VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllPool.cpp@ 20140

Last change on this file since 20140 was 20140, checked in by vboxsync, 16 years ago

No need to inform all VCPUs about a pending pool flush. The current VCPU will take care of it.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 161.8 KB
Line 
1/* $Id: PGMAllPool.cpp 20140 2009-05-29 09:50:33Z vboxsync $ */
2/** @file
3 * PGM Shadow Page Pool.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.215389.xyz. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM_POOL
27#include <VBox/pgm.h>
28#include <VBox/mm.h>
29#include <VBox/em.h>
30#include <VBox/cpum.h>
31#ifdef IN_RC
32# include <VBox/patm.h>
33#endif
34#include "PGMInternal.h"
35#include <VBox/vm.h>
36#include <VBox/disopcode.h>
37#include <VBox/hwacc_vmx.h>
38
39#include <VBox/log.h>
40#include <VBox/err.h>
41#include <iprt/asm.h>
42#include <iprt/string.h>
43
44
45/*******************************************************************************
46* Internal Functions *
47*******************************************************************************/
48__BEGIN_DECLS
49static void pgmPoolFlushAllInt(PPGMPOOL pPool);
50#ifdef PGMPOOL_WITH_USER_TRACKING
51DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind);
52DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind);
53static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
54#endif
55#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
56static void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint);
57#endif
58#ifdef PGMPOOL_WITH_CACHE
59static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable);
60#endif
61#ifdef PGMPOOL_WITH_MONITORING
62static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
63#endif
64#ifndef IN_RING3
65DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser);
66#endif
67#ifdef LOG_ENABLED
68static const char *pgmPoolPoolKindToStr(uint8_t enmKind);
69#endif
70
71void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs);
72void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt);
73int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage);
74PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt);
75void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt);
76void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt);
77
78__END_DECLS
79
80
81/**
82 * Checks if the specified page pool kind is for a 4MB or 2MB guest page.
83 *
84 * @returns true if it's the shadow of a 4MB or 2MB guest page, otherwise false.
85 * @param enmKind The page kind.
86 */
87DECLINLINE(bool) pgmPoolIsBigPage(PGMPOOLKIND enmKind)
88{
89 switch (enmKind)
90 {
91 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
92 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
93 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
94 return true;
95 default:
96 return false;
97 }
98}
99
100/** @def PGMPOOL_PAGE_2_LOCKED_PTR
101 * Maps a pool page pool into the current context and lock it (RC only).
102 *
103 * @returns VBox status code.
104 * @param pVM The VM handle.
105 * @param pPage The pool page.
106 *
107 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
108 * small page window employeed by that function. Be careful.
109 * @remark There is no need to assert on the result.
110 */
111#if defined(IN_RC)
112DECLINLINE(void *) PGMPOOL_PAGE_2_LOCKED_PTR(PVM pVM, PPGMPOOLPAGE pPage)
113{
114 void *pv = pgmPoolMapPageInlined(&pVM->pgm.s, pPage);
115
116 /* Make sure the dynamic mapping will not be reused. */
117 if (pv)
118 PGMDynLockHCPage(pVM, (uint8_t *)pv);
119
120 return pv;
121}
122#else
123# define PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage) PGMPOOL_PAGE_2_PTR(pVM, pPage)
124#endif
125
126/** @def PGMPOOL_UNLOCK_PTR
127 * Unlock a previously locked dynamic caching (RC only).
128 *
129 * @returns VBox status code.
130 * @param pVM The VM handle.
131 * @param pPage The pool page.
132 *
133 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
134 * small page window employeed by that function. Be careful.
135 * @remark There is no need to assert on the result.
136 */
137#if defined(IN_RC)
138DECLINLINE(void) PGMPOOL_UNLOCK_PTR(PVM pVM, void *pvPage)
139{
140 if (pvPage)
141 PGMDynUnlockHCPage(pVM, (uint8_t *)pvPage);
142}
143#else
144# define PGMPOOL_UNLOCK_PTR(pVM, pPage) do {} while (0)
145#endif
146
147
148#ifdef PGMPOOL_WITH_MONITORING
149/**
150 * Determin the size of a write instruction.
151 * @returns number of bytes written.
152 * @param pDis The disassembler state.
153 */
154static unsigned pgmPoolDisasWriteSize(PDISCPUSTATE pDis)
155{
156 /*
157 * This is very crude and possibly wrong for some opcodes,
158 * but since it's not really supposed to be called we can
159 * probably live with that.
160 */
161 return DISGetParamSize(pDis, &pDis->param1);
162}
163
164
165/**
166 * Flushes a chain of pages sharing the same access monitor.
167 *
168 * @returns VBox status code suitable for scheduling.
169 * @param pPool The pool.
170 * @param pPage A page in the chain.
171 */
172int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
173{
174 LogFlow(("pgmPoolMonitorChainFlush: Flush page %RGp type=%d\n", pPage->GCPhys, pPage->enmKind));
175
176 /*
177 * Find the list head.
178 */
179 uint16_t idx = pPage->idx;
180 if (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
181 {
182 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
183 {
184 idx = pPage->iMonitoredPrev;
185 Assert(idx != pPage->idx);
186 pPage = &pPool->aPages[idx];
187 }
188 }
189
190 /*
191 * Iterate the list flushing each shadow page.
192 */
193 int rc = VINF_SUCCESS;
194 for (;;)
195 {
196 idx = pPage->iMonitoredNext;
197 Assert(idx != pPage->idx);
198 if (pPage->idx >= PGMPOOL_IDX_FIRST)
199 {
200 int rc2 = pgmPoolFlushPage(pPool, pPage);
201 AssertRC(rc2);
202 }
203 /* next */
204 if (idx == NIL_PGMPOOL_IDX)
205 break;
206 pPage = &pPool->aPages[idx];
207 }
208 return rc;
209}
210
211
212/**
213 * Wrapper for getting the current context pointer to the entry being modified.
214 *
215 * @returns VBox status code suitable for scheduling.
216 * @param pVM VM Handle.
217 * @param pvDst Destination address
218 * @param pvSrc Source guest virtual address.
219 * @param GCPhysSrc The source guest physical address.
220 * @param cb Size of data to read
221 */
222DECLINLINE(int) pgmPoolPhysSimpleReadGCPhys(PVM pVM, void *pvDst, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvSrc, RTGCPHYS GCPhysSrc, size_t cb)
223{
224#if defined(IN_RING3)
225 memcpy(pvDst, (RTHCPTR)((uintptr_t)pvSrc & ~(RTHCUINTPTR)(cb - 1)), cb);
226 return VINF_SUCCESS;
227#else
228 /* @todo in RC we could attempt to use the virtual address, although this can cause many faults (PAE Windows XP guest). */
229 return PGMPhysSimpleReadGCPhys(pVM, pvDst, GCPhysSrc & ~(RTGCPHYS)(cb - 1), cb);
230#endif
231}
232
233/**
234 * Process shadow entries before they are changed by the guest.
235 *
236 * For PT entries we will clear them. For PD entries, we'll simply check
237 * for mapping conflicts and set the SyncCR3 FF if found.
238 *
239 * @param pVCpu VMCPU handle
240 * @param pPool The pool.
241 * @param pPage The head page.
242 * @param GCPhysFault The guest physical fault address.
243 * @param uAddress In R0 and GC this is the guest context fault address (flat).
244 * In R3 this is the host context 'fault' address.
245 * @param pCpu The disassembler state for figuring out the write size.
246 * This need not be specified if the caller knows we won't do cross entry accesses.
247 */
248void pgmPoolMonitorChainChanging(PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvAddress, PDISCPUSTATE pCpu)
249{
250 Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
251 const unsigned off = GCPhysFault & PAGE_OFFSET_MASK;
252 const unsigned cbWrite = (pCpu) ? pgmPoolDisasWriteSize(pCpu) : 0;
253 PVM pVM = pPool->CTX_SUFF(pVM);
254
255 LogFlow(("pgmPoolMonitorChainChanging: %RGv phys=%RGp kind=%s cbWrite=%d\n", (RTGCPTR)pvAddress, GCPhysFault, pgmPoolPoolKindToStr(pPage->enmKind), cbWrite));
256 for (;;)
257 {
258 union
259 {
260 void *pv;
261 PX86PT pPT;
262 PX86PTPAE pPTPae;
263 PX86PD pPD;
264 PX86PDPAE pPDPae;
265 PX86PDPT pPDPT;
266 PX86PML4 pPML4;
267 } uShw;
268
269 uShw.pv = NULL;
270 switch (pPage->enmKind)
271 {
272 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
273 {
274 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
275 const unsigned iShw = off / sizeof(X86PTE);
276 LogFlow(("PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT iShw=%x\n", iShw));
277 if (uShw.pPT->a[iShw].n.u1Present)
278 {
279# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
280 X86PTE GstPte;
281
282 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
283 AssertRC(rc);
284 Log4(("pgmPoolMonitorChainChanging 32_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
285 pgmPoolTracDerefGCPhysHint(pPool, pPage,
286 uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK,
287 GstPte.u & X86_PTE_PG_MASK);
288# endif
289 ASMAtomicWriteSize(&uShw.pPT->a[iShw], 0);
290 }
291 break;
292 }
293
294 /* page/2 sized */
295 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
296 {
297 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
298 if (!((off ^ pPage->GCPhys) & (PAGE_SIZE / 2)))
299 {
300 const unsigned iShw = (off / sizeof(X86PTE)) & (X86_PG_PAE_ENTRIES - 1);
301 LogFlow(("PGMPOOLKIND_PAE_PT_FOR_32BIT_PT iShw=%x\n", iShw));
302 if (uShw.pPTPae->a[iShw].n.u1Present)
303 {
304# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
305 X86PTE GstPte;
306 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
307 AssertRC(rc);
308
309 Log4(("pgmPoolMonitorChainChanging pae_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
310 pgmPoolTracDerefGCPhysHint(pPool, pPage,
311 uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK,
312 GstPte.u & X86_PTE_PG_MASK);
313# endif
314 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw], 0);
315 }
316 }
317 break;
318 }
319
320 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
321 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
322 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
323 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
324 {
325 unsigned iGst = off / sizeof(X86PDE);
326 unsigned iShwPdpt = iGst / 256;
327 unsigned iShw = (iGst % 256) * 2;
328 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
329
330 LogFlow(("pgmPoolMonitorChainChanging PAE for 32 bits: iGst=%x iShw=%x idx = %d page idx=%d\n", iGst, iShw, iShwPdpt, pPage->enmKind - PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD));
331 if (iShwPdpt == pPage->enmKind - (unsigned)PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD)
332 {
333 for (unsigned i = 0; i < 2; i++)
334 {
335# ifndef IN_RING0
336 if ((uShw.pPDPae->a[iShw + i].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
337 {
338 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
339 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
340 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw=%#x!\n", iShwPdpt, iShw+i));
341 break;
342 }
343 else
344# endif /* !IN_RING0 */
345 if (uShw.pPDPae->a[iShw+i].n.u1Present)
346 {
347 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw+i, uShw.pPDPae->a[iShw+i].u));
348 pgmPoolFree(pVM,
349 uShw.pPDPae->a[iShw+i].u & X86_PDE_PAE_PG_MASK,
350 pPage->idx,
351 iShw + i);
352 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw+i], 0);
353 }
354
355 /* paranoia / a bit assumptive. */
356 if ( pCpu
357 && (off & 3)
358 && (off & 3) + cbWrite > 4)
359 {
360 const unsigned iShw2 = iShw + 2 + i;
361 if (iShw2 < RT_ELEMENTS(uShw.pPDPae->a))
362 {
363# ifndef IN_RING0
364 if ((uShw.pPDPae->a[iShw2].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
365 {
366 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
367 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
368 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw2=%#x!\n", iShwPdpt, iShw2));
369 break;
370 }
371 else
372# endif /* !IN_RING0 */
373 if (uShw.pPDPae->a[iShw2].n.u1Present)
374 {
375 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
376 pgmPoolFree(pVM,
377 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
378 pPage->idx,
379 iShw2);
380 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
381 }
382 }
383 }
384 }
385 }
386 break;
387 }
388
389 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
390 {
391 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
392 const unsigned iShw = off / sizeof(X86PTEPAE);
393 if (uShw.pPTPae->a[iShw].n.u1Present)
394 {
395# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
396 X86PTEPAE GstPte;
397 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
398 AssertRC(rc);
399
400 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PAE_PG_MASK));
401 pgmPoolTracDerefGCPhysHint(pPool, pPage,
402 uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK,
403 GstPte.u & X86_PTE_PAE_PG_MASK);
404# endif
405 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw].u, 0);
406 }
407
408 /* paranoia / a bit assumptive. */
409 if ( pCpu
410 && (off & 7)
411 && (off & 7) + cbWrite > sizeof(X86PTEPAE))
412 {
413 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTEPAE);
414 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPTPae->a));
415
416 if (uShw.pPTPae->a[iShw2].n.u1Present)
417 {
418# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
419 X86PTEPAE GstPte;
420# ifdef IN_RING3
421 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, (RTHCPTR)((RTHCUINTPTR)pvAddress + sizeof(GstPte)), GCPhysFault + sizeof(GstPte), sizeof(GstPte));
422# else
423 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress + sizeof(GstPte), GCPhysFault + sizeof(GstPte), sizeof(GstPte));
424# endif
425 AssertRC(rc);
426 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", uShw.pPTPae->a[iShw2].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PAE_PG_MASK));
427 pgmPoolTracDerefGCPhysHint(pPool, pPage,
428 uShw.pPTPae->a[iShw2].u & X86_PTE_PAE_PG_MASK,
429 GstPte.u & X86_PTE_PAE_PG_MASK);
430# endif
431 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw2].u ,0);
432 }
433 }
434 break;
435 }
436
437 case PGMPOOLKIND_32BIT_PD:
438 {
439 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
440 const unsigned iShw = off / sizeof(X86PTE); // ASSUMING 32-bit guest paging!
