAM size - to estimate saved state size.
898 */
899 uint64_t cbRam;
900 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
901 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
902 cbRam = 0;
903 else if (RT_SUCCESS(rc))
904 {
905 if (cbRam < GUEST_PAGE_SIZE)
906 cbRam = 0;
907 cbRam = RT_ALIGN_64(cbRam, GUEST_PAGE_SIZE);
908 }
909 else
910 {
911 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
912 return rc;
913 }
914
915 /*
916 * Check for PCI pass-through and other configurables.
917 */
918 rc = CFGMR3QueryBoolDef(pCfgPGM, "PciPassThrough", &pVM->pgm.s.fPciPassthrough, false);
919 AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"PciPassThrough\", rc=%Rrc.\n", rc), rc);
920 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough || pVM->pgm.s.fRamPreAlloc, VERR_INVALID_PARAMETER);
921
922 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "PageFusionAllowed", &pVM->pgm.s.fPageFusionAllowed, false);
923 AssertLogRelRCReturn(rc, rc);
924
925 /** @cfgm{/PGM/ZeroRamPagesOnReset, boolean, true}
926 * Whether to clear RAM pages on (hard) reset. */
927 rc = CFGMR3QueryBoolDef(pCfgPGM, "ZeroRamPagesOnReset", &pVM->pgm.s.fZeroRamPagesOnReset, true);
928 AssertLogRelRCReturn(rc, rc);
929
930 /*
931 * Register callbacks, string formatters and the saved state data unit.
932 */
933#ifdef VBOX_STRICT
934 VMR3AtStateRegister(pVM->pUVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
935#endif
936 PGMRegisterStringFormatTypes();
937
938 rc = pgmR3InitSavedState(pVM, cbRam);
939 if (RT_FAILURE(rc))
940 return rc;
941
942 /*
943 * Initialize the PGM critical section and flush the phys TLBs
944 */
945 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSectX, RT_SRC_POS, "PGM");
946 AssertRCReturn(rc, rc);
947
948 pgmR3PhysChunkInvalidateTLB(pVM, false /*fInRendezvous*/); /* includes pgmPhysInvalidatePageMapTLB call */
949
950 /*
951 * For the time being we sport a full set of handy pages in addition to the base
952 * memory to simplify things.
953 */
954 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
955 AssertRCReturn(rc, rc);
956
957 /*
958 * Setup the zero page (HCPHysZeroPg is set by ring-0).
959 */
960 RT_ZERO(pVM->pgm.s.abZeroPg); /* paranoia */
961#ifndef VBOX_WITH_ONLY_PGM_NEM_MODE
962 if (fDriverless)
963 pVM->pgm.s.HCPhysZeroPg = _4G - GUEST_PAGE_SIZE * 2 /* fake to avoid PGM_PAGE_INIT_ZERO assertion */;
964 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
965 AssertRelease(pVM->pgm.s.HCPhysZeroPg != 0);
966 Log(("HCPhysZeroPg=%RHp abZeroPg=%p\n", pVM->pgm.s.HCPhysZeroPg, pVM->pgm.s.abZeroPg));
967#endif
968
969 /*
970 * Setup the invalid MMIO page (HCPhysMmioPg is set by ring-0).
971 * (The invalid bits in HCPhysInvMmioPg are set later on init complete.)
972 */
973 ASMMemFill32(pVM->pgm.s.abMmioPg, sizeof(pVM->pgm.s.abMmioPg), 0xfeedface);
974#ifndef VBOX_WITH_ONLY_PGM_NEM_MODE
975 if (fDriverless)
976 pVM->pgm.s.HCPhysMmioPg = _4G - GUEST_PAGE_SIZE * 3 /* fake to avoid PGM_PAGE_INIT_ZERO assertion */;
977 AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS);
978 AssertRelease(pVM->pgm.s.HCPhysMmioPg != 0);
979 pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg;
980 Log(("HCPhysInvMmioPg=%RHp abMmioPg=%p\n", pVM->pgm.s.HCPhysMmioPg, pVM->pgm.s.abMmioPg));
981#endif VBOX_WITH_ONLY_PGM_NEM_MODE
982
983
984 /*
985 * Initialize physical access handlers.
986 */
987 /** @cfgm{/PGM/MaxPhysicalAccessHandlers, uint32_t, 32, 65536, 6144}
988 * Number of physical access handlers allowed (subject to rounding). This is
989 * managed as one time allocation during initializations. The default is
990 * lower for a driverless setup. */
991 /** @todo can lower it for nested paging too, at least when there is no
992 * nested guest involved. */
993 uint32_t cAccessHandlers = 0;
994 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxPhysicalAccessHandlers", &cAccessHandlers, !fDriverless ? 6144 : 640);
995 AssertLogRelRCReturn(rc, rc);
996 AssertLogRelMsgStmt(cAccessHandlers >= 32, ("cAccessHandlers=%#x, min 32\n", cAccessHandlers), cAccessHandlers = 32);
997 AssertLogRelMsgStmt(cAccessHandlers <= _64K, ("cAccessHandlers=%#x, max 65536\n", cAccessHandlers), cAccessHandlers = _64K);
998#if defined(VBOX_WITH_R0_MODULES) && !defined(VBOX_WITH_MINIMAL_R0)
999 if (!fDriverless)
1000 {
1001 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_PHYS_HANDLER_INIT, cAccessHandlers, NULL);
1002 AssertRCReturn(rc, rc);
1003 AssertPtr(pVM->pgm.s.pPhysHandlerTree);
1004 AssertPtr(pVM->pgm.s.PhysHandlerAllocator.m_paNodes);
1005 AssertPtr(pVM->pgm.s.PhysHandlerAllocator.m_pbmAlloc);
1006 }
1007 else
1008#endif
1009 {
1010 uint32_t cbTreeAndBitmap = 0;
1011 uint32_t const cbTotalAligned = pgmHandlerPhysicalCalcTableSizes(&cAccessHandlers, &cbTreeAndBitmap);
1012 uint8_t *pb = NULL;
1013 rc = SUPR3PageAlloc(cbTotalAligned >> HOST_PAGE_SHIFT, 0, (void **)&pb);
1014 AssertLogRelRCReturn(rc, rc);
1015
1016 pVM->pgm.s.PhysHandlerAllocator.initSlabAllocator(cAccessHandlers, (PPGMPHYSHANDLER)&pb[cbTreeAndBitmap],
1017 (uint64_t *)&pb[sizeof(PGMPHYSHANDLERTREE)]);
1018 pVM->pgm.s.pPhysHandlerTree = (PPGMPHYSHANDLERTREE)pb;
1019 pVM->pgm.s.pPhysHandlerTree->initWithAllocator(&pVM->pgm.s.PhysHandlerAllocator);
1020 }
1021
1022 /*
1023 * Register the physical access handler protecting ROMs.
1024 */
1025 if (RT_SUCCESS(rc))
1026 /** @todo why isn't pgmPhysRomWriteHandler registered for ring-0? */
1027 rc = PGMR3HandlerPhysicalTypeRegister(pVM, PGMPHYSHANDLERKIND_WRITE, 0 /*fFlags*/, pgmPhysRomWriteHandler,
1028 "ROM write protection", &pVM->pgm.s.hRomPhysHandlerType);
1029
1030 /*
1031 * Register the physical access handler doing dirty MMIO2 tracing.
1032 */
1033 if (RT_SUCCESS(rc))
1034 rc = PGMR3HandlerPhysicalTypeRegister(pVM, PGMPHYSHANDLERKIND_WRITE, PGMPHYSHANDLER_F_KEEP_PGM_LOCK,
1035 pgmPhysMmio2WriteHandler, "MMIO2 dirty page tracing",
1036 &pVM->pgm.s.hMmio2DirtyPhysHandlerType);
1037
1038 /*
1039 * Init the paging.
1040 */
1041 if (RT_SUCCESS(rc))
1042 rc = pgmR3InitPaging(pVM);
1043
1044 /*
1045 * Init the page pool.
1046 */
1047 if (RT_SUCCESS(rc))
1048 rc = pgmR3PoolInit(pVM);
1049
1050 if (RT_SUCCESS(rc))
1051 {
1052 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1053 {
1054 PVMCPU pVCpu = pVM->apCpusR3[i];
1055 rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL, false /* fForce */);
1056 if (RT_FAILURE(rc))
1057 break;
1058 }
1059 }
1060
1061 if (RT_SUCCESS(rc))
1062 {
1063 /*
1064 * Info & statistics
1065 */
1066 DBGFR3InfoRegisterInternalEx(pVM, "mode",
1067 "Shows the current paging mode. "
1068 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing is given.",
1069 pgmR3InfoMode,
1070 DBGFINFO_FLAGS_ALL_EMTS);
1071 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1072 "Dumps all the entries in the top level paging table. No arguments.",
1073 pgmR3InfoCr3);
1074 DBGFR3InfoRegisterInternal(pVM, "phys",
1075 "Dumps all the physical address ranges. Pass 'verbose' to get more details.",
1076 pgmR3PhysInfo);
1077 DBGFR3InfoRegisterInternal(pVM, "handlers",
1078 "Dumps physical, virtual and hyper virtual handlers. "
1079 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1080 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1081 pgmR3InfoHandlers);
1082
1083 pgmR3InitStats(pVM);
1084
1085#ifdef VBOX_WITH_DEBUGGER
1086 /*
1087 * Debugger commands.
1088 */
1089 static bool s_fRegisteredCmds = false;
1090 if (!s_fRegisteredCmds)
1091 {
1092 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1093 if (RT_SUCCESS(rc2))
1094 s_fRegisteredCmds = true;
1095 }
1096#endif
1097
1098#ifdef RT_OS_LINUX
1099 /*
1100 * Log the /proc/sys/vm/max_map_count value on linux as that is
1101 * frequently giving us grief when too low.
1102 */
1103 int64_t const cGuessNeeded = MMR3PhysGetRamSize(pVM) / _2M + 16384 /*guesstimate*/;
1104 int64_t cMaxMapCount = 0;
1105 int rc2 = RTLinuxSysFsReadIntFile(10, &cMaxMapCount, "/proc/sys/vm/max_map_count");
1106 LogRel(("PGM: /proc/sys/vm/max_map_count = %RI64 (rc2=%Rrc); cGuessNeeded=%RI64\n", cMaxMapCount, rc2, cGuessNeeded));
1107 if (RT_SUCCESS(rc2) && cMaxMapCount < cGuessNeeded)
1108 LogRel(("PGM: WARNING!!\n"
1109 "PGM: WARNING!! Please increase /proc/sys/vm/max_map_count to at least %RI64 (or reduce the amount of RAM assigned to the VM)!\n"
1110 "PGM: WARNING!!\n", cMaxMapCount));
1111
1112#endif
1113
1114 return VINF_SUCCESS;
1115 }
1116
1117 /* Almost no cleanup necessary, MM frees all memory. */
1118 PDMR3CritSectDelete(pVM, &pVM->pgm.s.CritSectX);
1119
1120 return rc;
1121}
1122
1123
1124/**
1125 * Init paging.
1126 *
1127 * Since we need to check what mode the host is operating in before we can choose
1128 * the right paging functions for the host we have to delay this until R0 has
1129 * been initialized.
1130 *
1131 * @returns VBox status code.
1132 * @param pVM The cross context VM structure.
1133 */
1134static int pgmR3InitPaging(PVM pVM)
1135{
1136 /*
1137 * Force a recalculation of modes and switcher so everyone gets notified.
1138 */
1139 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1140 {
1141 PVMCPU pVCpu = pVM->apCpusR3[i];
1142
1143 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1144 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1145 pVCpu->pgm.s.enmGuestSlatMode = PGMSLAT_INVALID;
1146 pVCpu->pgm.s.idxGuestModeData = UINT8_MAX;
1147 pVCpu->pgm.s.idxShadowModeData = UINT8_MAX;
1148 pVCpu->pgm.s.idxBothModeData = UINT8_MAX;
1149 }
1150
1151 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1152
1153 /*
1154 * Initialize paging workers and mode from current host mode
1155 * and the guest running in real mode.
1156 */
1157 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1158 switch (pVM->pgm.s.enmHostMode)
1159 {
1160 case SUPPAGINGMODE_32_BIT:
1161 case SUPPAGINGMODE_32_BIT_GLOBAL:
1162 case SUPPAGINGMODE_PAE:
1163 case SUPPAGINGMODE_PAE_GLOBAL:
1164 case SUPPAGINGMODE_PAE_NX:
1165 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1166
1167 case SUPPAGINGMODE_AMD64:
1168 case SUPPAGINGMODE_AMD64_GLOBAL:
1169 case SUPPAGINGMODE_AMD64_NX:
1170 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1171 if (ARCH_BITS != 64)
1172 {
1173 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1174 LogRel(("PGM: Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1175 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1176 }
1177 break;
1178#if !defined(RT_ARCH_AMD64) && !defined(RT_ARCH_X86)
1179 case SUPPAGINGMODE_INVALID:
1180 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_AMD64_GLOBAL_NX;
1181 break;
1182#endif
1183 default:
1184 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1185 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1186 }
1187
1188 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1189#if HC_ARCH_BITS == 64 && 0
1190 LogRel(("PGM: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1191 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1192 LogRel(("PGM: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1193 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1194 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1195 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1196 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1197#endif
1198
1199 /*
1200 * Log the host paging mode. It may come in handy.
1201 */
1202 const char *pszHostMode;
1203 switch (pVM->pgm.s.enmHostMode)
1204 {
1205 case SUPPAGINGMODE_32_BIT: pszHostMode = "32-bit"; break;
1206 case SUPPAGINGMODE_32_BIT_GLOBAL: pszHostMode = "32-bit+PGE"; break;
1207 case SUPPAGINGMODE_PAE: pszHostMode = "PAE"; break;
1208 case SUPPAGINGMODE_PAE_GLOBAL: pszHostMode = "PAE+PGE"; break;
1209 case SUPPAGINGMODE_PAE_NX: pszHostMode = "PAE+NXE"; break;
1210 case SUPPAGINGMODE_PAE_GLOBAL_NX: pszHostMode = "PAE+PGE+NXE"; break;
1211 case SUPPAGINGMODE_AMD64: pszHostMode = "AMD64"; break;
1212 case SUPPAGINGMODE_AMD64_GLOBAL: pszHostMode = "AMD64+PGE"; break;
1213 case SUPPAGINGMODE_AMD64_NX: pszHostMode = "AMD64+NX"; break;
1214 case SUPPAGINGMODE_AMD64_GLOBAL_NX: pszHostMode = "AMD64+PGE+NX"; break;
1215 default: pszHostMode = "???"; break;
1216 }
1217 LogRel(("PGM: Host paging mode: %s\n", pszHostMode));
1218
1219 return VINF_SUCCESS;
1220}
1221
1222
1223/**
1224 * Init statistics
1225 * @returns VBox status code.
1226 */
1227static int pgmR3InitStats(PVM pVM)
1228{
1229 PPGM pPGM = &pVM->pgm.s;
1230 int rc;
1231
1232 /*
1233 * Release statistics.
1234 */
1235 /* Common - misc variables */
1236 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1237 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1238 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1239 STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
1240 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1241 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1242 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1243 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1244 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1245 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1246 STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
1247 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1248 STAM_REL_REG(pVM, &pPGM->cLargePages, STAMTYPE_U32, "/PGM/Page/cLargePages", STAMUNIT_COUNT, "The number of large pages allocated (includes disabled).");
1249 STAM_REL_REG(pVM, &pPGM->cLargePagesDisabled, STAMTYPE_U32, "/PGM/Page/cLargePagesDisabled", STAMUNIT_COUNT, "The number of disabled large pages.");
1250 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1251 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1252 STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
1253 STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
1254
1255 STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
1256 STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
1257 STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
1258
1259 STAM_REL_REG(pVM, &pPGM->StatShModCheck, STAMTYPE_PROFILE, "/PGM/ShMod/Check", STAMUNIT_TICKS_PER_CALL, "Profiles the shared module checking.");
1260 STAM_REL_REG(pVM, &pPGM->StatMmio2QueryAndResetDirtyBitmap, STAMTYPE_PROFILE, "/PGM/Mmio2QueryAndResetDirtyBitmap", STAMUNIT_TICKS_PER_CALL, "Profiles calls to PGMR3PhysMmio2QueryAndResetDirtyBitmap (sans locking).");
1261
1262 /* Live save */
1263 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
1264 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
1265 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
1266 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
1267 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
1268 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
1269 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
1270 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
1271 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
1272 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
1273 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
1274 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
1275 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
1276 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
1277 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
1278 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
1279 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
1280 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
1281
1282#define PGM_REG_COUNTER(a, b, c) \
1283 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1284 AssertRC(rc);
1285
1286#define PGM_REG_U64(a, b, c) \
1287 rc = STAMR3RegisterF(pVM, a, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1288 AssertRC(rc);
1289
1290#define PGM_REG_U64_RESET(a, b, c) \
1291 rc = STAMR3RegisterF(pVM, a, STAMTYPE_U64_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1292 AssertRC(rc);
1293
1294#define PGM_REG_U32(a, b, c) \
1295 rc = STAMR3RegisterF(pVM, a, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1296 AssertRC(rc);
1297
1298#define PGM_REG_COUNTER_BYTES(a, b, c) \
1299 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1300 AssertRC(rc);
1301
1302#define PGM_REG_PROFILE(a, b, c) \
1303 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1304 AssertRC(rc);
1305#define PGM_REG_PROFILE_NS(a, b, c) \
1306 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, c, b); \
1307 AssertRC(rc);
1308
1309#ifdef VBOX_WITH_STATISTICS
1310 PGMSTATS *pStats = &pPGM->Stats;
1311#endif
1312
1313 PGM_REG_PROFILE_NS(&pPGM->StatLargePageAlloc, "/PGM/LargePage/Alloc", "Time spent by the host OS for large page allocation.");
1314 PGM_REG_COUNTER(&pPGM->StatLargePageAllocFailed, "/PGM/LargePage/AllocFailed", "Number of allocation failures.");
1315 PGM_REG_COUNTER(&pPGM->StatLargePageOverflow, "/PGM/LargePage/Overflow", "The number of times allocating a large page took too long.");
1316 PGM_REG_COUNTER(&pPGM->StatLargePageTlbFlush, "/PGM/LargePage/TlbFlush", "The number of times a full VCPU TLB flush was required after a large allocation.");
1317 PGM_REG_COUNTER(&pPGM->StatLargePageZeroEvict, "/PGM/LargePage/ZeroEvict", "The number of zero page mappings we had to evict when allocating a large page.");
1318#ifdef VBOX_WITH_STATISTICS
1319 PGM_REG_PROFILE(&pStats->StatLargePageAlloc2, "/PGM/LargePage/Alloc2", "Time spent allocating large pages.");
1320 PGM_REG_PROFILE(&pStats->StatLargePageSetup, "/PGM/LargePage/Setup", "Time spent setting up the newly allocated large pages.");
1321 PGM_REG_PROFILE(&pStats->StatR3IsValidLargePage, "/PGM/LargePage/IsValidR3", "pgmPhysIsValidLargePage profiling - R3.");
1322 PGM_REG_PROFILE(&pStats->StatRZIsValidLargePage, "/PGM/LargePage/IsValidRZ", "pgmPhysIsValidLargePage profiling - RZ.");
1323
1324 PGM_REG_COUNTER(&pStats->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1325 PGM_REG_PROFILE(&pStats->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1326 PGM_REG_COUNTER(&pStats->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1327 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1328 PGM_REG_COUNTER(&pStats->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1329 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1330 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1331 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1332 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1333 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1334
1335 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1336 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1337 PGM_REG_PROFILE(&pStats->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
1338 PGM_REG_PROFILE(&pStats->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
1339 PGM_REG_PROFILE(&pStats->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
1340 PGM_REG_PROFILE(&pStats->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
1341
1342 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1343 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1344 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1345 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1346 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1347 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1348 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
1349 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
1350
1351 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbHits, "/PGM/RZ/RamRange/TlbHits", "TLB hits.");
1352 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbMisses, "/PGM/RZ/RamRange/TlbMisses", "TLB misses.");
1353 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbHits, "/PGM/R3/RamRange/TlbHits", "TLB hits.");
1354 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbMisses, "/PGM/R3/RamRange/TlbMisses", "TLB misses.");
1355