441
442 LogFlow(("pgmPoolMonitorChainChanging: PGMPOOLKIND_32BIT_PD %x\n", iShw));
443# ifndef IN_RING0
444 if (uShw.pPD->a[iShw].u & PGM_PDFLAGS_MAPPING)
445 {
446 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
447 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
448 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
449 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
450 break;
451 }
452# endif /* !IN_RING0 */
453# ifndef IN_RING0
454 else
455# endif /* !IN_RING0 */
456 {
457 if (uShw.pPD->a[iShw].n.u1Present)
458 {
459 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
460 pgmPoolFree(pVM,
461 uShw.pPD->a[iShw].u & X86_PDE_PAE_PG_MASK,
462 pPage->idx,
463 iShw);
464 ASMAtomicWriteSize(&uShw.pPD->a[iShw].u, 0);
465 }
466 }
467 /* paranoia / a bit assumptive. */
468 if ( pCpu
469 && (off & 3)
470 && (off & 3) + cbWrite > sizeof(X86PTE))
471 {
472 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTE);
473 if ( iShw2 != iShw
474 && iShw2 < RT_ELEMENTS(uShw.pPD->a))
475 {
476# ifndef IN_RING0
477 if (uShw.pPD->a[iShw2].u & PGM_PDFLAGS_MAPPING)
478 {
479 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
480 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
481 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
482 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
483 break;
484 }
485# endif /* !IN_RING0 */
486# ifndef IN_RING0
487 else
488# endif /* !IN_RING0 */
489 {
490 if (uShw.pPD->a[iShw2].n.u1Present)
491 {
492 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPD->a[iShw2].u));
493 pgmPoolFree(pVM,
494 uShw.pPD->a[iShw2].u & X86_PDE_PAE_PG_MASK,
495 pPage->idx,
496 iShw2);
497 ASMAtomicWriteSize(&uShw.pPD->a[iShw2].u, 0);
498 }
499 }
500 }
501 }
502#if 0 /* useful when running PGMAssertCR3(), a bit too troublesome for general use (TLBs). */
503 if ( uShw.pPD->a[iShw].n.u1Present
504 && !VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
505 {
506 LogFlow(("pgmPoolMonitorChainChanging: iShw=%#x: %RX32 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
507# ifdef IN_RC /* TLB load - we're pushing things a bit... */
508 ASMProbeReadByte(pvAddress);
509# endif
510 pgmPoolFree(pVM, uShw.pPD->a[iShw].u & X86_PDE_PG_MASK, pPage->idx, iShw);
511 ASMAtomicWriteSize(&uShw.pPD->a[iShw].u, 0);
512 }
513#endif
514 break;
515 }
516
517 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
518 {
519 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
520 const unsigned iShw = off / sizeof(X86PDEPAE);
521#ifndef IN_RING0
522 if (uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING)
523 {
524 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
525 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
526 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
527 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
528 break;
529 }
530#endif /* !IN_RING0 */
531 /*
532 * Causes trouble when the guest uses a PDE to refer to the whole page table level
533 * structure. (Invalidate here; faults later on when it tries to change the page
534 * table entries -> recheck; probably only applies to the RC case.)
535 */
536# ifndef IN_RING0
537 else
538# endif /* !IN_RING0 */
539 {
540 if (uShw.pPDPae->a[iShw].n.u1Present)
541 {
542 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
543 pgmPoolFree(pVM,
544 uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK,
545 pPage->idx,
546 iShw);
547 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw].u, 0);
548 }
549 }
550 /* paranoia / a bit assumptive. */
551 if ( pCpu
552 && (off & 7)
553 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
554 {
555 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
556 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
557
558#ifndef IN_RING0
559 if ( iShw2 != iShw
560 && uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING)
561 {
562 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
563 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
564 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
565 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
566 break;
567 }
568#endif /* !IN_RING0 */
569# ifndef IN_RING0
570 else
571# endif /* !IN_RING0 */
572 if (uShw.pPDPae->a[iShw2].n.u1Present)
573 {
574 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
575 pgmPoolFree(pVM,
576 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
577 pPage->idx,
578 iShw2);
579 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
580 }
581 }
582 break;
583 }
584
585 case PGMPOOLKIND_PAE_PDPT:
586 {
587 /*
588 * Hopefully this doesn't happen very often:
589 * - touching unused parts of the page
590 * - messing with the bits of pd pointers without changing the physical address
591 */
592 /* PDPT roots are not page aligned; 32 byte only! */
593 const unsigned offPdpt = GCPhysFault - pPage->GCPhys;
594
595 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
596 const unsigned iShw = offPdpt / sizeof(X86PDPE);
597 if (iShw < X86_PG_PAE_PDPE_ENTRIES) /* don't use RT_ELEMENTS(uShw.pPDPT->a), because that's for long mode only */
598 {
599# ifndef IN_RING0
600 if (uShw.pPDPT->a[iShw].u & PGM_PLXFLAGS_MAPPING)
601 {
602 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
603 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
604 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
605 LogFlow(("pgmPoolMonitorChainChanging: Detected pdpt conflict at iShw=%#x!\n", iShw));
606 break;
607 }
608# endif /* !IN_RING0 */
609# ifndef IN_RING0
610 else
611# endif /* !IN_RING0 */
612 if (uShw.pPDPT->a[iShw].n.u1Present)
613 {
614 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
615 pgmPoolFree(pVM,
616 uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK,
617 pPage->idx,
618 iShw);
619 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw].u, 0);
620 }
621
622 /* paranoia / a bit assumptive. */
623 if ( pCpu
624 && (offPdpt & 7)
625 && (offPdpt & 7) + cbWrite > sizeof(X86PDPE))
626 {
627 const unsigned iShw2 = (offPdpt + cbWrite - 1) / sizeof(X86PDPE);
628 if ( iShw2 != iShw
629 && iShw2 < X86_PG_PAE_PDPE_ENTRIES)
630 {
631# ifndef IN_RING0
632 if (uShw.pPDPT->a[iShw2].u & PGM_PLXFLAGS_MAPPING)
633 {
634 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
635 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
636 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
637 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
638 break;
639 }
640# endif /* !IN_RING0 */
641# ifndef IN_RING0
642 else
643# endif /* !IN_RING0 */
644 if (uShw.pPDPT->a[iShw2].n.u1Present)
645 {
646 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
647 pgmPoolFree(pVM,
648 uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK,
649 pPage->idx,
650 iShw2);
651 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw2].u, 0);
652 }
653 }
654 }
655 }
656 break;
657 }
658
659#ifndef IN_RC
660 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
661 {
662 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
663 const unsigned iShw = off / sizeof(X86PDEPAE);
664 Assert(!(uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING));
665 if (uShw.pPDPae->a[iShw].n.u1Present)
666 {
667 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
668 pgmPoolFree(pVM,
669 uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK,
670 pPage->idx,
671 iShw);
672 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw].u, 0);
673 }
674 /* paranoia / a bit assumptive. */
675 if ( pCpu
676 && (off & 7)
677 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
678 {
679 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
680 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
681
682 Assert(!(uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING));
683 if (uShw.pPDPae->a[iShw2].n.u1Present)
684 {
685 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
686 pgmPoolFree(pVM,
687 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
688 pPage->idx,
689 iShw2);
690 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
691 }
692 }
693 break;
694 }
695
696 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
697 {
698 /*
699 * Hopefully this doesn't happen very often:
700 * - messing with the bits of pd pointers without changing the physical address
701 */
702 if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
703 {
704 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
705 const unsigned iShw = off / sizeof(X86PDPE);
706 if (uShw.pPDPT->a[iShw].n.u1Present)
707 {
708 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
709 pgmPoolFree(pVM, uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK, pPage->idx, iShw);
710 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw].u, 0);
711 }
712 /* paranoia / a bit assumptive. */
713 if ( pCpu
714 && (off & 7)
715 && (off & 7) + cbWrite > sizeof(X86PDPE))
716 {
717 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDPE);
718 if (uShw.pPDPT->a[iShw2].n.u1Present)
719 {
720 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
721 pgmPoolFree(pVM, uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK, pPage->idx, iShw2);
722 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw2].u, 0);
723 }
724 }
725 }
726 break;
727 }
728
729 case PGMPOOLKIND_64BIT_PML4:
730 {
731 /*
732 * Hopefully this doesn't happen very often:
733 * - messing with the bits of pd pointers without changing the physical address
734 */
735 if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
736 {
737 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
738 const unsigned iShw = off / sizeof(X86PDPE);
739 if (uShw.pPML4->a[iShw].n.u1Present)
740 {
741 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPML4->a[iShw].u));
742 pgmPoolFree(pVM, uShw.pPML4->a[iShw].u & X86_PML4E_PG_MASK, pPage->idx, iShw);
743 ASMAtomicWriteSize(&uShw.pPML4->a[iShw].u, 0);
744 }
745 /* paranoia / a bit assumptive. */
746 if ( pCpu
747 && (off & 7)
748 && (off & 7) + cbWrite > sizeof(X86PDPE))
749 {
750 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PML4E);
751 if (uShw.pPML4->a[iShw2].n.u1Present)
752 {
753 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPML4->a[iShw2].u));
754 pgmPoolFree(pVM, uShw.pPML4->a[iShw2].u & X86_PML4E_PG_MASK, pPage->idx, iShw2);
755 ASMAtomicWriteSize(&uShw.pPML4->a[iShw2].u, 0);
756 }
757 }
758 }
759 break;
760 }
761#endif /* IN_RING0 */
762
763 default:
764 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
765 }
766 PGMPOOL_UNLOCK_PTR(pVM, uShw.pv);
767
768 /* next */
769 if (pPage->iMonitoredNext == NIL_PGMPOOL_IDX)
770 return;
771 pPage = &pPool->aPages[pPage->iMonitoredNext];
772 }
773}
774
775# ifndef IN_RING3
776/**
777 * Checks if a access could be a fork operation in progress.
778 *
779 * Meaning, that the guest is setuping up the parent process for Copy-On-Write.
780 *
781 * @returns true if it's likly that we're forking, otherwise false.
782 * @param pPool The pool.
783 * @param pCpu The disassembled instruction.
784 * @param offFault The access offset.
785 */
786DECLINLINE(bool) pgmPoolMonitorIsForking(PPGMPOOL pPool, PDISCPUSTATE pCpu, unsigned offFault)
787{
788 /*
789 * i386 linux is using btr to clear X86_PTE_RW.
790 * The functions involved are (2.6.16 source inspection):
791 * clear_bit
792 * ptep_set_wrprotect
793 * copy_one_pte
794 * copy_pte_range
795 * copy_pmd_range
796 * copy_pud_range
797 * copy_page_range
798 * dup_mmap
799 * dup_mm
800 * copy_mm
801 * copy_process
802 * do_fork
803 */
804 if ( pCpu->pCurInstr->opcode == OP_BTR
805 && !(offFault & 4)
806 /** @todo Validate that the bit index is X86_PTE_RW. */
807 )
808 {
809 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,Fork));
810 return true;
811 }
812 return false;
813}
814
815
816/**
817 * Determine whether the page is likely to have been reused.
818 *
819 * @returns true if we consider the page as being reused for a different purpose.
820 * @returns false if we consider it to still be a paging page.
821 * @param pVM VM Handle.
822 * @param pRegFrame Trap register frame.
823 * @param pCpu The disassembly info for the faulting instruction.
824 * @param pvFault The fault address.
825 *
826 * @remark The REP prefix check is left to the caller because of STOSD/W.