1356 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1357 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1358 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupHits, "/PGM/RZ/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1359 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupHits, "/PGM/R3/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1360 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupMisses, "/PGM/RZ/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1361 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupMisses, "/PGM/R3/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1362#endif /* VBOX_WITH_STATISTICS */
1363 PPGMPHYSHANDLERTREE pPhysHndlTree = pVM->pgm.s.pPhysHandlerTree;
1364 PGM_REG_U32(&pPhysHndlTree->m_cErrors, "/PGM/PhysHandlerTree/ErrorsTree", "Physical access handler tree errors.");
1365 PGM_REG_U32(&pVM->pgm.s.PhysHandlerAllocator.m_cErrors, "/PGM/PhysHandlerTree/ErrorsAllocatorR3", "Physical access handler tree allocator errors (ring-3 only).");
1366 PGM_REG_U64_RESET(&pPhysHndlTree->m_cInserts, "/PGM/PhysHandlerTree/Inserts", "Physical access handler tree inserts.");
1367 PGM_REG_U32(&pVM->pgm.s.PhysHandlerAllocator.m_cNodes, "/PGM/PhysHandlerTree/MaxHandlers", "Max physical access handlers.");
1368 PGM_REG_U64_RESET(&pPhysHndlTree->m_cRemovals, "/PGM/PhysHandlerTree/Removals", "Physical access handler tree removals.");
1369 PGM_REG_U64_RESET(&pPhysHndlTree->m_cRebalancingOperations, "/PGM/PhysHandlerTree/RebalancingOperations", "Physical access handler tree rebalancing transformations.");
1370
1371#ifdef VBOX_WITH_STATISTICS
1372 PGM_REG_COUNTER(&pStats->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1373 PGM_REG_COUNTER(&pStats->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1374/// @todo PGM_REG_COUNTER(&pStats->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1375 PGM_REG_COUNTER(&pStats->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1376 PGM_REG_COUNTER(&pStats->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1377/// @todo PGM_REG_COUNTER(&pStats->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1378
1379 PGM_REG_COUNTER(&pStats->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1380 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1381 PGM_REG_COUNTER(&pStats->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1382 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1383 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1384 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1385 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1386 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1387
1388 /* GC only: */
1389 PGM_REG_COUNTER(&pStats->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1390 PGM_REG_COUNTER(&pStats->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1391
1392 PGM_REG_COUNTER(&pStats->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1393 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1394 PGM_REG_COUNTER(&pStats->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1395 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1396 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1397 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1398 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1399 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1400
1401 PGM_REG_COUNTER(&pStats->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1402 PGM_REG_COUNTER(&pStats->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1403 PGM_REG_COUNTER(&pStats->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1404 PGM_REG_COUNTER(&pStats->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1405 PGM_REG_COUNTER(&pStats->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1406 PGM_REG_COUNTER(&pStats->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
1407 PGM_REG_PROFILE(&pStats->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1408#endif
1409
1410#undef PGM_REG_COUNTER
1411#undef PGM_REG_U64
1412#undef PGM_REG_U64_RESET
1413#undef PGM_REG_U32
1414#undef PGM_REG_PROFILE
1415#undef PGM_REG_PROFILE_NS
1416
1417 /*
1418 * Note! The layout below matches the member layout exactly!
1419 */
1420
1421 /*
1422 * Common - stats
1423 */
1424 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1425 {
1426 PPGMCPU pPgmCpu = &pVM->apCpusR3[idCpu]->pgm.s;
1427
1428#define PGM_REG_COUNTER(a, b, c) \
1429 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
1430 AssertRC(rc);
1431#define PGM_REG_PROFILE(a, b, c) \
1432 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
1433 AssertRC(rc);
1434
1435 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
1436 PGM_REG_COUNTER(&pPgmCpu->cA20Changes, "/PGM/CPU%u/cA20Changes", "Number of A20 gate changes.");
1437
1438 PGM_REG_COUNTER(&pPgmCpu->StatRZRamRangeTlbMisses, "/PGM/CPU%u/RZ/RamRange/TlbMisses", "TLB misses (lockless).");
1439 PGM_REG_COUNTER(&pPgmCpu->StatRZRamRangeTlbLocking, "/PGM/CPU%u/RZ/RamRange/TlbLocking", "Lockless TLB failed, falling back on locked lookup.");
1440 PGM_REG_COUNTER(&pPgmCpu->StatRZPageMapTlbMisses, "/PGM/CPU%u/RZ/Page/MapTlbMisses", "Lockless page map TLB failed, falling back on locked lookup.");
1441
1442 PGM_REG_COUNTER(&pPgmCpu->StatR3RamRangeTlbMisses, "/PGM/CPU%u/R3/RamRange/TlbMisses", "TLB misses (lockless).");
1443 PGM_REG_COUNTER(&pPgmCpu->StatR3RamRangeTlbLocking, "/PGM/CPU%u/R3/RamRange/TlbLocking", "Lockless TLB failed, falling back on locked lookup.");
1444 PGM_REG_COUNTER(&pPgmCpu->StatR3PageMapTlbMisses, "/PGM/CPU%u/R3/Page/MapTlbMisses", "Lockless page map TLB failed, falling back on locked lookup.");
1445
1446#ifdef VBOX_WITH_STATISTICS
1447 PGMCPUSTATS *pCpuStats = &pVM->apCpusR3[idCpu]->pgm.s.Stats;
1448
1449# if 0 /* rarely useful; leave for debugging. */
1450 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
1451 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1452 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
1453 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatSyncPagePD); j++)
1454 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1455 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
1456# endif
1457 /* R0 only: */
1458 PGM_REG_PROFILE(&pCpuStats->StatR0NpMiscfg, "/PGM/CPU%u/R0/NpMiscfg", "PGMR0Trap0eHandlerNPMisconfig() profiling.");
1459 PGM_REG_COUNTER(&pCpuStats->StatR0NpMiscfgSyncPage, "/PGM/CPU%u/R0/NpMiscfgSyncPage", "SyncPage calls from PGMR0Trap0eHandlerNPMisconfig().");
1460
1461 /* RZ only: */
1462 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1463 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Ballooned, "/PGM/CPU%u/RZ/Trap0e/Time2/Ballooned", "Profiling of the Trap0eHandler body when the cause is read access to a ballooned page.");
1464 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1465 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1466 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1467 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1468 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2InvalidPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/InvalidPhys", "Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address.");
1469 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2MakeWritable, "/PGM/CPU%u/RZ/Trap0e/Time2/MakeWritable", "Profiling of the Trap0eHandler body when the cause is that a page needed to be made writeable.");
1470 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1471 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1472 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1473 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1474 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2PageZeroing, "/PGM/CPU%u/RZ/Trap0e/Time2/PageZeroing", "Profiling of the Trap0eHandler body when the cause is that a zero page is being zeroed.");
1475 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1476 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2WPEmulation, "/PGM/CPU%u/RZ/Trap0e/Time2/WPEmulation", "Profiling of the Trap0eHandler body when the cause is CR0.WP emulation.");
1477 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsHack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USHack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be enabled.");
1478 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsUnhack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USUnhack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be disabled.");
1479 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1480 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1481 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAll, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAll", "Number of traps due to physical all-access handlers.");
1482 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAllOpt, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAllOpt", "Number of the physical all-access handler traps using the optimization.");
1483 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysWrite, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysWrite", "Number of traps due to physical write-access handlers.");
1484 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1485 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1486 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1487 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1488 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1489 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1490 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1491 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1492 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1493 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1494 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1495 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1496 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1497 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1498 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1499 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1500#if 0 /* rarely useful; leave for debugging. */
1501 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatRZTrap0ePD); j++)
1502 STAMR3RegisterF(pVM, &pCpuStats->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1503 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
1504#endif
1505 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1506 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1507 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1508 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1509 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1510
1511 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapMigrateInvlPg, "/PGM/CPU%u/RZ/DynMap/MigrateInvlPg", "invlpg count in PGMR0DynMapMigrateAutoSet.");
1512 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapGCPageInl, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1513 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Hits", "Hash table lookup hits.");
1514 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Misses", "Misses that falls back to the code common.");
1515 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamHits", "1st ram range hits.");
1516 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1517 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPageInl, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl", "Calls to pgmRZDynMapHCPageInlined.");
1518 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Hits", "Hash table lookup hits.");
1519 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Misses", "Misses that falls back to the code common.");
1520 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPage, "/PGM/CPU%u/RZ/DynMap/Page", "Calls to pgmR0DynMapPage");
1521 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetOptimize, "/PGM/CPU%u/RZ/DynMap/Page/SetOptimize", "Calls to pgmRZDynMapOptimizeAutoSet.");
1522 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchFlushes, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchFlushes", "Set search restoring to subset flushes.");
1523 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchHits, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchHits", "Set search hits.");