827 */
828DECLINLINE(bool) pgmPoolMonitorIsReused(PVM pVM, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pCpu, RTGCPTR pvFault)
829{
830#ifndef IN_RC
831 /** @todo could make this general, faulting close to rsp should be safe reuse heuristic. */
832 if ( HWACCMHasPendingIrq(pVM)
833 && (pRegFrame->rsp - pvFault) < 32)
834 {
835 /* Fault caused by stack writes while trying to inject an interrupt event. */
836 Log(("pgmPoolMonitorIsReused: reused %RGv for interrupt stack (rsp=%RGv).\n", pvFault, pRegFrame->rsp));
837 return true;
838 }
839#else
840 NOREF(pVM); NOREF(pvFault);
841#endif
842
843 switch (pCpu->pCurInstr->opcode)
844 {
845 /* call implies the actual push of the return address faulted */
846 case OP_CALL:
847 Log4(("pgmPoolMonitorIsReused: CALL\n"));
848 return true;
849 case OP_PUSH:
850 Log4(("pgmPoolMonitorIsReused: PUSH\n"));
851 return true;
852 case OP_PUSHF:
853 Log4(("pgmPoolMonitorIsReused: PUSHF\n"));
854 return true;
855 case OP_PUSHA:
856 Log4(("pgmPoolMonitorIsReused: PUSHA\n"));
857 return true;
858 case OP_FXSAVE:
859 Log4(("pgmPoolMonitorIsReused: FXSAVE\n"));
860 return true;
861 case OP_MOVNTI: /* solaris - block_zero_no_xmm */
862 Log4(("pgmPoolMonitorIsReused: MOVNTI\n"));
863 return true;
864 case OP_MOVNTDQ: /* solaris - hwblkclr & hwblkpagecopy */
865 Log4(("pgmPoolMonitorIsReused: MOVNTDQ\n"));
866 return true;
867 case OP_MOVSWD:
868 case OP_STOSWD:
869 if ( pCpu->prefix == (PREFIX_REP|PREFIX_REX)
870 && pRegFrame->rcx >= 0x40
871 )
872 {
873 Assert(pCpu->mode == CPUMODE_64BIT);
874
875 Log(("pgmPoolMonitorIsReused: OP_STOSQ\n"));
876 return true;
877 }
878 return false;
879 }
880 if ( (pCpu->param1.flags & USE_REG_GEN32)
881 && (pCpu->param1.base.reg_gen == USE_REG_ESP))
882 {
883 Log4(("pgmPoolMonitorIsReused: ESP\n"));
884 return true;
885 }
886
887 return false;
888}
889
890
891/**
892 * Flushes the page being accessed.
893 *
894 * @returns VBox status code suitable for scheduling.
895 * @param pVM The VM handle.
896 * @param pVCpu The VMCPU handle.
897 * @param pPool The pool.
898 * @param pPage The pool page (head).
899 * @param pCpu The disassembly of the write instruction.
900 * @param pRegFrame The trap register frame.
901 * @param GCPhysFault The fault address as guest physical address.
902 * @param pvFault The fault address.
903 */
904static int pgmPoolAccessHandlerFlush(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu,
905 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
906{
907 /*
908 * First, do the flushing.
909 */
910 int rc = pgmPoolMonitorChainFlush(pPool, pPage);
911
912 /*
913 * Emulate the instruction (xp/w2k problem, requires pc/cr2/sp detection).
914 */
915 uint32_t cbWritten;
916 int rc2 = EMInterpretInstructionCPU(pVM, pVCpu, pCpu, pRegFrame, pvFault, &cbWritten);
917 if (RT_SUCCESS(rc2))
918 pRegFrame->rip += pCpu->opsize;
919 else if (rc2 == VERR_EM_INTERPRETER)
920 {
921#ifdef IN_RC
922 if (PATMIsPatchGCAddr(pVM, (RTRCPTR)pRegFrame->eip))
923 {
924 LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for patch code %04x:%RGv, ignoring.\n",
925 pRegFrame->cs, (RTGCPTR)pRegFrame->eip));
926 rc = VINF_SUCCESS;
927 STAM_COUNTER_INC(&pPool->StatMonitorRZIntrFailPatch2);
928 }
929 else
930#endif
931 {
932 rc = VINF_EM_RAW_EMULATE_INSTR;
933 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,EmulateInstr));
934 }
935 }
936 else
937 rc = rc2;
938
939 /* See use in pgmPoolAccessHandlerSimple(). */
940 PGM_INVL_VCPU_TLBS(pVCpu);
941
942 LogFlow(("pgmPoolAccessHandlerPT: returns %Rrc (flushed)\n", rc));
943 return rc;
944
945}
946
947
948/**
949 * Handles the STOSD write accesses.
950 *
951 * @returns VBox status code suitable for scheduling.
952 * @param pVM The VM handle.
953 * @param pPool The pool.
954 * @param pPage The pool page (head).
955 * @param pCpu The disassembly of the write instruction.
956 * @param pRegFrame The trap register frame.
957 * @param GCPhysFault The fault address as guest physical address.
958 * @param pvFault The fault address.
959 */
960DECLINLINE(int) pgmPoolAccessHandlerSTOSD(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu,
961 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
962{
963 Assert(pCpu->mode == CPUMODE_32BIT);
964
965 Log3(("pgmPoolAccessHandlerSTOSD\n"));
966
967 /*
968 * Increment the modification counter and insert it into the list
969 * of modified pages the first time.
970 */
971 if (!pPage->cModifications++)
972 pgmPoolMonitorModifiedInsert(pPool, pPage);
973
974 /*
975 * Execute REP STOSD.
976 *
977 * This ASSUMES that we're not invoked by Trap0e on in a out-of-sync
978 * write situation, meaning that it's safe to write here.
979 */
980 PVMCPU pVCpu = VMMGetCpu(pPool->CTX_SUFF(pVM));
981 RTGCUINTPTR pu32 = (RTGCUINTPTR)pvFault;
982 while (pRegFrame->ecx)
983 {
984#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
985 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
986 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, (RTGCPTR)pu32, NULL);
987 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
988#else
989 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, (RTGCPTR)pu32, NULL);
990#endif
991#ifdef IN_RC
992 *(uint32_t *)pu32 = pRegFrame->eax;
993#else
994 PGMPhysSimpleWriteGCPhys(pVM, GCPhysFault, &pRegFrame->eax, 4);
995#endif
996 pu32 += 4;
997 GCPhysFault += 4;
998 pRegFrame->edi += 4;
999 pRegFrame->ecx--;
1000 }
1001 pRegFrame->rip += pCpu->opsize;
1002
1003#ifdef IN_RC
1004 /* See use in pgmPoolAccessHandlerSimple(). */
1005 PGM_INVL_VCPU_TLBS(pVCpu);
1006#endif
1007
1008 LogFlow(("pgmPoolAccessHandlerSTOSD: returns\n"));
1009 return VINF_SUCCESS;
1010}
1011
1012
1013/**
1014 * Handles the simple write accesses.
1015 *
1016 * @returns VBox status code suitable for scheduling.
1017 * @param pVM The VM handle.
1018 * @param pVCpu The VMCPU handle.
1019 * @param pPool The pool.
1020 * @param pPage The pool page (head).
1021 * @param pCpu The disassembly of the write instruction.
1022 * @param pRegFrame The trap register frame.
1023 * @param GCPhysFault The fault address as guest physical address.
1024 * @param pvFault The fault address.
1025 */
1026DECLINLINE(int) pgmPoolAccessHandlerSimple(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu,
1027 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
1028{
1029 Log3(("pgmPoolAccessHandlerSimple\n"));
1030 /*
1031 * Increment the modification counter and insert it into the list
1032 * of modified pages the first time.
1033 */
1034 if (!pPage->cModifications++)
1035 pgmPoolMonitorModifiedInsert(pPool, pPage);
1036
1037 /*
1038 * Clear all the pages. ASSUMES that pvFault is readable.
1039 */
1040#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
1041 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
1042 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, pvFault, pCpu);
1043 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
1044#else
1045 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, pvFault, pCpu);
1046#endif
1047
1048 /*
1049 * Interpret the instruction.
1050 */
1051 uint32_t cb;
1052 int rc = EMInterpretInstructionCPU(pVM, pVCpu, pCpu, pRegFrame, pvFault, &cb);
1053 if (RT_SUCCESS(rc))
1054 pRegFrame->rip += pCpu->opsize;
1055 else if (rc == VERR_EM_INTERPRETER)
1056 {
1057 LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for %04x:%RGv - opcode=%d\n",
1058 pRegFrame->cs, (RTGCPTR)pRegFrame->rip, pCpu->pCurInstr->opcode));
1059 rc = VINF_EM_RAW_EMULATE_INSTR;
1060 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,EmulateInstr));
1061 }
1062
1063#ifdef IN_RC
1064 /*
1065 * Quick hack, with logging enabled we're getting stale
1066 * code TLBs but no data TLB for EIP and crash in EMInterpretDisasOne.
1067 * Flushing here is BAD and expensive, I think EMInterpretDisasOne will
1068 * have to be fixed to support this. But that'll have to wait till next week.
1069 *
1070 * An alternative is to keep track of the changed PTEs together with the
1071 * GCPhys from the guest PT. This may proove expensive though.
1072 *
1073 * At the moment, it's VITAL that it's done AFTER the instruction interpreting
1074 * because we need the stale TLBs in some cases (XP boot). This MUST be fixed properly!
1075 */
1076 PGM_INVL_VCPU_TLBS(pVCpu);
1077#endif
1078
1079 LogFlow(("pgmPoolAccessHandlerSimple: returns %Rrc cb=%d\n", rc, cb));
1080 return rc;
1081}
1082
1083/**
1084 * \#PF Handler callback for PT write accesses.
1085 *
1086 * @returns VBox status code (appropriate for GC return).
1087 * @param pVM VM Handle.
1088 * @param uErrorCode CPU Error code.
1089 * @param pRegFrame Trap register frame.
1090 * NULL on DMA and other non CPU access.
1091 * @param pvFault The fault address (cr2).
1092 * @param GCPhysFault The GC physical address corresponding to pvFault.
1093 * @param pvUser User argument.
1094 */
1095DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
1096{
1097 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), a);
1098 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1099 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
1100 PVMCPU pVCpu = VMMGetCpu(pVM);
1101
1102 LogFlow(("pgmPoolAccessHandler: pvFault=%RGv pPage=%p:{.idx=%d} GCPhysFault=%RGp\n", pvFault, pPage, pPage->idx, GCPhysFault));
1103
1104 /*
1105 * We should ALWAYS have the list head as user parameter. This
1106 * is because we use that page to record the changes.
1107 */
1108 Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1109
1110 /*
1111 * Disassemble the faulting instruction.
1112 */
1113 DISCPUSTATE Cpu;
1114 int rc = EMInterpretDisasOne(pVM, pVCpu, pRegFrame, &Cpu, NULL);
1115 AssertRCReturn(rc, rc);
1116
1117 pgmLock(pVM);
1118 if (PHYS_PAGE_ADDRESS(GCPhysFault) != PHYS_PAGE_ADDRESS(pPage->GCPhys))
1119 {
1120 /* Pool page changed while we were waiting for the lock; ignore. */
1121 Log(("CPU%d: pgmPoolAccessHandler pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhysFault), PHYS_PAGE_ADDRESS(pPage->GCPhys)));
1122 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,Handled), a);
1123 pgmUnlock(pVM);
1124 return VINF_SUCCESS;
1125 }
1126
1127 /*
1128 * Check if it's worth dealing with.
1129 */
1130 bool fReused = false;
1131 if ( ( pPage->cModifications < 48 /** @todo #define */ /** @todo need to check that it's not mapping EIP. */ /** @todo adjust this! */
1132 || pgmPoolIsPageLocked(&pVM->pgm.s, pPage)
1133 )
1134 && !(fReused = pgmPoolMonitorIsReused(pVM, pRegFrame, &Cpu, pvFault))
1135 && !pgmPoolMonitorIsForking(pPool, &Cpu, GCPhysFault & PAGE_OFFSET_MASK))
1136 {
1137 /*
1138 * Simple instructions, no REP prefix.
1139 */
1140 if (!(Cpu.prefix & (PREFIX_REP | PREFIX_REPNE)))
1141 {
1142 rc = pgmPoolAccessHandlerSimple(pVM, pVCpu, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault);
1143 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,Handled), a);
1144 pgmUnlock(pVM);
1145 return rc;
1146 }
1147
1148 /*
1149 * Windows is frequently doing small memset() operations (netio test 4k+).
1150 * We have to deal with these or we'll kill the cache and performance.
1151 */
1152 if ( Cpu.pCurInstr->opcode == OP_STOSWD
1153 && CPUMGetGuestCPL(pVCpu, pRegFrame) == 0
1154 && pRegFrame->ecx <= 0x20
1155 && pRegFrame->ecx * 4 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK)
1156 && !((uintptr_t)pvFault & 3)
1157 && (pRegFrame->eax == 0 || pRegFrame->eax == 0x80) /* the two values observed. */
1158 && Cpu.mode == CPUMODE_32BIT
1159 && Cpu.opmode == CPUMODE_32BIT
1160 && Cpu.addrmode == CPUMODE_32BIT
1161 && Cpu.prefix == PREFIX_REP
1162 && !pRegFrame->eflags.Bits.u1DF
1163 )
1164 {
1165 rc = pgmPoolAccessHandlerSTOSD(pVM, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault);
1166 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,RepStosd), a);
1167 pgmUnlock(pVM);
1168 return rc;
1169 }
1170
1171 /* REP prefix, don't bother. */
1172 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,RepPrefix));
1173 Log4(("pgmPoolAccessHandler: eax=%#x ecx=%#x edi=%#x esi=%#x rip=%RGv opcode=%d prefix=%#x\n",
1174 pRegFrame->eax, pRegFrame->ecx, pRegFrame->edi, pRegFrame->esi, (RTGCPTR)pRegFrame->rip, Cpu.pCurInstr->opcode, Cpu.prefix));
1175 }
1176
1177 /*
1178 * Not worth it, so flush it.
1179 *
1180 * If we considered it to be reused, don't go back to ring-3
1181 * to emulate failed instructions since we usually cannot
1182 * interpret then. This may be a bit risky, in which case
1183 * the reuse detection must be fixed.
1184 */
1185 rc = pgmPoolAccessHandlerFlush(pVM, pVCpu, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault);
1186 if (rc == VINF_EM_RAW_EMULATE_INSTR && fReused)
1187 rc = VINF_SUCCESS;
1188 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,FlushPage), a);
1189 pgmUnlock(pVM);
1190 return rc;
1191}
1192
1193# endif /* !IN_RING3 */
1194#endif /* PGMPOOL_WITH_MONITORING */
1195
1196#ifdef PGMPOOL_WITH_CACHE
1197
1198/**
1199 * Inserts a page into the GCPhys hash table.
1200 *
1201 * @param pPool The pool.
1202 * @param pPage The page.
1203 */
1204DECLINLINE(void) pgmPoolHashInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1205{
1206 Log3(("pgmPoolHashInsert: %RGp\n", pPage->GCPhys));
1207 Assert(pPage->GCPhys != NIL_RTGCPHYS); Assert(pPage->iNext == NIL_PGMPOOL_IDX);
1208 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1209 pPage->iNext = pPool->aiHash[iHash];
1210 pPool->aiHash[iHash] = pPage->idx;
1211}
1212
1213
1214/**
1215 * Removes a page from the GCPhys hash table.
1216 *
1217 * @param pPool The pool.
1218 * @param pPage The page.
1219 */
1220DECLINLINE(void) pgmPoolHashRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1221{
1222 Log3(("pgmPoolHashRemove: %RGp\n", pPage->GCPhys));
1223 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1224 if (pPool->aiHash[iHash] == pPage->idx)
1225 pPool->aiHash[iHash] = pPage->iNext;
1226 else
1227 {
1228 uint16_t iPrev = pPool->aiHash[iHash];
1229 for (;;)
1230 {
1231 const int16_t i = pPool->aPages[iPrev].iNext;
1232 if (i == pPage->idx)
1233 {
1234 pPool->aPages[iPrev].iNext = pPage->iNext;
1235 break;
1236 }
1237 if (i == NIL_PGMPOOL_IDX)
1238 {
1239 AssertReleaseMsgFailed(("GCPhys=%RGp idx=%#x\n", pPage->GCPhys, pPage->idx));
1240 break;
1241 }
1242 iPrev = i;
1243 }
1244 }
1245 pPage->iNext = NIL_PGMPOOL_IDX;
1246}
1247
1248
1249/**
1250 * Frees up one cache page.
1251 *
1252 * @returns VBox status code.
1253 * @retval VINF_SUCCESS on success.
1254 * @param pPool The pool.
1255 * @param iUser The user index.
1256 */
1257static int pgmPoolCacheFreeOne(PPGMPOOL pPool, uint16_t iUser)
1258{
1259#ifndef IN_RC
1260 const PVM pVM = pPool->CTX_SUFF(pVM);
1261#endif
1262 Assert(pPool->iAgeHead != pPool->iAgeTail); /* We shouldn't be here if there < 2 cached entries! */
1263 STAM_COUNTER_INC(&pPool->StatCacheFreeUpOne);
1264
1265 /*
1266 * Select one page from the tail of the age list.
1267 */
1268 PPGMPOOLPAGE pPage;
1269 for (unsigned iLoop = 0; ; iLoop++)
1270 {
1271 uint16_t iToFree = pPool->iAgeTail;
1272 if (iToFree == iUser)
1273 iToFree = pPool->aPages[iToFree].iAgePrev;
1274/* This is the alternative to the SyncCR3 pgmPoolCacheUsed calls.
1275 if (pPool->aPages[iToFree].iUserHead != NIL_PGMPOOL_USER_INDEX)
1276 {
1277 uint16_t i = pPool->aPages[iToFree].iAgePrev;
1278 for (unsigned j = 0; j < 10 && i != NIL_PGMPOOL_USER_INDEX; j++, i = pPool->aPages[i].iAgePrev)
1279 {
1280 if (pPool->aPages[iToFree].iUserHead == NIL_PGMPOOL_USER_INDEX)
1281 continue;
1282 iToFree = i;
1283 break;
1284 }
1285 }
1286*/
1287 Assert(iToFree != iUser);
1288 AssertRelease(iToFree != NIL_PGMPOOL_IDX);
1289 pPage = &pPool->aPages[iToFree];
1290
1291 /*
1292 * Reject any attempts at flushing the currently active shadow CR3 mapping.
1293 * Call pgmPoolCacheUsed to move the page to the head of the age list.
1294 */
1295 if (!pgmPoolIsPageLocked(&pPool->CTX_SUFF(pVM)->pgm.s, pPage))
1296 break;
1297 LogFlow(("pgmPoolCacheFreeOne: refuse CR3 mapping\n"));
1298 pgmPoolCacheUsed(pPool, pPage);
1299 AssertLogRelReturn(iLoop < 8192, VERR_INTERNAL_ERROR);
1300 }
1301
1302 /*
1303 * Found a usable page, flush it and return.
1304 */
1305 int rc = pgmPoolFlushPage(pPool, pPage);
1306 /* This flush was initiated by us and not the guest, so explicitly flush the TLB. */
1307 if (rc == VINF_SUCCESS)
1308 PGM_INVL_ALL_VCPU_TLBS(pVM);
1309 return rc;
1310}
1311
1312
1313/**
1314 * Checks if a kind mismatch is really a page being reused
1315 * or if it's just normal remappings.
1316 *
1317 * @returns true if reused and the cached page (enmKind1) should be flushed
1318 * @returns false if not reused.
1319 * @param enmKind1 The kind of the cached page.
1320 * @param enmKind2 The kind of the requested page.
1321 */
1322static bool pgmPoolCacheReusedByKind(PGMPOOLKIND enmKind1, PGMPOOLKIND enmKind2)
1323{
1324 switch (enmKind1)
1325 {
1326 /*
1327 * Never reuse them. There is no remapping in non-paging mode.
1328 */
1329 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1330 case PGMPOOLKIND_32BIT_PD_PHYS:
1331 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1332 case PGMPOOLKIND_PAE_PD_PHYS:
1333 case PGMPOOLKIND_PAE_PDPT_PHYS:
1334 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1335 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1336 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1337 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1338 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1339 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: /* never reuse them for other types */
1340 return false;
1341
1342 /*
1343 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
1344 */
1345 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1346 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1347 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1348 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1349 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1350 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1351 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1352 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1353 case PGMPOOLKIND_32BIT_PD:
1354 case PGMPOOLKIND_PAE_PDPT:
1355 switch (enmKind2)
1356 {
1357 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1358 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1359 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1360 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1361 case PGMPOOLKIND_64BIT_PML4:
1362 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1363 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1364 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1365 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1366 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1367 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1368 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1369 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1370 return true;
1371 default:
1372 return false;
1373 }
1374
1375 /*
1376 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
1377 */
1378 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1379 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1380 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1381 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1382 case PGMPOOLKIND_64BIT_PML4:
1383 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1384 switch (enmKind2)
1385 {
1386 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1387 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1388 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1389 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1390 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1391 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1392 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1393 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1394 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1395 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1396 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1397 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1398 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1399 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1400 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1401 return true;
1402 default:
1403 return false;
1404 }
1405
1406 /*
1407 * These cannot be flushed, and it's common to reuse the PDs as PTs.
1408 */
1409 case PGMPOOLKIND_ROOT_NESTED:
1410 return false;
1411
1412 default:
1413 AssertFatalMsgFailed(("enmKind1=%d\n", enmKind1));
1414 }
1415}
1416
1417
1418/**
1419 * Attempts to satisfy a pgmPoolAlloc request from the cache.
1420 *
1421 * @returns VBox status code.
1422 * @retval VINF_PGM_CACHED_PAGE on success.
1423 * @retval VERR_FILE_NOT_FOUND if not found.
1424 * @param pPool The pool.
1425 * @param GCPhys The GC physical address of the page we're gonna shadow.
1426 * @param enmKind The kind of mapping.
1427 * @param enmAccess Access type for the mapping (only relevant for big pages)
1428 * @param iUser The shadow page pool index of the user table.
1429 * @param iUserTable The index into the user table (shadowed).
1430 * @param ppPage Where to store the pointer to the page.
1431 */
1432static int pgmPoolCacheAlloc(PPGMPOOL pPool, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage)
1433{
1434#ifndef IN_RC
1435 const PVM pVM = pPool->CTX_SUFF(pVM);
1436#endif
1437 /*
1438 * Look up the GCPhys in the hash.
1439 */
1440 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
1441 Log3(("pgmPoolCacheAlloc: %RGp kind %s iUser=%x iUserTable=%x SLOT=%d\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable, i));
1442 if (i != NIL_PGMPOOL_IDX)
1443 {
1444 do
1445 {
1446 PPGMPOOLPAGE pPage = &pPool->aPages[i];
1447 Log4(("pgmPoolCacheAlloc: slot %d found page %RGp\n", i, pPage->GCPhys));
1448 if (pPage->GCPhys == GCPhys)
1449 {
1450 if ( (PGMPOOLKIND)pPage->enmKind == enmKind
1451 && (PGMPOOLACCESS)pPage->enmAccess == enmAccess)
1452 {
1453 /* Put it at the start of the use list to make sure pgmPoolTrackAddUser
1454 * doesn't flush it in case there are no more free use records.
1455 */
1456 pgmPoolCacheUsed(pPool, pPage);
1457
1458 int rc = pgmPoolTrackAddUser(pPool, pPage, iUser, iUserTable);
1459 if (RT_SUCCESS(rc))
1460 {
1461 Assert((PGMPOOLKIND)pPage->enmKind == enmKind);
1462 *ppPage = pPage;
1463 STAM_COUNTER_INC(&pPool->StatCacheHits);
1464 return VINF_PGM_CACHED_PAGE;
1465 }
1466 return rc;
1467 }
1468
1469 if ((PGMPOOLKIND)pPage->enmKind != enmKind)
1470 {
1471 /*
1472 * The kind is different. In some cases we should now flush the page
1473 * as it has been reused, but in most cases this is normal remapping
1474 * of PDs as PT or big pages using the GCPhys field in a slightly
1475 * different way than the other kinds.
1476 */
1477 if (pgmPoolCacheReusedByKind((PGMPOOLKIND)pPage->enmKind, enmKind))
1478 {
1479 STAM_COUNTER_INC(&pPool->StatCacheKindMismatches);
1480 pgmPoolFlushPage(pPool, pPage);
1481 PGM_INVL_VCPU_TLBS(VMMGetCpu(pVM)); /* see PT handler. */
1482 break;
1483 }
1484 }
1485 }
1486
1487 /* next */
1488 i = pPage->iNext;
1489 } while (i != NIL_PGMPOOL_IDX);
1490 }
1491
1492 Log3(("pgmPoolCacheAlloc: Missed GCPhys=%RGp enmKind=%s\n", GCPhys, pgmPoolPoolKindToStr(enmKind)));
1493 STAM_COUNTER_INC(&pPool->StatCacheMisses);
1494 return VERR_FILE_NOT_FOUND;
1495}
1496
1497
1498/**
1499 * Inserts a page into the cache.
1500 *
1501 * @param pPool The pool.
1502 * @param pPage The cached page.
1503 * @param fCanBeCached Set if the page is fit for caching from the caller's point of view.
1504 */
1505static void pgmPoolCacheInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fCanBeCached)
1506{
1507 /*
1508 * Insert into the GCPhys hash if the page is fit for that.
1509 */
1510 Assert(!pPage->fCached);
1511 if (fCanBeCached)
1512 {
1513 pPage->fCached = true;
1514 pgmPoolHashInsert(pPool, pPage);
1515 Log3(("pgmPoolCacheInsert: Caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
1516 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
1517 STAM_COUNTER_INC(&pPool->StatCacheCacheable);
1518 }
1519 else
1520 {
1521 Log3(("pgmPoolCacheInsert: Not caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
1522 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
1523 STAM_COUNTER_INC(&pPool->StatCacheUncacheable);
1524 }
1525
1526 /*
1527 * Insert at the head of the age list.
1528 */
1529 pPage->iAgePrev = NIL_PGMPOOL_IDX;
1530 pPage->iAgeNext = pPool->iAgeHead;
1531 if (pPool->iAgeHead != NIL_PGMPOOL_IDX)
1532 pPool->aPages[pPool->iAgeHead].iAgePrev = pPage->idx;
1533 else
1534 pPool->iAgeTail = pPage->idx;
1535 pPool->iAgeHead = pPage->idx;
1536}
1537
1538
1539/**
1540 * Flushes a cached page.
1541 *
1542 * @param pPool The pool.
1543 * @param pPage The cached page.
1544 */
1545static void pgmPoolCacheFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1546{
1547 Log3(("pgmPoolCacheFlushPage: %RGp\n", pPage->GCPhys));
1548
1549 /*
1550 * Remove the page from the hash.
1551 */
1552 if (pPage->fCached)
1553 {
1554 pPage->fCached = false;
1555 pgmPoolHashRemove(pPool, pPage);
1556 }
1557 else
1558 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
1559
1560 /*
1561 * Remove it from the age list.