1524 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchMisses, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchMisses", "Set search misses.");
1525 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPage, "/PGM/CPU%u/RZ/DynMap/Page/HCPage", "Calls to pgmRZDynMapHCPageCommon (ring-0).");
1526 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits0, "/PGM/CPU%u/RZ/DynMap/Page/Hits0", "Hits at iPage+0");
1527 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits1, "/PGM/CPU%u/RZ/DynMap/Page/Hits1", "Hits at iPage+1");
1528 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits2, "/PGM/CPU%u/RZ/DynMap/Page/Hits2", "Hits at iPage+2");
1529 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageInvlPg, "/PGM/CPU%u/RZ/DynMap/Page/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1530 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlow, "/PGM/CPU%u/RZ/DynMap/Page/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1531 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopHits, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopHits" , "Hits in the loop path.");
1532 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopMisses, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1533 //PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMap/Page/SlowLostHits", "Lost hits.");
1534 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSubsets, "/PGM/CPU%u/RZ/DynMap/Subsets", "Times PGMRZDynMapPushAutoSubset was called.");
1535 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPopFlushes, "/PGM/CPU%u/RZ/DynMap/SubsetPopFlushes", "Times PGMRZDynMapPopAutoSubset flushes the subset.");
1536 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[0], "/PGM/CPU%u/RZ/DynMap/SetFilledPct000..09", "00-09% filled (RC: min(set-size, dynmap-size))");
1537 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[1], "/PGM/CPU%u/RZ/DynMap/SetFilledPct010..19", "10-19% filled (RC: min(set-size, dynmap-size))");
1538 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[2], "/PGM/CPU%u/RZ/DynMap/SetFilledPct020..29", "20-29% filled (RC: min(set-size, dynmap-size))");
1539 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[3], "/PGM/CPU%u/RZ/DynMap/SetFilledPct030..39", "30-39% filled (RC: min(set-size, dynmap-size))");
1540 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[4], "/PGM/CPU%u/RZ/DynMap/SetFilledPct040..49", "40-49% filled (RC: min(set-size, dynmap-size))");
1541 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[5], "/PGM/CPU%u/RZ/DynMap/SetFilledPct050..59", "50-59% filled (RC: min(set-size, dynmap-size))");
1542 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[6], "/PGM/CPU%u/RZ/DynMap/SetFilledPct060..69", "60-69% filled (RC: min(set-size, dynmap-size))");
1543 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[7], "/PGM/CPU%u/RZ/DynMap/SetFilledPct070..79", "70-79% filled (RC: min(set-size, dynmap-size))");
1544 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[8], "/PGM/CPU%u/RZ/DynMap/SetFilledPct080..89", "80-89% filled (RC: min(set-size, dynmap-size))");
1545 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[9], "/PGM/CPU%u/RZ/DynMap/SetFilledPct090..99", "90-99% filled (RC: min(set-size, dynmap-size))");
1546 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[10], "/PGM/CPU%u/RZ/DynMap/SetFilledPct100", "100% filled (RC: min(set-size, dynmap-size))");
1547
1548 /* HC only: */
1549
1550 /* RZ & R3: */
1551 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1552 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1553 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1554 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1555 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1556 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1557 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1558 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1559 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1560 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1561 PGM_REG_PROFILE(&pCpuStats->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1562 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1563 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1564 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1565 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1566 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1567 PGM_REG_COUNTER(&pCpuStats->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1568 PGM_REG_PROFILE(&pCpuStats->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1569 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1570 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1571 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1572 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1573 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1574 PGM_REG_COUNTER(&pCpuStats->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1575 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1576 PGM_REG_COUNTER(&pCpuStats->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1577 PGM_REG_PROFILE(&pCpuStats->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1578 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1579 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1580 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1581 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1582 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1583 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1584 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSizeChanges, "/PGM/CPU%u/RZ/InvalidatePage/SizeChanges", "The number of times PGMInvalidatePage() was called on a page size change (4KB <-> 2/4MB).");
1585 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1586 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1587 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1588 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1589 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1590 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1591 PGM_REG_PROFILE(&pCpuStats->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
1592 PGM_REG_PROFILE(&pCpuStats->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1593 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1594 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1595 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1596 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1597 PGM_REG_PROFILE(&pCpuStats->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1598 PGM_REG_COUNTER(&pCpuStats->StatRZRamRangeTlbHits, "/PGM/CPU%u/RZ/RamRange/TlbHits", "TLB hits (lockless).");
1599 PGM_REG_COUNTER(&pCpuStats->StatRZPageMapTlbHits, "/PGM/CPU%u/RZ/Page/MapTlbHits", "TLB hits (lockless).");
1600
1601 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1602 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1603 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
1604 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1605 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1606 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1607 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1608 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1609 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1610 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1611 PGM_REG_PROFILE(&pCpuStats->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
1612 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1613 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
1614 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
1615 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1616 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1617 PGM_REG_COUNTER(&pCpuStats->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1618 PGM_REG_PROFILE(&pCpuStats->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1619 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1620 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1621 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1622 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1623 PGM_REG_COUNTER(&pCpuStats->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1624 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1625 PGM_REG_COUNTER(&pCpuStats->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1626 PGM_REG_PROFILE(&pCpuStats->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
1627 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1628 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1629 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1630 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1631 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1632 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1633 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSizeChanges, "/PGM/CPU%u/R3/InvalidatePage/SizeChanges", "The number of times PGMInvalidatePage() was called on a page size change (4KB <-> 2/4MB).");
1634 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1635 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1636 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1637 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1638 PGM_REG_PROFILE(&pCpuStats->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
1639 PGM_REG_PROFILE(&pCpuStats->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1640 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1641 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1642 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1643 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1644 PGM_REG_PROFILE(&pCpuStats->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1645 PGM_REG_COUNTER(&pCpuStats->StatR3RamRangeTlbHits, "/PGM/CPU%u/R3/RamRange/TlbHits", "TLB hits (lockless).");
1646 PGM_REG_COUNTER(&pCpuStats->StatR3PageMapTlbHits, "/PGM/CPU%u/R3/Page/MapTlbHits", "TLB hits (lockless).");
1647#endif /* VBOX_WITH_STATISTICS */
1648
1649#undef PGM_REG_PROFILE
1650#undef PGM_REG_COUNTER
1651 }
1652
1653 return VINF_SUCCESS;
1654}
1655
1656
1657/**
1658 * Ring-3 init finalizing.
1659 *
1660 * @returns VBox status code.
1661 * @param pVM The cross context VM structure.
1662 */
1663VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1664{
1665 /*
1666 * Determine the max physical address width (MAXPHYADDR) and apply it to
1667 * all the mask members and stuff.
1668 */
1669#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
1670 uint32_t cMaxPhysAddrWidth;
1671 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
1672 if ( uMaxExtLeaf >= 0x80000008
1673 && uMaxExtLeaf <= 0x80000fff)
1674 {
1675 cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff;
1676 LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
1677 cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth);
1678 pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52;
1679 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++)
1680 pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit);
1681 }
1682 else
1683 {
1684 LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf));
1685 cMaxPhysAddrWidth = 48;
1686 pVM->pgm.s.fLessThan52PhysicalAddressBits = true;
1687 pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000);
1688 }
1689 /* Disabled the below assertion -- triggers 24 vs 39 on my Intel Skylake box for a 32-bit (Guest-type Other/Unknown) VM. */
1690 //AssertMsg(pVM->cpum.ro.GuestFeatures.cMaxPhysAddrWidth == cMaxPhysAddrWidth,
1691 // ("CPUM %u - PGM %u\n", pVM->cpum.ro.GuestFeatures.cMaxPhysAddrWidth, cMaxPhysAddrWidth));
1692#else
1693 uint32_t const cMaxPhysAddrWidth = pVM->cpum.ro.GuestFeatures.cMaxPhysAddrWidth;
1694 LogRel(("PGM: The (guest) CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
1695#endif
1696
1697 /** @todo query from CPUM. */
1698 pVM->pgm.s.GCPhysInvAddrMask = 0;
1699 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++)
1700 pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit);
1701
1702 /*
1703 * Initialize the invalid paging entry masks, assuming NX is disabled.