1562 */
1563 if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
1564 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
1565 else
1566 pPool->iAgeTail = pPage->iAgePrev;
1567 if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
1568 pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
1569 else
1570 pPool->iAgeHead = pPage->iAgeNext;
1571 pPage->iAgeNext = NIL_PGMPOOL_IDX;
1572 pPage->iAgePrev = NIL_PGMPOOL_IDX;
1573}
1574
1575#endif /* PGMPOOL_WITH_CACHE */
1576#ifdef PGMPOOL_WITH_MONITORING
1577
1578/**
1579 * Looks for pages sharing the monitor.
1580 *
1581 * @returns Pointer to the head page.
1582 * @returns NULL if not found.
1583 * @param pPool The Pool
1584 * @param pNewPage The page which is going to be monitored.
1585 */
1586static PPGMPOOLPAGE pgmPoolMonitorGetPageByGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pNewPage)
1587{
1588#ifdef PGMPOOL_WITH_CACHE
1589 /*
1590 * Look up the GCPhys in the hash.
1591 */
1592 RTGCPHYS GCPhys = pNewPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
1593 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
1594 if (i == NIL_PGMPOOL_IDX)
1595 return NULL;
1596 do
1597 {
1598 PPGMPOOLPAGE pPage = &pPool->aPages[i];
1599 if ( pPage->GCPhys - GCPhys < PAGE_SIZE
1600 && pPage != pNewPage)
1601 {
1602 switch (pPage->enmKind)
1603 {
1604 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1605 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1606 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1607 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1608 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1609 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1610 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1611 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1612 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1613 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1614 case PGMPOOLKIND_64BIT_PML4:
1615 case PGMPOOLKIND_32BIT_PD:
1616 case PGMPOOLKIND_PAE_PDPT:
1617 {
1618 /* find the head */
1619 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
1620 {
1621 Assert(pPage->iMonitoredPrev != pPage->idx);
1622 pPage = &pPool->aPages[pPage->iMonitoredPrev];
1623 }
1624 return pPage;
1625 }
1626
1627 /* ignore, no monitoring. */
1628 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1629 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1630 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1631 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1632 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1633 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1634 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1635 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1636 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1637 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1638 case PGMPOOLKIND_ROOT_NESTED:
1639 case PGMPOOLKIND_PAE_PD_PHYS:
1640 case PGMPOOLKIND_PAE_PDPT_PHYS:
1641 case PGMPOOLKIND_32BIT_PD_PHYS:
1642 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
1643 break;
1644 default:
1645 AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx));
1646 }
1647 }
1648
1649 /* next */
1650 i = pPage->iNext;
1651 } while (i != NIL_PGMPOOL_IDX);
1652#endif
1653 return NULL;
1654}
1655
1656
1657/**
1658 * Enabled write monitoring of a guest page.
1659 *
1660 * @returns VBox status code.
1661 * @retval VINF_SUCCESS on success.
1662 * @param pPool The pool.
1663 * @param pPage The cached page.
1664 */
1665static int pgmPoolMonitorInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1666{
1667 LogFlow(("pgmPoolMonitorInsert %RGp\n", pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1)));
1668
1669 /*
1670 * Filter out the relevant kinds.
1671 */
1672 switch (pPage->enmKind)
1673 {
1674 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1675 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1676 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1677 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1678 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1679 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1680 case PGMPOOLKIND_64BIT_PML4:
1681 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1682 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1683 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1684 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1685 case PGMPOOLKIND_32BIT_PD:
1686 case PGMPOOLKIND_PAE_PDPT:
1687 break;
1688
1689 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1690 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1691 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1692 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1693 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1694 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1695 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1696 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1697 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1698 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1699 case PGMPOOLKIND_ROOT_NESTED:
1700 /* Nothing to monitor here. */
1701 return VINF_SUCCESS;
1702
1703 case PGMPOOLKIND_32BIT_PD_PHYS:
1704 case PGMPOOLKIND_PAE_PDPT_PHYS:
1705 case PGMPOOLKIND_PAE_PD_PHYS:
1706 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
1707 /* Nothing to monitor here. */
1708 return VINF_SUCCESS;
1709#ifdef PGMPOOL_WITH_MIXED_PT_CR3
1710 break;
1711#else
1712 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1713#endif
1714 default:
1715 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
1716 }
1717
1718 /*
1719 * Install handler.
1720 */
1721 int rc;
1722 PPGMPOOLPAGE pPageHead = pgmPoolMonitorGetPageByGCPhys(pPool, pPage);
1723 if (pPageHead)
1724 {
1725 Assert(pPageHead != pPage); Assert(pPageHead->iMonitoredNext != pPage->idx);
1726 Assert(pPageHead->iMonitoredPrev != pPage->idx);
1727 pPage->iMonitoredPrev = pPageHead->idx;
1728 pPage->iMonitoredNext = pPageHead->iMonitoredNext;
1729 if (pPageHead->iMonitoredNext != NIL_PGMPOOL_IDX)
1730 pPool->aPages[pPageHead->iMonitoredNext].iMonitoredPrev = pPage->idx;
1731 pPageHead->iMonitoredNext = pPage->idx;
1732 rc = VINF_SUCCESS;
1733 }
1734 else
1735 {
1736 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX); Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1737 PVM pVM = pPool->CTX_SUFF(pVM);
1738 const RTGCPHYS GCPhysPage = pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
1739 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
1740 GCPhysPage, GCPhysPage + (PAGE_SIZE - 1),
1741 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage),
1742 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage),
1743 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pPage),
1744 pPool->pszAccessHandler);
1745 /** @todo we should probably deal with out-of-memory conditions here, but for now increasing
1746 * the heap size should suffice. */
1747 AssertFatalMsgRC(rc, ("PGMHandlerPhysicalRegisterEx %RGp failed with %Rrc\n", GCPhysPage, rc));
1748 Assert(!(pVM->pgm.s.fGlobalSyncFlags & PGM_GLOBAL_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_ISSET(VMMGetCpu(pVM), VMCPU_FF_PGM_SYNC_CR3));
1749 }
1750 pPage->fMonitored = true;
1751 return rc;
1752}
1753
1754
1755/**
1756 * Disables write monitoring of a guest page.
1757 *
1758 * @returns VBox status code.
1759 * @retval VINF_SUCCESS on success.
1760 * @param pPool The pool.
1761 * @param pPage The cached page.
1762 */
1763static int pgmPoolMonitorFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1764{
1765 /*
1766 * Filter out the relevant kinds.
1767 */
1768 switch (pPage->enmKind)
1769 {
1770 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1771 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1772 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1773 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1774 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1775 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1776 case PGMPOOLKIND_64BIT_PML4:
1777 case PGMPOOLKIND_32BIT_PD:
1778 case PGMPOOLKIND_PAE_PDPT:
1779 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1780 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1781 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1782 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1783 break;
1784
1785 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1786 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1787 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1788 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1789 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1790 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1791 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1792 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1793 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1794 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1795 case PGMPOOLKIND_ROOT_NESTED:
1796 case PGMPOOLKIND_PAE_PD_PHYS:
1797 case PGMPOOLKIND_PAE_PDPT_PHYS:
1798 case PGMPOOLKIND_32BIT_PD_PHYS:
1799 /* Nothing to monitor here. */
1800 return VINF_SUCCESS;
1801
1802#ifdef PGMPOOL_WITH_MIXED_PT_CR3
1803 break;
1804#endif
1805 default:
1806 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
1807 }
1808
1809 /*
1810 * Remove the page from the monitored list or uninstall it if last.
1811 */
1812 const PVM pVM = pPool->CTX_SUFF(pVM);
1813 int rc;
1814 if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX
1815 || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
1816 {
1817 if (pPage->iMonitoredPrev == NIL_PGMPOOL_IDX)
1818 {
1819 PPGMPOOLPAGE pNewHead = &pPool->aPages[pPage->iMonitoredNext];
1820 pNewHead->iMonitoredPrev = NIL_PGMPOOL_IDX;
1821 rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1),
1822 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pNewHead),
1823 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pNewHead),
1824 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pNewHead),
1825 pPool->pszAccessHandler);
1826 AssertFatalRCSuccess(rc);
1827 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
1828 }
1829 else
1830 {
1831 pPool->aPages[pPage->iMonitoredPrev].iMonitoredNext = pPage->iMonitoredNext;
1832 if (pPage->iMonitoredNext != NIL_PGMPOOL_IDX)
1833 {
1834 pPool->aPages[pPage->iMonitoredNext].iMonitoredPrev = pPage->iMonitoredPrev;
1835 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
1836 }
1837 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
1838 rc = VINF_SUCCESS;
1839 }
1840 }
1841 else
1842 {
1843 rc = PGMHandlerPhysicalDeregister(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1));
1844 AssertFatalRC(rc);
1845 AssertMsg(!(pVM->pgm.s.fGlobalSyncFlags & PGM_GLOBAL_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_ISSET(VMMGetCpu(pVM), VMCPU_FF_PGM_SYNC_CR3),
1846 ("%#x %#x\n", pVM->pgm.s.fGlobalSyncFlags, pVM->fGlobalForcedActions));
1847 }
1848 pPage->fMonitored = false;
1849
1850 /*
1851 * Remove it from the list of modified pages (if in it).
1852 */
1853 pgmPoolMonitorModifiedRemove(pPool, pPage);
1854
1855 return rc;
1856}
1857
1858
1859/**
1860 * Inserts the page into the list of modified pages.
1861 *
1862 * @param pPool The pool.
1863 * @param pPage The page.
1864 */
1865void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1866{
1867 Log3(("pgmPoolMonitorModifiedInsert: idx=%d\n", pPage->idx));
1868 AssertMsg( pPage->iModifiedNext == NIL_PGMPOOL_IDX
1869 && pPage->iModifiedPrev == NIL_PGMPOOL_IDX
1870 && pPool->iModifiedHead != pPage->idx,
1871 ("Next=%d Prev=%d idx=%d cModifications=%d Head=%d cModifiedPages=%d\n",
1872 pPage->iModifiedNext, pPage->iModifiedPrev, pPage->idx, pPage->cModifications,
1873 pPool->iModifiedHead, pPool->cModifiedPages));
1874
1875 pPage->iModifiedNext = pPool->iModifiedHead;
1876 if (pPool->iModifiedHead != NIL_PGMPOOL_IDX)
1877 pPool->aPages[pPool->iModifiedHead].iModifiedPrev = pPage->idx;
1878 pPool->iModifiedHead = pPage->idx;
1879 pPool->cModifiedPages++;
1880#ifdef VBOX_WITH_STATISTICS
1881 if (pPool->cModifiedPages > pPool->cModifiedPagesHigh)
1882 pPool->cModifiedPagesHigh = pPool->cModifiedPages;
1883#endif
1884}
1885
1886
1887/**
1888 * Removes the page from the list of modified pages and resets the
1889 * moficiation counter.
1890 *
1891 * @param pPool The pool.
1892 * @param pPage The page which is believed to be in the list of modified pages.
1893 */
1894static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1895{
1896 Log3(("pgmPoolMonitorModifiedRemove: idx=%d cModifications=%d\n", pPage->idx, pPage->cModifications));
1897 if (pPool->iModifiedHead == pPage->idx)
1898 {
1899 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
1900 pPool->iModifiedHead = pPage->iModifiedNext;
1901 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
1902 {
1903 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = NIL_PGMPOOL_IDX;
1904 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
1905 }
1906 pPool->cModifiedPages--;
1907 }
1908 else if (pPage->iModifiedPrev != NIL_PGMPOOL_IDX)
1909 {
1910 pPool->aPages[pPage->iModifiedPrev].iModifiedNext = pPage->iModifiedNext;
1911 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
1912 {
1913 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = pPage->iModifiedPrev;
1914 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
1915 }
1916 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
1917 pPool->cModifiedPages--;
1918 }
1919 else
1920 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
1921 pPage->cModifications = 0;
1922}
1923
1924
1925/**
1926 * Zaps the list of modified pages, resetting their modification counters in the process.
1927 *
1928 * @param pVM The VM handle.
1929 */
1930void pgmPoolMonitorModifiedClearAll(PVM pVM)
1931{
1932 pgmLock(pVM);
1933 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1934 LogFlow(("pgmPoolMonitorModifiedClearAll: cModifiedPages=%d\n", pPool->cModifiedPages));
1935
1936 unsigned cPages = 0; NOREF(cPages);
1937 uint16_t idx = pPool->iModifiedHead;
1938 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
1939 while (idx != NIL_PGMPOOL_IDX)
1940 {
1941 PPGMPOOLPAGE pPage = &pPool->aPages[idx];
1942 idx = pPage->iModifiedNext;
1943 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
1944 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
1945 pPage->cModifications = 0;
1946 Assert(++cPages);
1947 }
1948 AssertMsg(cPages == pPool->cModifiedPages, ("%d != %d\n", cPages, pPool->cModifiedPages));
1949 pPool->cModifiedPages = 0;
1950 pgmUnlock(pVM);
1951}
1952
1953
1954#ifdef IN_RING3
1955/**
1956 * Callback to clear all shadow pages and clear all modification counters.
1957 *
1958 * @returns VBox status code.
1959 * @param pVM The VM handle.
1960 * @param pvUser Unused parameter
1961 * @remark Should only be used when monitoring is available, thus placed in
1962 * the PGMPOOL_WITH_MONITORING #ifdef.
1963 */
1964DECLCALLBACK(int) pgmPoolClearAll(PVM pVM, void *pvUser)
1965{
1966 NOREF(pvUser);
1967 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1968 STAM_PROFILE_START(&pPool->StatClearAll, c);
1969 LogFlow(("pgmPoolClearAll: cUsedPages=%d\n", pPool->cUsedPages));
1970
1971 pgmLock(pVM);
1972
1973 /*
1974 * Iterate all the pages until we've encountered all that in use.
1975 * This is simple but not quite optimal solution.
1976 */
1977 unsigned cModifiedPages = 0; NOREF(cModifiedPages);
1978 unsigned cLeft = pPool->cUsedPages;
1979 unsigned iPage = pPool->cCurPages;
1980 while (--iPage >= PGMPOOL_IDX_FIRST)
1981 {
1982 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
1983 if (pPage->GCPhys != NIL_RTGCPHYS)
1984 {
1985 switch (pPage->enmKind)
1986 {
1987 /*
1988 * We only care about shadow page tables.
1989 */
1990 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1991 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1992 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1993 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1994 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1995 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1996 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1997 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1998 {
1999#ifdef PGMPOOL_WITH_USER_TRACKING
2000 if (pPage->cPresent)
2001#endif
2002 {
2003 void *pvShw = PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
2004 STAM_PROFILE_START(&pPool->StatZeroPage, z);
2005 ASMMemZeroPage(pvShw);
2006 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
2007#ifdef PGMPOOL_WITH_USER_TRACKING
2008 pPage->cPresent = 0;
2009 pPage->iFirstPresent = ~0;
2010#endif
2011 }
2012 }
2013 /* fall thru */
2014
2015 default:
2016 Assert(!pPage->cModifications || ++cModifiedPages);
2017 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
2018 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
2019 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2020 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2021 pPage->cModifications = 0;
2022 break;
2023
2024 }
2025 if (!--cLeft)
2026 break;
2027 }
2028 }
2029
2030 /* swipe the special pages too. */
2031 for (iPage = PGMPOOL_IDX_FIRST_SPECIAL; iPage < PGMPOOL_IDX_FIRST; iPage++)
2032 {
2033 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
2034 if (pPage->GCPhys != NIL_RTGCPHYS)
2035 {
2036 Assert(!pPage->cModifications || ++cModifiedPages);
2037 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
2038 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
2039 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2040 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2041 pPage->cModifications = 0;
2042 }
2043 }
2044
2045#ifndef DEBUG_michael
2046 AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages));
2047#endif
2048 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
2049 pPool->cModifiedPages = 0;
2050
2051#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2052 /*
2053 * Clear all the GCPhys links and rebuild the phys ext free list.
2054 */
2055 for (PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
2056 pRam;
2057 pRam = pRam->CTX_SUFF(pNext))
2058 {
2059 unsigned iPage = pRam->cb >> PAGE_SHIFT;
2060 while (iPage-- > 0)
2061 PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0);
2062 }
2063
2064 pPool->iPhysExtFreeHead = 0;
2065 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
2066 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
2067 for (unsigned i = 0; i < cMaxPhysExts; i++)
2068 {
2069 paPhysExts[i].iNext = i + 1;
2070 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
2071 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
2072 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
2073 }
2074 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
2075#endif
2076
2077 pPool->cPresent = 0;
2078 pgmUnlock(pVM);
2079 PGM_INVL_ALL_VCPU_TLBS(pVM);
2080 STAM_PROFILE_STOP(&pPool->StatClearAll, c);
2081 return VINF_SUCCESS;
2082}
2083#endif /* IN_RING3 */
2084
2085
2086/**
2087 * Handle SyncCR3 pool tasks
2088 *
2089 * @returns VBox status code.
2090 * @retval VINF_SUCCESS if successfully added.
2091 * @retval VINF_PGM_SYNC_CR3 is it needs to be deferred to ring 3 (GC only)
2092 * @param pVM The VM handle.
2093 * @remark Should only be used when monitoring is available, thus placed in
2094 * the PGMPOOL_WITH_MONITORING #ifdef.
2095 */
2096int pgmPoolSyncCR3(PVM pVM)
2097{
2098 LogFlow(("pgmPoolSyncCR3\n"));
2099 /*
2100 * When monitoring shadowed pages, we reset the modification counters on CR3 sync.
2101 * Occasionally we will have to clear all the shadow page tables because we wanted
2102 * to monitor a page which was mapped by too many shadowed page tables. This operation
2103 * sometimes refered to as a 'lightweight flush'.
2104 */
2105# ifdef IN_RING3 /* Don't flush in ring-0 or raw mode, it's taking too long. */
2106 if (ASMBitTestAndClear(&pVM->pgm.s.fGlobalSyncFlags, PGM_GLOBAL_SYNC_CLEAR_PGM_POOL_BIT))
2107 {
2108 VMMR3AtomicExecuteHandler(pVM, pgmPoolClearAll, NULL);
2109# else /* !IN_RING3 */
2110 if (pVM->pgm.s.fGlobalSyncFlags & PGM_GLOBAL_SYNC_CLEAR_PGM_POOL)
2111 {
2112 LogFlow(("SyncCR3: PGM_GLOBAL_SYNC_CLEAR_PGM_POOL is set -> VINF_PGM_SYNC_CR3\n"));
2113 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
2114 return VINF_PGM_SYNC_CR3;
2115# endif /* !IN_RING3 */
2116 }
2117 else
2118 pgmPoolMonitorModifiedClearAll(pVM);
2119
2120 return VINF_SUCCESS;
2121}
2122
2123#endif /* PGMPOOL_WITH_MONITORING */
2124#ifdef PGMPOOL_WITH_USER_TRACKING
2125
2126/**
2127 * Frees up at least one user entry.
2128 *
2129 * @returns VBox status code.
2130 * @retval VINF_SUCCESS if successfully added.
2131 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2132 * @param pPool The pool.
2133 * @param iUser The user index.
2134 */
2135static int pgmPoolTrackFreeOneUser(PPGMPOOL pPool, uint16_t iUser)
2136{
2137 STAM_COUNTER_INC(&pPool->StatTrackFreeUpOneUser);
2138#ifdef PGMPOOL_WITH_CACHE
2139 /*
2140 * Just free cached pages in a braindead fashion.
2141 */
2142 /** @todo walk the age list backwards and free the first with usage. */
2143 int rc = VINF_SUCCESS;
2144 do
2145 {
2146 int rc2 = pgmPoolCacheFreeOne(pPool, iUser);
2147 if (RT_FAILURE(rc2) && rc == VINF_SUCCESS)
2148 rc = rc2;
2149 } while (pPool->iUserFreeHead == NIL_PGMPOOL_USER_INDEX);
2150 return rc;
2151#else
2152 /*
2153 * Lazy approach.
2154 */
2155 /* @todo This path no longer works (CR3 root pages will be flushed)!! */
2156 AssertCompileFailed();
2157 Assert(!CPUMIsGuestInLongMode(pVM));
2158 pgmPoolFlushAllInt(pPool);
2159 return VERR_PGM_POOL_FLUSHED;
2160#endif
2161}
2162
2163
2164/**
2165 * Inserts a page into the cache.
2166 *
2167 * This will create user node for the page, insert it into the GCPhys
2168 * hash, and insert it into the age list.
2169 *
2170 * @returns VBox status code.
2171 * @retval VINF_SUCCESS if successfully added.
2172 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2173 * @param pPool The pool.
2174 * @param pPage The cached page.
2175 * @param GCPhys The GC physical address of the page we're gonna shadow.
2176 * @param iUser The user index.
2177 * @param iUserTable The user table index.
2178 */
2179DECLINLINE(int) pgmPoolTrackInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhys, uint16_t iUser, uint32_t iUserTable)
2180{
2181 int rc = VINF_SUCCESS;
2182 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2183
2184 LogFlow(("pgmPoolTrackInsert GCPhys=%RGp iUser %x iUserTable %x\n", GCPhys, iUser, iUserTable));
2185
2186#ifdef VBOX_STRICT
2187 /*
2188 * Check that the entry doesn't already exists.
2189 */
2190 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2191 {
2192 uint16_t i = pPage->iUserHead;
2193 do
2194 {
2195 Assert(i < pPool->cMaxUsers);
2196 AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2197 i = paUsers[i].iNext;
2198 } while (i != NIL_PGMPOOL_USER_INDEX);
2199 }
2200#endif
2201
2202 /*
2203 * Find free a user node.
2204 */
2205 uint16_t i = pPool->iUserFreeHead;
2206 if (i == NIL_PGMPOOL_USER_INDEX)
2207 {
2208 int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2209 if (RT_FAILURE(rc))
2210 return rc;
2211 i = pPool->iUserFreeHead;
2212 }
2213
2214 /*
2215 * Unlink the user node from the free list,
2216 * initialize and insert it into the user list.
2217 */
2218 pPool->iUserFreeHead = paUsers[i].iNext;
2219 paUsers[i].iNext = NIL_PGMPOOL_USER_INDEX;
2220 paUsers[i].iUser = iUser;
2221 paUsers[i].iUserTable = iUserTable;
2222 pPage->iUserHead = i;
2223
2224 /*
2225 * Insert into cache and enable monitoring of the guest page if enabled.
2226 *
2227 * Until we implement caching of all levels, including the CR3 one, we'll
2228 * have to make sure we don't try monitor & cache any recursive reuse of
2229 * a monitored CR3 page. Because all windows versions are doing this we'll
2230 * have to be able to do combined access monitoring, CR3 + PT and
2231 * PD + PT (guest PAE).
2232 *
2233 * Update:
2234 * We're now cooperating with the CR3 monitor if an uncachable page is found.
2235 */
2236#if defined(PGMPOOL_WITH_MONITORING) || defined(PGMPOOL_WITH_CACHE)
2237# ifdef PGMPOOL_WITH_MIXED_PT_CR3
2238 const bool fCanBeMonitored = true;
2239# else
2240 bool fCanBeMonitored = pPool->CTX_SUFF(pVM)->pgm.s.GCPhysGstCR3Monitored == NIL_RTGCPHYS
2241 || (GCPhys & X86_PTE_PAE_PG_MASK) != (pPool->CTX_SUFF(pVM)->pgm.s.GCPhysGstCR3Monitored & X86_PTE_PAE_PG_MASK)
2242 || pgmPoolIsBigPage((PGMPOOLKIND)pPage->enmKind);
2243# endif
2244# ifdef PGMPOOL_WITH_CACHE
2245 pgmPoolCacheInsert(pPool, pPage, fCanBeMonitored); /* This can be expanded. */
2246# endif
2247 if (fCanBeMonitored)
2248 {
2249# ifdef PGMPOOL_WITH_MONITORING
2250 rc = pgmPoolMonitorInsert(pPool, pPage);
2251 AssertRC(rc);
2252 }
2253# endif
2254#endif /* PGMPOOL_WITH_MONITORING */
2255 return rc;
2256}
2257
2258
2259# ifdef PGMPOOL_WITH_CACHE /* (only used when the cache is enabled.) */
2260/**
2261 * Adds a user reference to a page.
2262 *
2263 * This will move the page to the head of the
2264 *
2265 * @returns VBox status code.
2266 * @retval VINF_SUCCESS if successfully added.
2267 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2268 * @param pPool The pool.
2269 * @param pPage The cached page.
2270 * @param iUser The user index.
2271 * @param iUserTable The user table.
2272 */
2273static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2274{
2275 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2276
2277 Log3(("pgmPoolTrackAddUser GCPhys = %RGp iUser %x iUserTable %x\n", pPage->GCPhys, iUser, iUserTable));
2278
2279# ifdef VBOX_STRICT
2280 /*
2281 * Check that the entry doesn't already exists. We only allow multiple users of top-level paging structures (SHW_POOL_ROOT_IDX).
2282 */
2283 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2284 {
2285 uint16_t i = pPage->iUserHead;
2286 do
2287 {
2288 Assert(i < pPool->cMaxUsers);
2289 AssertMsg(iUser != PGMPOOL_IDX_PD || iUser != PGMPOOL_IDX_PDPT || iUser != PGMPOOL_IDX_NESTED_ROOT || iUser != PGMPOOL_IDX_AMD64_CR3 ||
2290 paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2291 i = paUsers[i].iNext;
2292 } while (i != NIL_PGMPOOL_USER_INDEX);
2293 }
2294# endif
2295
2296 /*
2297 * Allocate a user node.
2298 */
2299 uint16_t i = pPool->iUserFreeHead;
2300 if (i == NIL_PGMPOOL_USER_INDEX)
2301 {
2302 int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2303 if (RT_FAILURE(rc))
2304 return rc;
2305 i = pPool->iUserFreeHead;
2306 }
2307 pPool->iUserFreeHead = paUsers[i].iNext;
2308
2309 /*
2310 * Initialize the user node and insert it.