1704 */
1705 uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000);
1706#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
1707 uint64_t const fEptVpidCap = CPUMGetGuestIa32VmxEptVpidCap(pVM->apCpusR3[0]); /* should be identical for all VCPUs */
1708 uint64_t const fGstEptMbzBigPdeMask = EPT_PDE2M_MBZ_MASK
1709 | (RT_BF_GET(fEptVpidCap, VMX_BF_EPT_VPID_CAP_PDE_2M) ^ 1) << EPT_E_BIT_LEAF;
1710 uint64_t const fGstEptMbzBigPdpteMask = EPT_PDPTE1G_MBZ_MASK
1711 | (RT_BF_GET(fEptVpidCap, VMX_BF_EPT_VPID_CAP_PDPTE_1G) ^ 1) << EPT_E_BIT_LEAF;
1712 //uint64_t const GCPhysRsvdAddrMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000fffffffffffff); /* bits 63:52 ignored */
1713#endif
1714 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1715 {
1716 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1717
1718 /** @todo The manuals are not entirely clear whether the physical
1719 * address width is relevant. See table 5-9 in the intel
1720 * manual vs the PDE4M descriptions. Write testcase (NP). */
1721 pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK)
1722 | X86_PDE4M_MBZ_MASK;
1723
1724 pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX;
1725 pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX;
1726 pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX;
1727 pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK;
1728
1729 pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX;
1730 pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX;
1731 pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX;
1732 pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX;
1733 pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX;
1734 pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX;
1735
1736 pVCpu->pgm.s.fGst64ShadowedPteMask = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_G | X86_PTE_A | X86_PTE_D;
1737 pVCpu->pgm.s.fGst64ShadowedPdeMask = X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A;
1738 pVCpu->pgm.s.fGst64ShadowedBigPdeMask = X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_A;
1739 pVCpu->pgm.s.fGst64ShadowedBigPde4PteMask
1740 = X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_G | X86_PDE4M_A | X86_PDE4M_D;
1741 pVCpu->pgm.s.fGstAmd64ShadowedPdpeMask = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
1742 pVCpu->pgm.s.fGstAmd64ShadowedPml4eMask = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
1743
1744#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
1745 pVCpu->pgm.s.uEptVpidCapMsr = fEptVpidCap;
1746 pVCpu->pgm.s.fGstEptMbzPteMask = fMbzPageFrameMask | EPT_PTE_MBZ_MASK;
1747 pVCpu->pgm.s.fGstEptMbzPdeMask = fMbzPageFrameMask | EPT_PDE_MBZ_MASK;
1748 pVCpu->pgm.s.fGstEptMbzBigPdeMask = fMbzPageFrameMask | fGstEptMbzBigPdeMask;
1749 pVCpu->pgm.s.fGstEptMbzPdpteMask = fMbzPageFrameMask | EPT_PDPTE_MBZ_MASK;
1750 pVCpu->pgm.s.fGstEptMbzBigPdpteMask = fMbzPageFrameMask | fGstEptMbzBigPdpteMask;
1751 pVCpu->pgm.s.fGstEptMbzPml4eMask = fMbzPageFrameMask | EPT_PML4E_MBZ_MASK;
1752
1753 /* If any of the features in the assert below are enabled, additional bits would need to be shadowed. */
1754 Assert( !pVM->cpum.ro.GuestFeatures.fVmxModeBasedExecuteEpt
1755 && !pVM->cpum.ro.GuestFeatures.fVmxSppEpt
1756 && !pVM->cpum.ro.GuestFeatures.fVmxEptXcptVe
1757 && !(fEptVpidCap & MSR_IA32_VMX_EPT_VPID_CAP_ACCESS_DIRTY));
1758 /* We currently do -not- shadow reserved bits in guest page tables but instead trap them using non-present permissions,
1759 see todo in (NestedSyncPT). */
1760 pVCpu->pgm.s.fGstEptShadowedPteMask = EPT_PRESENT_MASK;
1761 pVCpu->pgm.s.fGstEptShadowedPdeMask = EPT_PRESENT_MASK;
1762 pVCpu->pgm.s.fGstEptShadowedBigPdeMask = EPT_PRESENT_MASK | EPT_E_LEAF;
1763 pVCpu->pgm.s.fGstEptShadowedPdpteMask = EPT_PRESENT_MASK;
1764 pVCpu->pgm.s.fGstEptShadowedPml4eMask = EPT_PRESENT_MASK | EPT_PML4E_MBZ_MASK;
1765 /* If mode-based execute control for EPT is enabled, we would need to include bit 10 in the present mask. */
1766 pVCpu->pgm.s.fGstEptPresentMask = EPT_PRESENT_MASK;
1767#endif
1768 }
1769
1770 /*
1771 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1772 * Intel only goes up to 36 bits, so we stick to 36 as well.
1773 * Update: More recent intel manuals specifies 40 bits just like AMD.
1774 */
1775 uint32_t u32Dummy, u32Features;
1776 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, 0, -1 /*f64BitMode*/, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1777 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1778 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1;
1779 else
1780 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1781
1782 /*
1783 * Allocate memory if we're supposed to do that.
1784 */
1785 int rc = VINF_SUCCESS;
1786#ifndef VBOX_WITH_ONLY_PGM_NEM_MODE
1787 if (pVM->pgm.s.fRamPreAlloc)
1788 rc = pgmR3PhysRamPreAllocate(pVM);
1789#endif
1790
1791 //pgmLogState(pVM);
1792 LogRel(("PGM: PGMR3InitFinalize: 4 MB PSE mask %RGp -> %Rrc\n", pVM->pgm.s.GCPhys4MBPSEMask, rc));
1793 return rc;
1794}
1795
1796
1797/**
1798 * Init phase completed callback.
1799 *
1800 * @returns VBox status code.
1801 * @param pVM The cross context VM structure.
1802 * @param enmWhat What has been completed.
1803 * @thread EMT(0)
1804 */
1805VMMR3_INT_DECL(int) PGMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
1806{
1807 switch (enmWhat)
1808 {
1809 case VMINITCOMPLETED_HM:
1810#ifdef VBOX_WITH_PCI_PASSTHROUGH
1811 if (pVM->pgm.s.fPciPassthrough)
1812 {
1813 AssertLogRelReturn(pVM->pgm.s.fRamPreAlloc, VERR_PCI_PASSTHROUGH_NO_RAM_PREALLOC);
1814 AssertLogRelReturn(HMIsEnabled(pVM), VERR_PCI_PASSTHROUGH_NO_HM);
1815 AssertLogRelReturn(HMIsNestedPagingActive(pVM), VERR_PCI_PASSTHROUGH_NO_NESTED_PAGING);
1816
1817 /*
1818 * Report assignments to the IOMMU (hope that's good enough for now).
1819 */
1820 if (pVM->pgm.s.fPciPassthrough)
1821 {
1822 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_PHYS_SETUP_IOMMU, 0, NULL);
1823 AssertRCReturn(rc, rc);
1824 }
1825 }
1826#else
1827 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough, VERR_PGM_PCI_PASSTHRU_MISCONFIG);
1828#endif
1829 break;
1830
1831 default:
1832 /* shut up gcc */
1833 break;
1834 }
1835
1836 return VINF_SUCCESS;
1837}
1838
1839
1840/**
1841 * Applies relocations to data and code managed by this component.
1842 *
1843 * This function will be called at init and whenever the VMM need to relocate it
1844 * self inside the GC.
1845 *
1846 * @param pVM The cross context VM structure.
1847 * @param offDelta Relocation delta relative to old location.
1848 */
1849VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1850{
1851 LogFlow(("PGMR3Relocate: offDelta=%RGv\n", offDelta));
1852
1853 /*
1854 * Paging stuff.
1855 */
1856
1857 /* Shadow, guest and both mode switch & relocation for each VCPU. */
1858 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1859 {
1860 PVMCPU pVCpu = pVM->apCpusR3[i];
1861
1862 uintptr_t idxShw = pVCpu->pgm.s.idxShadowModeData;
1863 if ( idxShw < RT_ELEMENTS(g_aPgmShadowModeData)
1864 && g_aPgmShadowModeData[idxShw].pfnRelocate)
1865 g_aPgmShadowModeData[idxShw].pfnRelocate(pVCpu, offDelta);
1866 else
1867 AssertFailed();
1868
1869 uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
1870 if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
1871 && g_aPgmGuestModeData[idxGst].pfnRelocate)
1872 g_aPgmGuestModeData[idxGst].pfnRelocate(pVCpu, offDelta);
1873 else
1874 AssertFailed();
1875 }
1876
1877 /*
1878 * The page pool.
1879 */
1880 pgmR3PoolRelocate(pVM);
1881}
1882
1883
1884/**
1885 * Resets a virtual CPU when unplugged.
1886 *
1887 * @param pVM The cross context VM structure.
1888 * @param pVCpu The cross context virtual CPU structure.
1889 */
1890VMMR3DECL(void) PGMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
1891{
1892 uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
1893 if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
1894 && g_aPgmGuestModeData[idxGst].pfnExit)
1895 {
1896 int rc = g_aPgmGuestModeData[idxGst].pfnExit(pVCpu);
1897 AssertReleaseRC(rc);
1898 }
1899 pVCpu->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1900 pVCpu->pgm.s.GCPhysNstGstCR3 = NIL_RTGCPHYS;
1901 pVCpu->pgm.s.GCPhysPaeCR3 = NIL_RTGCPHYS;
1902
1903 int rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL, false /* fForce */);
1904 AssertReleaseRC(rc);
1905
1906 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
1907
1908 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
1909
1910 /*
1911 * Re-init other members.
1912 */
1913 pVCpu->pgm.s.fA20Enabled = true;
1914 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
1915
1916 /*
1917 * Clear the FFs PGM owns.
1918 */
1919 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1920 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
1921}
1922
1923
1924/**
1925 * The VM is being reset.
1926 *
1927 * For the PGM component this means that any PD write monitors
1928 * needs to be removed.
1929 *
1930 * @param pVM The cross context VM structure.
1931 */
1932VMMR3_INT_DECL(void) PGMR3Reset(PVM pVM)
1933{
1934 LogFlow(("PGMR3Reset:\n"));
1935 VM_ASSERT_EMT(pVM);
1936
1937 PGM_LOCK_VOID(pVM);
1938
1939 /*
1940 * Exit the guest paging mode before the pgm pool gets reset.
1941 * Important to clean up the amd64 case.