2311 */
2312 paUsers[i].iNext = pPage->iUserHead;
2313 paUsers[i].iUser = iUser;
2314 paUsers[i].iUserTable = iUserTable;
2315 pPage->iUserHead = i;
2316
2317# ifdef PGMPOOL_WITH_CACHE
2318 /*
2319 * Tell the cache to update its replacement stats for this page.
2320 */
2321 pgmPoolCacheUsed(pPool, pPage);
2322# endif
2323 return VINF_SUCCESS;
2324}
2325# endif /* PGMPOOL_WITH_CACHE */
2326
2327
2328/**
2329 * Frees a user record associated with a page.
2330 *
2331 * This does not clear the entry in the user table, it simply replaces the
2332 * user record to the chain of free records.
2333 *
2334 * @param pPool The pool.
2335 * @param HCPhys The HC physical address of the shadow page.
2336 * @param iUser The shadow page pool index of the user table.
2337 * @param iUserTable The index into the user table (shadowed).
2338 */
2339static void pgmPoolTrackFreeUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2340{
2341 /*
2342 * Unlink and free the specified user entry.
2343 */
2344 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2345
2346 Log3(("pgmPoolTrackFreeUser %RGp %x %x\n", pPage->GCPhys, iUser, iUserTable));
2347 /* Special: For PAE and 32-bit paging, there is usually no more than one user. */
2348 uint16_t i = pPage->iUserHead;
2349 if ( i != NIL_PGMPOOL_USER_INDEX
2350 && paUsers[i].iUser == iUser
2351 && paUsers[i].iUserTable == iUserTable)
2352 {
2353 pPage->iUserHead = paUsers[i].iNext;
2354
2355 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2356 paUsers[i].iNext = pPool->iUserFreeHead;
2357 pPool->iUserFreeHead = i;
2358 return;
2359 }
2360
2361 /* General: Linear search. */
2362 uint16_t iPrev = NIL_PGMPOOL_USER_INDEX;
2363 while (i != NIL_PGMPOOL_USER_INDEX)
2364 {
2365 if ( paUsers[i].iUser == iUser
2366 && paUsers[i].iUserTable == iUserTable)
2367 {
2368 if (iPrev != NIL_PGMPOOL_USER_INDEX)
2369 paUsers[iPrev].iNext = paUsers[i].iNext;
2370 else
2371 pPage->iUserHead = paUsers[i].iNext;
2372
2373 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2374 paUsers[i].iNext = pPool->iUserFreeHead;
2375 pPool->iUserFreeHead = i;
2376 return;
2377 }
2378 iPrev = i;
2379 i = paUsers[i].iNext;
2380 }
2381
2382 /* Fatal: didn't find it */
2383 AssertFatalMsgFailed(("Didn't find the user entry! iUser=%#x iUserTable=%#x GCPhys=%RGp\n",
2384 iUser, iUserTable, pPage->GCPhys));
2385}
2386
2387
2388/**
2389 * Gets the entry size of a shadow table.
2390 *
2391 * @param enmKind The kind of page.
2392 *
2393 * @returns The size of the entry in bytes. That is, 4 or 8.
2394 * @returns If the kind is not for a table, an assertion is raised and 0 is
2395 * returned.
2396 */
2397DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind)
2398{
2399 switch (enmKind)
2400 {
2401 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2402 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2403 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2404 case PGMPOOLKIND_32BIT_PD:
2405 case PGMPOOLKIND_32BIT_PD_PHYS:
2406 return 4;
2407
2408 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2409 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2410 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2411 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2412 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2413 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2414 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2415 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2416 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2417 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2418 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2419 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2420 case PGMPOOLKIND_64BIT_PML4:
2421 case PGMPOOLKIND_PAE_PDPT:
2422 case PGMPOOLKIND_ROOT_NESTED:
2423 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2424 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2425 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2426 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2427 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2428 case PGMPOOLKIND_PAE_PD_PHYS:
2429 case PGMPOOLKIND_PAE_PDPT_PHYS:
2430 return 8;
2431
2432 default:
2433 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
2434 }
2435}
2436
2437
2438/**
2439 * Gets the entry size of a guest table.
2440 *
2441 * @param enmKind The kind of page.
2442 *
2443 * @returns The size of the entry in bytes. That is, 0, 4 or 8.
2444 * @returns If the kind is not for a table, an assertion is raised and 0 is
2445 * returned.
2446 */
2447DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind)
2448{
2449 switch (enmKind)
2450 {
2451 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2452 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2453 case PGMPOOLKIND_32BIT_PD:
2454 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2455 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2456 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2457 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2458 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2459 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2460 return 4;
2461
2462 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2463 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2464 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2465 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2466 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2467 case PGMPOOLKIND_64BIT_PML4:
2468 case PGMPOOLKIND_PAE_PDPT:
2469 return 8;
2470
2471 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2472 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2473 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2474 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2475 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2476 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2477 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2478 case PGMPOOLKIND_ROOT_NESTED:
2479 case PGMPOOLKIND_PAE_PD_PHYS:
2480 case PGMPOOLKIND_PAE_PDPT_PHYS:
2481 case PGMPOOLKIND_32BIT_PD_PHYS:
2482 /** @todo can we return 0? (nobody is calling this...) */
2483 AssertFailed();
2484 return 0;
2485
2486 default:
2487 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
2488 }
2489}
2490
2491#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2492
2493/**
2494 * Scans one shadow page table for mappings of a physical page.
2495 *
2496 * @param pVM The VM handle.
2497 * @param pPhysPage The guest page in question.
2498 * @param iShw The shadow page table.
2499 * @param cRefs The number of references made in that PT.
2500 */
2501static void pgmPoolTrackFlushGCPhysPTInt(PVM pVM, PCPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs)
2502{
2503 LogFlow(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%R[pgmpage] iShw=%d cRefs=%d\n", pPhysPage, iShw, cRefs));
2504 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2505
2506 /*
2507 * Assert sanity.
2508 */
2509 Assert(cRefs == 1);
2510 AssertFatalMsg(iShw < pPool->cCurPages && iShw != NIL_PGMPOOL_IDX, ("iShw=%d\n", iShw));
2511 PPGMPOOLPAGE pPage = &pPool->aPages[iShw];
2512
2513 /*
2514 * Then, clear the actual mappings to the page in the shadow PT.
2515 */
2516 switch (pPage->enmKind)
2517 {
2518 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2519 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2520 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2521 {
2522 const uint32_t u32 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2523 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2524 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2525 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
2526 {
2527 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX32 cRefs=%#x\n", i, pPT->a[i], cRefs));
2528 pPT->a[i].u = 0;
2529 cRefs--;
2530 if (!cRefs)
2531 return;
2532 }
2533#ifdef LOG_ENABLED
2534 RTLogPrintf("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent);
2535 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
2536 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
2537 {
2538 RTLogPrintf("i=%d cRefs=%d\n", i, cRefs--);
2539 pPT->a[i].u = 0;
2540 }
2541#endif
2542 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
2543 break;
2544 }
2545
2546 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2547 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2548 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2549 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2550 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2551 {
2552 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2553 PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2554 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2555 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
2556 {
2557 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64 cRefs=%#x\n", i, pPT->a[i], cRefs));
2558 pPT->a[i].u = 0;
2559 cRefs--;
2560 if (!cRefs)
2561 return;
2562 }
2563#ifdef LOG_ENABLED
2564 RTLogPrintf("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent);
2565 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
2566 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
2567 {
2568 RTLogPrintf("i=%d cRefs=%d\n", i, cRefs--);
2569 pPT->a[i].u = 0;
2570 }
2571#endif
2572 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d u64=%RX64\n", cRefs, pPage->iFirstPresent, pPage->cPresent, u64));
2573 break;
2574 }
2575
2576 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2577 {
2578 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2579 PEPTPT pPT = (PEPTPT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2580 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2581 if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64)
2582 {
2583 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64 cRefs=%#x\n", i, pPT->a[i], cRefs));
2584 pPT->a[i].u = 0;
2585 cRefs--;
2586 if (!cRefs)
2587 return;
2588 }
2589#ifdef LOG_ENABLED
2590 RTLogPrintf("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent);
2591 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
2592 if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64)
2593 {
2594 RTLogPrintf("i=%d cRefs=%d\n", i, cRefs--);
2595 pPT->a[i].u = 0;
2596 }
2597#endif
2598 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
2599 break;
2600 }
2601
2602 default:
2603 AssertFatalMsgFailed(("enmKind=%d iShw=%d\n", pPage->enmKind, iShw));
2604 }
2605}
2606
2607
2608/**
2609 * Scans one shadow page table for mappings of a physical page.
2610 *
2611 * @param pVM The VM handle.
2612 * @param pPhysPage The guest page in question.
2613 * @param iShw The shadow page table.
2614 * @param cRefs The number of references made in that PT.
2615 */
2616void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs)
2617{
2618 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
2619 LogFlow(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%R[pgmpage] iShw=%d cRefs=%d\n", pPhysPage, iShw, cRefs));
2620 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPT, f);
2621 pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, iShw, cRefs);
2622 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
2623 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPT, f);
2624}
2625
2626
2627/**
2628 * Flushes a list of shadow page tables mapping the same physical page.
2629 *
2630 * @param pVM The VM handle.
2631 * @param pPhysPage The guest page in question.
2632 * @param iPhysExt The physical cross reference extent list to flush.
2633 */
2634void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt)
2635{
2636 Assert(PGMIsLockOwner(pVM));
2637 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2638 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTs, f);
2639 LogFlow(("pgmPoolTrackFlushGCPhysPTs: pPhysPage=%R[pgmpage] iPhysExt\n", pPhysPage, iPhysExt));
2640
2641 const uint16_t iPhysExtStart = iPhysExt;
2642 PPGMPOOLPHYSEXT pPhysExt;
2643 do
2644 {
2645 Assert(iPhysExt < pPool->cMaxPhysExts);
2646 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
2647 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
2648 if (pPhysExt->aidx[i] != NIL_PGMPOOL_IDX)
2649 {
2650 pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, pPhysExt->aidx[i], 1);
2651 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
2652 }
2653
2654 /* next */
2655 iPhysExt = pPhysExt->iNext;
2656 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
2657
2658 /* insert the list into the free list and clear the ram range entry. */
2659 pPhysExt->iNext = pPool->iPhysExtFreeHead;
2660 pPool->iPhysExtFreeHead = iPhysExtStart;
2661 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
2662
2663 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTs, f);
2664}
2665
2666#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
2667
2668/**
2669 * Flushes all shadow page table mappings of the given guest page.
2670 *
2671 * This is typically called when the host page backing the guest one has been
2672 * replaced or when the page protection was changed due to an access handler.
2673 *
2674 * @returns VBox status code.
2675 * @retval VINF_SUCCESS if all references has been successfully cleared.
2676 * @retval VINF_PGM_SYNC_CR3 if we're better off with a CR3 sync and a page
2677 * pool cleaning. FF and sync flags are set.
2678 *
2679 * @param pVM The VM handle.
2680 * @param pPhysPage The guest page in question.
2681 * @param pfFlushTLBs This is set to @a true if the shadow TLBs should be
2682 * flushed, it is NOT touched if this isn't necessary.
2683 * The caller MUST initialized this to @a false.
2684 */
2685int pgmPoolTrackFlushGCPhys(PVM pVM, PPGMPAGE pPhysPage, bool *pfFlushTLBs)
2686{
2687 PVMCPU pVCpu = VMMGetCpu(pVM);
2688 pgmLock(pVM);
2689 int rc = VINF_SUCCESS;
2690#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2691 const uint16_t u16 = PGM_PAGE_GET_TRACKING(pPhysPage);
2692 if (u16)
2693 {
2694 /*
2695 * The zero page is currently screwing up the tracking and we'll
2696 * have to flush the whole shebang. Unless VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2697 * is defined, zero pages won't normally be mapped. Some kind of solution
2698 * will be needed for this problem of course, but it will have to wait...
2699 */
2700 if (PGM_PAGE_IS_ZERO(pPhysPage))
2701 rc = VINF_PGM_GCPHYS_ALIASED;
2702 else
2703 {
2704# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2705 /* Start a subset here because pgmPoolTrackFlushGCPhysPTsSlow and
2706 pgmPoolTrackFlushGCPhysPTs will/may kill the pool otherwise. */
2707 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
2708# endif
2709
2710 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
2711 pgmPoolTrackFlushGCPhysPT(pVM,
2712 pPhysPage,
2713 PGMPOOL_TD_GET_IDX(u16),
2714 PGMPOOL_TD_GET_CREFS(u16));
2715 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
2716 pgmPoolTrackFlushGCPhysPTs(pVM, pPhysPage, PGMPOOL_TD_GET_IDX(u16));
2717 else
2718 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage);
2719 *pfFlushTLBs = true;
2720
2721# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2722 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
2723# endif
2724 }
2725 }
2726
2727#elif defined(PGMPOOL_WITH_CACHE)
2728 if (PGM_PAGE_IS_ZERO(pPhysPage))
2729 rc = VINF_PGM_GCPHYS_ALIASED;
2730 else
2731 {
2732# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2733 /* Start a subset here because pgmPoolTrackFlushGCPhysPTsSlow kill the pool otherwise. */
2734 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
2735# endif
2736 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage);
2737 if (rc == VINF_SUCCESS)
2738 *pfFlushTLBs = true;
2739 }
2740
2741# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2742 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
2743# endif
2744
2745#else
2746 rc = VINF_PGM_GCPHYS_ALIASED;
2747#endif
2748
2749 if (rc == VINF_PGM_GCPHYS_ALIASED)
2750 {
2751 pVM->pgm.s.fGlobalSyncFlags |= PGM_GLOBAL_SYNC_CLEAR_PGM_POOL;
2752 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2753 rc = VINF_PGM_SYNC_CR3;
2754 }
2755 pgmUnlock(pVM);
2756 return rc;
2757}
2758
2759
2760/**
2761 * Scans all shadow page tables for mappings of a physical page.
2762 *
2763 * This may be slow, but it's most likely more efficient than cleaning
2764 * out the entire page pool / cache.
2765 *
2766 * @returns VBox status code.
2767 * @retval VINF_SUCCESS if all references has been successfully cleared.
2768 * @retval VINF_PGM_GCPHYS_ALIASED if we're better off with a CR3 sync and
2769 * a page pool cleaning.
2770 *
2771 * @param pVM The VM handle.
2772 * @param pPhysPage The guest page in question.
2773 */
2774int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage)
2775{
2776 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2777 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTsSlow, s);
2778 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: cUsedPages=%d cPresent=%d pPhysPage=%R[pgmpage]\n",
2779 pPool->cUsedPages, pPool->cPresent, pPhysPage));
2780
2781#if 1
2782 /*
2783 * There is a limit to what makes sense.
2784 */
2785 if (pPool->cPresent > 1024)
2786 {
2787 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent));
2788 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
2789 return VINF_PGM_GCPHYS_ALIASED;
2790 }
2791#endif
2792
2793 /*
2794 * Iterate all the pages until we've encountered all that in use.
2795 * This is simple but not quite optimal solution.
2796 */
2797 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2798 const uint32_t u32 = u64;
2799 unsigned cLeft = pPool->cUsedPages;
2800 unsigned iPage = pPool->cCurPages;
2801 while (--iPage >= PGMPOOL_IDX_FIRST)
2802 {
2803 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
2804 if (pPage->GCPhys != NIL_RTGCPHYS)
2805 {
2806 switch (pPage->enmKind)
2807 {
2808 /*
2809 * We only care about shadow page tables.
2810 */
2811 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2812 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2813 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2814 {
2815 unsigned cPresent = pPage->cPresent;
2816 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2817 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2818 if (pPT->a[i].n.u1Present)
2819 {
2820 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
2821 {
2822 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX32\n", iPage, i, pPT->a[i]));
2823 pPT->a[i].u = 0;
2824 }
2825 if (!--cPresent)
2826 break;
2827 }
2828 break;
2829 }
2830
2831 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2832 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2833 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2834 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2835 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2836 {
2837 unsigned cPresent = pPage->cPresent;
2838 PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2839 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2840 if (pPT->a[i].n.u1Present)
2841 {
2842 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
2843 {
2844 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i]));
2845 pPT->a[i].u = 0;
2846 }
2847 if (!--cPresent)
2848 break;
2849 }
2850 break;
2851 }
2852 }
2853 if (!--cLeft)
2854 break;
2855 }
2856 }
2857
2858 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
2859 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
2860 return VINF_SUCCESS;
2861}
2862
2863
2864/**
2865 * Clears the user entry in a user table.
2866 *
2867 * This is used to remove all references to a page when flushing it.
2868 */
2869static void pgmPoolTrackClearPageUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PCPGMPOOLUSER pUser)
2870{
2871 Assert(pUser->iUser != NIL_PGMPOOL_IDX);
2872 Assert(pUser->iUser < pPool->cCurPages);
2873 uint32_t iUserTable = pUser->iUserTable;
2874
2875 /*
2876 * Map the user page.
2877 */
2878 PPGMPOOLPAGE pUserPage = &pPool->aPages[pUser->iUser];
2879 union
2880 {
2881 uint64_t *pau64;
2882 uint32_t *pau32;
2883 } u;
2884 u.pau64 = (uint64_t *)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pUserPage);
2885
2886 LogFlow(("pgmPoolTrackClearPageUser: clear %x in %s (%RGp) (flushing %s)\n", iUserTable, pgmPoolPoolKindToStr(pUserPage->enmKind), pUserPage->Core.Key, pgmPoolPoolKindToStr(pPage->enmKind)));
2887
2888 /* Safety precaution in case we change the paging for other modes too in the future. */
2889 Assert(!pgmPoolIsPageLocked(&pPool->CTX_SUFF(pVM)->pgm.s, pPage));
2890
2891#ifdef VBOX_STRICT
2892 /*
2893 * Some sanity checks.
2894 */
2895 switch (pUserPage->enmKind)
2896 {
2897 case PGMPOOLKIND_32BIT_PD:
2898 case PGMPOOLKIND_32BIT_PD_PHYS:
2899 Assert(iUserTable < X86_PG_ENTRIES);
2900 break;
2901 case PGMPOOLKIND_PAE_PDPT:
2902 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2903 case PGMPOOLKIND_PAE_PDPT_PHYS:
2904 Assert(iUserTable < 4);
2905 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
2906 break;
2907 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2908 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2909 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2910 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2911 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2912 case PGMPOOLKIND_PAE_PD_PHYS:
2913 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2914 break;
2915 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2916 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2917 Assert(!(u.pau64[iUserTable] & PGM_PDFLAGS_MAPPING));
2918 break;
2919 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2920 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2921 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
2922 break;
2923 case PGMPOOLKIND_64BIT_PML4:
2924 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
2925 /* GCPhys >> PAGE_SHIFT is the index here */
2926 break;
2927 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2928 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2929 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2930 break;
2931
2932 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2933 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2934 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2935 break;
2936
2937 case PGMPOOLKIND_ROOT_NESTED:
2938 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2939 break;
2940
2941 default:
2942 AssertMsgFailed(("enmKind=%d\n", pUserPage->enmKind));
2943 break;
2944 }
2945#endif /* VBOX_STRICT */
2946
2947 /*
2948 * Clear the entry in the user page.
2949 */
2950 switch (pUserPage->enmKind)
2951 {
2952 /* 32-bit entries */
2953 case PGMPOOLKIND_32BIT_PD:
2954 case PGMPOOLKIND_32BIT_PD_PHYS:
2955 u.pau32[iUserTable] = 0;
2956 break;
2957
2958 /* 64-bit entries */
2959 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2960 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2961 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2962 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2963 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2964#if defined(IN_RC)
2965 /* In 32 bits PAE mode we *must* invalidate the TLB when changing a PDPT entry; the CPU fetches them only during cr3 load, so any
2966 * non-present PDPT will continue to cause page faults.
2967 */
2968 ASMReloadCR3();
2969#endif
2970 /* no break */
2971 case PGMPOOLKIND_PAE_PD_PHYS:
2972 case PGMPOOLKIND_PAE_PDPT_PHYS:
2973 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2974 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2975 case PGMPOOLKIND_64BIT_PML4:
2976 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2977 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2978 case PGMPOOLKIND_PAE_PDPT:
2979 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2980 case PGMPOOLKIND_ROOT_NESTED:
2981 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2982 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2983 u.pau64[iUserTable] = 0;
2984 break;
2985
2986 default:
2987 AssertFatalMsgFailed(("enmKind=%d iUser=%#x iUserTable=%#x\n", pUserPage->enmKind, pUser->iUser, pUser->iUserTable));
2988 }
2989}
2990
2991
2992/**
2993 * Clears all users of a page.
2994 */
2995static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2996{
2997 /*
2998 * Free all the user records.
2999 */
3000 LogFlow(("pgmPoolTrackClearPageUsers %RGp\n", pPage->GCPhys));
3001
3002 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
3003 uint16_t i = pPage->iUserHead;
3004 while (i != NIL_PGMPOOL_USER_INDEX)
3005 {
3006 /* Clear enter in user table. */
3007 pgmPoolTrackClearPageUser(pPool, pPage, &paUsers[i]);
3008
3009 /* Free it. */
3010 const uint16_t iNext = paUsers[i].iNext;
3011 paUsers[i].iUser = NIL_PGMPOOL_IDX;
3012 paUsers[i].iNext = pPool->iUserFreeHead;
3013 pPool->iUserFreeHead = i;
3014
3015 /* Next. */
3016 i = iNext;
3017 }
3018 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
3019}
3020
3021#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3022
3023/**
3024 * Allocates a new physical cross reference extent.
3025 *
3026 * @returns Pointer to the allocated extent on success. NULL if we're out of them.
3027 * @param pVM The VM handle.
3028 * @param piPhysExt Where to store the phys ext index.
3029 */
3030PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt)
3031{
3032 Assert(PGMIsLockOwner(pVM));
3033 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3034 uint16_t iPhysExt = pPool->iPhysExtFreeHead;
3035 if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX)
3036 {
3037 STAM_COUNTER_INC(&pPool->StamTrackPhysExtAllocFailures);
3038 return NULL;
3039 }
3040 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3041 pPool->iPhysExtFreeHead = pPhysExt->iNext;
3042 pPhysExt->iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
3043 *piPhysExt = iPhysExt;
3044 return pPhysExt;
3045}
3046
3047
3048/**
3049 * Frees a physical cross reference extent.
3050 *
3051 * @param pVM The VM handle.
3052 * @param iPhysExt The extent to free.
3053 */
3054void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt)
3055{
3056 Assert(PGMIsLockOwner(pVM));
3057 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3058 Assert(iPhysExt < pPool->cMaxPhysExts);
3059 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3060 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3061 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3062 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3063 pPool->iPhysExtFreeHead = iPhysExt;
3064}
3065
3066
3067/**
3068 * Frees a physical cross reference extent.
3069 *
3070 * @param pVM The VM handle.
3071 * @param iPhysExt The extent to free.
3072 */
3073void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt)
3074{
3075 Assert(PGMIsLockOwner(pVM));
3076 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3077
3078 const uint16_t iPhysExtStart = iPhysExt;
3079 PPGMPOOLPHYSEXT pPhysExt;
3080 do
3081 {
3082 Assert(iPhysExt < pPool->cMaxPhysExts);
3083 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3084 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3085 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3086
3087 /* next */
3088 iPhysExt = pPhysExt->iNext;
3089 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3090
3091 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3092 pPool->iPhysExtFreeHead = iPhysExtStart;
3093}
3094
3095
3096/**
3097 * Insert a reference into a list of physical cross reference extents.
3098 *
3099 * @returns The new tracking data for PGMPAGE.
3100 *
3101 * @param pVM The VM handle.
3102 * @param iPhysExt The physical extent index of the list head.
3103 * @param iShwPT The shadow page table index.
3104 *
3105 */
3106static uint16_t pgmPoolTrackPhysExtInsert(PVM pVM, uint16_t iPhysExt, uint16_t iShwPT)
3107{
3108 Assert(PGMIsLockOwner(pVM));
3109 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3110 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3111
3112 /* special common case. */
3113 if (paPhysExts[iPhysExt].aidx[2] == NIL_PGMPOOL_IDX)
3114 {
3115 paPhysExts[iPhysExt].aidx[2] = iShwPT;
3116 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany);
3117 LogFlow(("pgmPoolTrackPhysExtAddref: %d:{,,%d}\n", iPhysExt, iShwPT));
3118 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3119 }
3120
3121 /* general treatment. */
3122 const uint16_t iPhysExtStart = iPhysExt;
3123 unsigned cMax = 15;
3124 for (;;)
3125 {
3126 Assert(iPhysExt < pPool->cMaxPhysExts);
3127 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3128 if (paPhysExts[iPhysExt].aidx[i] == NIL_PGMPOOL_IDX)
3129 {
3130 paPhysExts[iPhysExt].aidx[i] = iShwPT;
3131 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany);
3132 LogFlow(("pgmPoolTrackPhysExtAddref: %d:{%d} i=%d cMax=%d\n", iPhysExt, iShwPT, i, cMax));
3133 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtStart);
3134 }
3135 if (!--cMax)
3136 {
3137 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows);
3138 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
3139 LogFlow(("pgmPoolTrackPhysExtAddref: overflow (1) iShwPT=%d\n", iShwPT));
3140 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3141 }
3142 }
3143
3144 /* add another extent to the list. */
3145 PPGMPOOLPHYSEXT pNew = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
3146 if (!pNew)
3147 {
3148 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows);
3149 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
3150 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3151 }
3152 pNew->iNext = iPhysExtStart;
3153 pNew->aidx[0] = iShwPT;
3154 LogFlow(("pgmPoolTrackPhysExtAddref: added new extent %d:{%d}->%d\n", iPhysExt, iShwPT, iPhysExtStart));
3155 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3156}
3157
3158
3159/**
3160 * Add a reference to guest physical page where extents are in use.
3161 *
3162 * @returns The new tracking data for PGMPAGE.
3163 *
3164 * @param pVM The VM handle.
3165 * @param u16 The ram range flags (top 16-bits).
3166 * @param iShwPT The shadow page table index.
3167 */
3168uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT)
3169{
3170 pgmLock(pVM);
3171 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
3172 {
3173 /*
3174 * Convert to extent list.
3175 */
3176 Assert(PGMPOOL_TD_GET_CREFS(u