1942 */
1943 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1944 {
1945 PVMCPU pVCpu = pVM->apCpusR3[i];
1946 uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
1947 if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
1948 && g_aPgmGuestModeData[idxGst].pfnExit)
1949 {
1950 int rc = g_aPgmGuestModeData[idxGst].pfnExit(pVCpu);
1951 AssertReleaseRC(rc);
1952 }
1953 pVCpu->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1954 pVCpu->pgm.s.GCPhysNstGstCR3 = NIL_RTGCPHYS;
1955 }
1956
1957#ifdef DEBUG
1958 DBGFR3_INFO_LOG_SAFE(pVM, "mappings", NULL);
1959 DBGFR3_INFO_LOG_SAFE(pVM, "handlers", "all nostat");
1960#endif
1961
1962 /*
1963 * Switch mode back to real mode. (Before resetting the pgm pool!)
1964 */
1965 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1966 {
1967 PVMCPU pVCpu = pVM->apCpusR3[i];
1968
1969 int rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL, false /* fForce */);
1970 AssertReleaseRC(rc);
1971
1972 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
1973 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cA20Changes);
1974 }
1975
1976 /*
1977 * Reset the shadow page pool.
1978 */
1979 pgmR3PoolReset(pVM);
1980
1981 /*
1982 * Re-init various other members and clear the FFs that PGM owns.
1983 */
1984 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1985 {
1986 PVMCPU pVCpu = pVM->apCpusR3[i];
1987
1988 pVCpu->pgm.s.fGst32BitPageSizeExtension = false;
1989 PGMNotifyNxeChanged(pVCpu, false);
1990
1991 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1992 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
1993
1994#if !defined(VBOX_VMM_TARGET_ARMV8)
1995 if (!pVCpu->pgm.s.fA20Enabled)
1996 {
1997 pVCpu->pgm.s.fA20Enabled = true;
1998 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
1999# ifdef PGM_WITH_A20
2000 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2001 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
2002 HMFlushTlb(pVCpu);
2003# endif
2004 }
2005#endif
2006 }
2007
2008 //pgmLogState(pVM);
2009 PGM_UNLOCK(pVM);
2010}
2011
2012
2013/**
2014 * Memory setup after VM construction or reset.
2015 *
2016 * @param pVM The cross context VM structure.
2017 * @param fAtReset Indicates the context, after reset if @c true or after
2018 * construction if @c false.
2019 */
2020VMMR3_INT_DECL(void) PGMR3MemSetup(PVM pVM, bool fAtReset)
2021{
2022 if (fAtReset)
2023 {
2024 PGM_LOCK_VOID(pVM);
2025
2026 int rc = pgmR3PhysRamZeroAll(pVM);
2027 AssertReleaseRC(rc);
2028
2029 rc = pgmR3PhysRomReset(pVM);
2030 AssertReleaseRC(rc);
2031
2032 PGM_UNLOCK(pVM);
2033 }
2034}
2035
2036
2037#ifdef VBOX_STRICT
2038/**
2039 * VM state change callback for clearing fNoMorePhysWrites after
2040 * a snapshot has been created.
2041 */
2042static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PUVM pUVM, PCVMMR3VTABLE pVMM, VMSTATE enmState,
2043 VMSTATE enmOldState, void *pvUser)
2044{
2045 if ( enmState == VMSTATE_RUNNING
2046 || enmState == VMSTATE_RESUMING)
2047 pUVM->pVM->pgm.s.fNoMorePhysWrites = false;
2048 RT_NOREF(pVMM, enmOldState, pvUser);
2049}
2050#endif
2051
2052/**
2053 * Private API to reset fNoMorePhysWrites.
2054 */
2055VMMR3_INT_DECL(void) PGMR3ResetNoMorePhysWritesFlag(PVM pVM)
2056{
2057 pVM->pgm.s.fNoMorePhysWrites = false;
2058}
2059
2060/**
2061 * Terminates the PGM.
2062 *
2063 * @returns VBox status code.
2064 * @param pVM The cross context VM structure.
2065 */
2066VMMR3DECL(int) PGMR3Term(PVM pVM)
2067{
2068 /* Must free shared pages here. */
2069 PGM_LOCK_VOID(pVM);
2070 pgmR3PhysRamTerm(pVM);
2071 pgmR3PhysRomTerm(pVM);
2072 PGM_UNLOCK(pVM);
2073
2074 PGMDeregisterStringFormatTypes();
2075 return PDMR3CritSectDelete(pVM, &pVM->pgm.s.CritSectX);
2076}
2077
2078
2079/**
2080 * Show paging mode.
2081 *
2082 * @param pVM The cross context VM structure.
2083 * @param pHlp The info helpers.
2084 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2085 */
2086static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2087{
2088 /* digest argument. */
2089 bool fGuest, fShadow, fHost;
2090 if (pszArgs)
2091 pszArgs = RTStrStripL(pszArgs);
2092 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2093 fShadow = fHost = fGuest = true;
2094 else
2095 {
2096 fShadow = fHost = fGuest = false;
2097 if (strstr(pszArgs, "guest"))
2098 fGuest = true;
2099 if (strstr(pszArgs, "shadow"))
2100 fShadow = true;
2101 if (strstr(pszArgs, "host"))
2102 fHost = true;
2103 }
2104
2105 PVMCPU pVCpu = VMMGetCpu(pVM);
2106 if (!pVCpu)
2107 pVCpu = pVM->apCpusR3[0];
2108
2109
2110 /* print info. */
2111 if (fGuest)
2112 {
2113 pHlp->pfnPrintf(pHlp, "Guest paging mode (VCPU #%u): %s (changed %RU64 times), A20 %s (changed %RU64 times)\n",
2114 pVCpu->idCpu, PGMGetModeName(pVCpu->pgm.s.enmGuestMode), pVCpu->pgm.s.cGuestModeChanges.c,
2115 pVCpu->pgm.s.fA20Enabled ? "enabled" : "disabled", pVCpu->pgm.s.cA20Changes.c);
2116#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
2117 if (pVCpu->pgm.s.enmGuestSlatMode != PGMSLAT_INVALID)
2118 pHlp->pfnPrintf(pHlp, "Guest SLAT mode (VCPU #%u): %s\n", pVCpu->idCpu,
2119 PGMGetSlatModeName(pVCpu->pgm.s.enmGuestSlatMode));
2120#endif
2121 }
2122 if (fShadow)
2123 pHlp->pfnPrintf(pHlp, "Shadow paging mode (VCPU #%u): %s\n", pVCpu->idCpu, PGMGetModeName(pVCpu->pgm.s.enmShadowMode));
2124 if (fHost)
2125 {
2126 const char *psz;
2127 switch (pVM->pgm.s.enmHostMode)
2128 {
2129 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2130 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2131 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2132 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2133 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2134 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2135 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2136 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2137 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2138 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2139 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2140 default: psz = "unknown"; break;
2141 }
2142 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2143 }
2144}
2145
2146
2147/**
2148 * Display the RAM range info.
2149 *
2150 * @param pVM The cross context VM structure.
2151 * @param pHlp The info helpers.
2152 * @param pszArgs Arguments, ignored.
2153 */
2154static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2155{
2156 bool const fVerbose = pszArgs && strstr(pszArgs, "verbose") != NULL;
2157
2158 pHlp->pfnPrintf(pHlp,
2159 "RAM ranges (pVM=%p)\n"
2160 "%.*s %.*s\n",
2161 pVM,
2162 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2163 sizeof(RTHCPTR) * 2, "pbR3 ");
2164
2165 /*
2166 * Traverse the lookup table so we only display mapped MMIO and get it in sorted order.
2167 */
2168 uint32_t const cRamRangeLookupEntries = RT_MIN(pVM->pgm.s.RamRangeUnion.cLookupEntries,
2169 RT_ELEMENTS(pVM->pgm.s.aRamRangeLookup));
2170 for (uint32_t idxLookup = 0; idxLookup < cRamRangeLookupEntries; idxLookup++)
2171 {
2172 uint32_t const idRamRange = PGMRAMRANGELOOKUPENTRY_GET_ID(pVM->pgm.s.aRamRangeLookup[idxLookup]);
2173 AssertContinue(idRamRange < RT_ELEMENTS(pVM->pgm.s.apRamRanges));
2174 PPGMRAMRANGE const pCur = pVM->pgm.s.apRamRanges[idRamRange];
2175 if (pCur != NULL) { /*likely*/ }
2176 else continue;
2177
2178 pHlp->pfnPrintf(pHlp,
2179 "%RGp-%RGp %RHv %s\n",
2180 pCur->GCPhys,
2181 pCur->GCPhysLast,
2182 pCur->pbR3,
2183 pCur->pszDesc);
2184 if (fVerbose)
2185 {
2186 RTGCPHYS const cPages = pCur->cb >> X86_PAGE_SHIFT;
2187 RTGCPHYS iPage = 0;
2188 while (iPage < cPages)
2189 {
2190 RTGCPHYS const iFirstPage = iPage;
2191 PGMPAGETYPE const enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]);
2192 do
2193 iPage++;
2194 while (iPage < cPages && (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) == enmType);
2195 const char *pszType;
2196 const char *pszMore = NULL;
2197 switch (enmType)
2198 {
2199 case PGMPAGETYPE_RAM:
2200 pszType = "RAM";
2201 break;
2202
2203 case PGMPAGETYPE_MMIO2:
2204 pszType = "MMIO2";
2205 break;
2206
2207 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2208 pszType = "MMIO2-alias-MMIO";
2209 break;
2210
2211 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
2212 pszType = "special-alias-MMIO";
2213 break;
2214
2215 case PGMPAGETYPE_ROM_SHADOW:
2216 case PGMPAGETYPE_ROM:
2217 {
2218 pszType = enmType == PGMPAGETYPE_ROM_SHADOW ? "ROM-shadowed" : "ROM";
2219
2220 RTGCPHYS const GCPhysFirstPg = iFirstPage << GUEST_PAGE_SHIFT;
2221 uint32_t const cRomRanges = RT_MIN(pVM->pgm.s.cRomRanges, RT_ELEMENTS(pVM->pgm.s.apRomRanges));
2222 for (uint32_t idxRom = 0; idxRom < cRomRanges; idxRom++)
2223 {
2224 PPGMROMRANGE const pRomRange = pVM->pgm.s.apRomRanges[idxRom];
2225 if ( pRomRange
2226 && GCPhysFirstPg < pRomRange->GCPhysLast
2227 && GCPhysFirstPg >= pRomRange->GCPhys)
2228 {
2229 pszMore = pRomRange->pszDesc;
2230 break;
2231 }
2232 }
2233 break;
2234 }
2235
2236 case PGMPAGETYPE_MMIO:
2237 {
2238 pszType = "MMIO";
2239 PGM_LOCK_VOID(pVM);
2240 PPGMPHYSHANDLER pHandler;
2241 int rc = pgmHandlerPhysicalLookup(pVM, iFirstPage * X86_PAGE_SIZE, &pHandler);
2242 if (RT_SUCCESS(rc))
2243 pszMore = pHandler->pszDesc;
2244 PGM_UNLOCK(pVM);
2245 break;
2246 }
2247
2248 case PGMPAGETYPE_INVALID:
2249 pszType = "invalid";
2250 break;
2251
2252 default:
2253 pszType = "bad";
2254 break;
2255 }
2256 if (pszMore)
2257 pHlp->pfnPrintf(pHlp, " %RGp-%RGp %-20s %s\n",
2258 pCur->GCPhys + iFirstPage * X86_PAGE_SIZE,
2259 pCur->GCPhys + iPage * X86_PAGE_SIZE - 1,
2260 pszType, pszMore);
2261 else
2262 pHlp->pfnPrintf(pHlp, " %RGp-%RGp %s\n",
2263 pCur->GCPhys + iFirstPage * X86_PAGE_SIZE,
2264 pCur->GCPhys + iPage * X86_PAGE_SIZE - 1,
2265 pszType);
2266
2267 }
2268 }
2269 }
2270}
2271
2272
2273/**
2274 * Dump the page directory to the log.
2275 *
2276 * @param pVM The cross context VM structure.
2277 * @param pHlp The info helpers.
2278 * @param pszArgs Arguments, ignored.
2279 */
2280static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2281{
2282 /** @todo SMP support!! */
2283 PVMCPU pVCpu = pVM->apCpusR3[0];
2284
2285/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2286 /* Big pages supported? */
2287 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2288
2289 /* Global pages supported? */
2290 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
2291
2292 NOREF(pszArgs);
2293
2294 /*
2295 * Get page directory addresses.
2296 */
2297 PGM_LOCK_VOID(pVM);
2298 PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
2299 Assert(pPDSrc);
2300
2301 /*
2302 * Iterate the page directory.
2303 */
2304 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2305 {
2306 X86PDE PdeSrc = pPDSrc->a[iPD];
2307 if (PdeSrc.u & X86_PDE_P)
2308 {
2309 if ((PdeSrc.u & X86_PDE_PS) && fPSE)
2310 pHlp->pfnPrintf(pHlp,
2311 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2312 iPD,
2313 pgmGstGet4MBPhysPage(pVM, PdeSrc), PdeSrc.u & X86_PDE_P, !!(PdeSrc.u & X86_PDE_US),
2314 !!(PdeSrc.u & X86_PDE_RW), (PdeSrc.u & X86_PDE4M_G) && fPGE);
2315 else
2316 pHlp->pfnPrintf(pHlp,
2317 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2318 iPD,
2319 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK), PdeSrc.u & X86_PDE_P, !!(PdeSrc.u & X86_PDE_US),
2320 !!(PdeSrc.u & X86_PDE_RW), (PdeSrc.u & X86_PDE4M_G) && fPGE);
2321 }
2322 }
2323 PGM_UNLOCK(pVM);
2324}
2325
2326
2327/**
2328 * Called by pgmPoolFlushAllInt prior to flushing the pool.
2329 *
2330 * @returns VBox status code, fully asserted.
2331 * @param pVCpu The cross context virtual CPU structure.
2332 */
2333int pgmR3ExitShadowModeBeforePoolFlush(PVMCPU pVCpu)
2334{
2335 /* Unmap the old CR3 value before flushing everything. */
2336 int rc = VINF_SUCCESS;
2337 uintptr_t idxBth = pVCpu->pgm.s.idxBothModeData;
2338 if ( idxBth < RT_ELEMENTS(g_aPgmBothModeData)
2339 && g_aPgmBothModeData[idxBth].pfnUnmapCR3)
2340 {
2341 rc = g_aPgmBothModeData[idxBth].pfnUnmapCR3(pVCpu);
2342 AssertRC(rc);
2343 }
2344
2345 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
2346 uintptr_t idxShw = pVCpu->pgm.s.idxShadowModeData;
2347 if ( idxShw < RT_ELEMENTS(g_aPgmShadowModeData)
2348 && g_aPgmShadowModeData[idxShw].pfnExit)
2349 {
2350 rc = g_aPgmShadowModeData[idxShw].pfnExit(pVCpu);
2351 AssertMsgRCReturn(rc, ("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc), rc);
2352 }
2353
2354#ifndef VBOX_WITH_ONLY_PGM_NEM_MODE
2355 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
2356#endif
2357 return rc;
2358}
2359
2360
2361/**
2362 * Called by pgmPoolFlushAllInt after flushing the pool.
2363 *
2364 * @returns VBox status code, fully asserted.
2365 * @param pVM The cross context VM structure.
2366 * @param pVCpu The cross context virtual CPU structure.
2367 */
2368int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
2369{
2370 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
2371 int rc = PGMHCChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu), false /* fForce */);
2372 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
2373 AssertRCReturn(rc, rc);
2374 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
2375
2376#ifndef VBOX_WITH_ONLY_PGM_NEM_MODE
2377 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL || pVCpu->pgm.s.enmShadowMode == PGMMODE_NONE);
2378#endif
2379 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED_32BIT
2380 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
2381 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
2382 return rc;
2383}
2384
2385
2386/**
2387 * Called by PGMR3PhysSetA20 after changing the A20 state.
2388 *
2389 * @param pVCpu The cross context virtual CPU structure.
2390 */
2391void pgmR3RefreshShadowModeAfterA20Change(PVMCPU pVCpu)
2392{
2393 /** @todo Probably doing a bit too much here. */
2394 int rc = pgmR3ExitShadowModeBeforePoolFlush(pVCpu);
2395 AssertReleaseRC(rc);
2396 rc = pgmR3ReEnterShadowModeAfterPoolFlush(pVCpu->CTX_SUFF(pVM), pVCpu);
2397 AssertReleaseRC(rc);
2398}
2399
2400
2401#ifdef VBOX_WITH_DEBUGGER
2402
2403/**
2404 * @callback_method_impl{FNDBGCCMD, The '.pgmerror' and '.pgmerroroff' commands.}
2405 */
2406static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2407{
2408 /*
2409 * Validate input.
2410 */
2411 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2412 PVM pVM = pUVM->pVM;
2413 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING));
2414
2415 if (!cArgs)
2416 {
2417 /*
2418 * Print the list of error injection locations with status.
2419 */
2420 DBGCCmdHlpPrintf(pCmdHlp, "PGM error inject locations:\n");
2421 DBGCCmdHlpPrintf(pCmdHlp, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
2422 }
2423 else
2424 {
2425 /*
2426 * String switch on where to inject the error.
2427 */
2428 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
2429 const char *pszWhere = paArgs[0].u.pszString;
2430 if (!strcmp(pszWhere, "handy"))
2431 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
2432 else
2433 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid 'where' value: %s.\n", pszWhere);
2434 DBGCCmdHlpPrintf(pCmdHlp, "done\n");
2435 }
2436 return VINF_SUCCESS;
2437}
2438
2439
2440/**
2441 * @callback_method_impl{FNDBGCCMD, The '.pgmsync' command.}
2442 */
2443static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2444{
2445 /*
2446 * Validate input.
2447 */
2448 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
2449 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2450 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
2451 if (!pVCpu)
2452 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
2453
2454 /*
2455 * Force page directory sync.
2456 */
2457 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2458
2459 int rc = DBGCCmdHlpPrintf(pCmdHlp, "Forcing page directory sync.\n");
2460 if (RT_FAILURE(rc))
2461 return rc;
2462
2463 return VINF_SUCCESS;
2464}
2465
2466#ifdef VBOX_STRICT
2467
2468/**
2469 * EMT callback for pgmR3CmdAssertCR3.
2470 *
2471 * @returns VBox status code.
2472 * @param pUVM The user mode VM handle.
2473 * @param pcErrors Where to return the error count.
2474 */
2475static DECLCALLBACK(int) pgmR3CmdAssertCR3EmtWorker(PUVM pUVM, unsigned *pcErrors)
2476{
2477 PVM pVM = pUVM->pVM;
2478 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
2479 PVMCPU pVCpu = VMMGetCpu(pVM);
2480
2481 *pcErrors = PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
2482
2483 return VINF_SUCCESS;
2484}
2485
2486
2487/**
2488 * @callback_method_impl{FNDBGCCMD, The '.pgmassertcr3' command.}
2489 */
2490static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2491{
2492 /*
2493 * Validate input.
2494 */
2495 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
2496 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2497
2498 int rc = DBGCCmdHlpPrintf(pCmdHlp, "Checking shadow CR3 page tables for consistency.\n");
2499 if (RT_FAILURE(rc))
2500 return rc;
2501
2502 unsigned cErrors = 0;
2503 rc = VMR3ReqCallWaitU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp), (PFNRT)pgmR3CmdAssertCR3EmtWorker, 2, pUVM, &cErrors);
2504 if (RT_FAILURE(rc))
2505 return DBGCCmdHlpFail(pCmdHlp, pCmd, "VMR3ReqCallWaitU failed: %Rrc", rc);
2506 if (cErrors > 0)
2507 return DBGCCmdHlpFail(pCmdHlp, pCmd, "PGMAssertCR3: %u error(s)", cErrors);
2508 return DBGCCmdHlpPrintf(pCmdHlp, "PGMAssertCR3: OK\n");
2509}
2510
2511#endif /* VBOX_STRICT */
2512
2513/**
2514 * @callback_method_impl{FNDBGCCMD, The '.pgmsyncalways' command.}
2515 */
2516static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2517{
2518 /*
2519 * Validate input.
2520 */
2521 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
2522 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2523 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
2524 if (!pVCpu)
2525 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
2526
2527 /*
2528 * Force page directory sync.
2529 */
2530 int rc;
2531 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
2532 {
2533 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
2534 rc = DBGCCmdHlpPrintf(pCmdHlp, "Disabled permanent forced page directory syncing.\n");
2535 }
2536 else
2537 {
2538 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
2539 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2540 rc = DBGCCmdHlpPrintf(pCmdHlp, "Enabled permanent forced page directory syncing.\n");
2541 }
2542 return rc;
2543}
2544
2545
2546/**
2547 * @callback_method_impl{FNDBGCCMD, The '.pgmphystofile' command.}
2548 */
2549static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
2550{
2551 /*
2552 * Validate input.
2553 */
2554 NOREF(pCmd);
2555 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
2556 PVM pVM = pUVM->pVM;
2557 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2);
2558 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
2559 if (cArgs == 2)
2560 {
2561 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING);
2562 if (strcmp(paArgs[1].u.pszString, "nozero"))
2563 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
2564 }
2565 bool fIncZeroPgs = cArgs < 2;
2566
2567 /*
2568 * Open the output file and get the ram parameters.
2569 */
2570 RTFILE hFile;
2571 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
2572 if (RT_FAILURE(rc))
2573 return DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
2574
2575 uint32_t cbRamHole = 0;
2576 CFGMR3QueryU32Def(CFGMR3GetRootU(pUVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
2577 uint64_t cbRam = 0;
2578 CFGMR3QueryU64Def(CFGMR3GetRootU(pUVM), "RamSize", &cbRam, 0);
2579 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
2580
2581 /*
2582 * Dump the physical memory, page by page.
2583 */
2584 RTGCPHYS GCPhys = 0;
2585 char abZeroPg[GUEST_PAGE_SIZE];
2586 RT_ZERO(abZeroPg);
2587
2588 PGM_LOCK_VOID(pVM);
2589
2590 uint32_t const cRamRangeLookupEntries = RT_MIN(pVM->pgm.s.RamRangeUnion.cLookupEntries,
2591 RT_ELEMENTS(pVM->pgm.s.aRamRangeLookup));
2592 for (uint32_t idxLookup = 0; idxLookup < cRamRangeLookupEntries && RT_SUCCESS(rc); idxLookup++)
2593 {
2594 if (PGMRAMRANGELOOKUPENTRY_GET_FIRST(pVM->pgm.s.aRamRangeLookup[idxLookup]) >= GCPhysEnd)
2595 break;
2596 uint32_t const idRamRange = PGMRAMRANGELOOKUPENTRY_GET_ID(pVM->pgm.s.aRamRangeLookup[idxLookup]);
2597 AssertContinue(idRamRange < RT_ELEMENTS(pVM->pgm.s.apRamRanges));
2598 PPGMRAMRANGE const pRam = pVM->pgm.s.apRamRanges[idRamRange];
2599 AssertContinue(pRam);
2600 Assert(pRam->GCPhys == PGMRAMRANGELOOKUPENTRY_GET_FIRST(pVM->pgm.s.aRamRangeLookup[idxLookup]));
2601
2602 /* fill the gap */
2603 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
2604 {
2605 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
2606 {
2607 rc = RTFileWrite(hFile, abZeroPg, GUEST_PAGE_SIZE, NULL);
2608 GCPhys += GUEST_PAGE_SIZE;
2609 }
2610 }
2611
2612 PCPGMPAGE pPage = &pRam->aPages[0];
2613 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
2614 {
2615 if ( PGM_PAGE_IS_ZERO(pPage)
2616 || PGM_PAGE_IS_BALLOONED(pPage))
2617 {
2618 if (fIncZeroPgs)
2619 {
2620 rc = RTFileWrite(hFile, abZeroPg, GUEST_PAGE_SIZE, NULL);
2621 if (RT_FAILURE(rc))
2622 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
2623 }
2624 }
2625 else
2626 {
2627 switch (PGM_PAGE_GET_TYPE(pPage))
2628 {
2629 case PGMPAGETYPE_RAM:
2630 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
2631 case PGMPAGETYPE_ROM:
2632 case PGMPAGETYPE_MMIO2:
2633 {
2634 void const *pvPage;
2635 PGMPAGEMAPLOCK Lock;
2636 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
2637 if (RT_SUCCESS(rc))
2638 {
2639 rc = RTFileWrite(hFile, pvPage, GUEST_PAGE_SIZE, NULL);
2640 PGMPhysReleasePageMappingLock(pVM, &Lock);
2641 if (RT_FAILURE(rc))
2642 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
2643 }
2644 else
2645 DBGCCmdHlpPrintf(pCmdHlp, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
2646 break;
2647 }
2648
2649 default:
2650 AssertFailed();
2651 RT_FALL_THRU();
2652 case PGMPAGETYPE_MMIO:
2653 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
2654 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
2655 if (fIncZeroPgs)
2656 {
2657 rc = RTFileWrite(hFile, abZeroPg, GUEST_PAGE_SIZE, NULL);
2658 if (RT_FAILURE(rc))
2659 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
2660 }
2661 break;
2662 }
2663 }
2664
2665
2666 /* advance */
2667 GCPhys += GUEST_PAGE_SIZE;
2668 pPage++;
2669 }
2670 }
2671 PGM_UNLOCK(pVM);
2672
2673 RTFileClose(hFile);
2674 if (RT_SUCCESS(rc))
2675 return DBGCCmdHlpPrintf(pCmdHlp, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
2676 return VINF_SUCCESS;
2677}
2678
2679#endif /* VBOX_WITH_DEBUGGER */
2680
2681/**
2682 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
2683 */
2684typedef struct PGMCHECKINTARGS
2685{
2686 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
2687 uint32_t cErrors;
2688 PPGMPHYSHANDLER pPrevPhys;
2689 PVM pVM;
2690} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
2691
2692/**
2693 * Validate a node in the physical handler tree.
2694 *
2695 * @returns 0 on if ok, other wise 1.
2696 * @param pNode The handler node.
2697 * @param pvUser pVM.
2698 */
2699static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PPGMPHYSHANDLER pNode, void *pvUser)
2700{
2701 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
2702
2703 AssertLogRelMsgReturnStmt(!((uintptr_t)pNode & 7), ("pNode=%p\n", pNode), pArgs->cErrors++, VERR_INVALID_POINTER);
2704
2705 AssertLogRelMsgStmt(pNode->Key <= pNode->KeyLast,
2706 ("pNode=%p %RGp-%RGp %s\n", pNode, pNode->Key, pNode->KeyLast, pNode->pszDesc),
2707 pArgs->cErrors++);
2708
2709 AssertLogRelMsgStmt( !pArgs->pPrevPhys
2710 || ( pArgs->fLeftToRight
2711 ? pArgs->pPrevPhys->KeyLast < pNode->Key
2712 : pArgs->pPrevPhys->KeyLast > pNode->Key),
2713 ("pPrevPhys=%p %RGp-%RGp %s\n"
2714 " pNode=%p %RGp-%RGp %s\n",
2715 pArgs->pPrevPhys, pArgs->pPrevPhys->Key, pArgs->pPrevPhys->KeyLast, pArgs->pPrevPhys->pszDesc,
2716 pNode, pNode->Key, pNode->KeyLast, pNode->pszDesc),
2717 pArgs->cErrors++);
2718
2719 pArgs->pPrevPhys = pNode;
2720 return 0;
2721}
2722
2723
2724/**
2725 * Perform an integrity check on the PGM component.
2726 *
2727 * @returns VINF_SUCCESS if everything is fine.
2728 * @returns VBox error status after asserting on integrity breach.
2729 * @param pVM The cross context VM structure.
2730 */
2731VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
2732{
2733 /*
2734 * Check the trees.
2735 */
2736 PGMCHECKINTARGS Args = { true, 0, NULL, pVM };
2737 int rc = pVM->pgm.s.pPhysHandlerTree->doWithAllFromLeft(&pVM->pgm.s.PhysHandlerAllocator,
2738 pgmR3CheckIntegrityPhysHandlerNode, &Args);
2739 AssertLogRelRCReturn(rc, rc);
2740
2741 Args.fLeftToRight = false;
2742 Args.pPrevPhys = NULL;
2743 rc = pVM->pgm.s.pPhysHandlerTree->doWithAllFromRight(&pVM->pgm.s.PhysHandlerAllocator,
2744 pgmR3CheckIntegrityPhysHandlerNode, &Args);
2745 AssertLogRelMsgReturn(pVM->pgm.s.pPhysHandlerTree->m_cErrors == 0,
2746 ("m_cErrors=%#x\n", pVM->pgm.s.pPhysHandlerTree->m_cErrors == 0),
2747 VERR_INTERNAL_ERROR);
2748
2749 return Args.cErrors == 0 ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
2750}
2751
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette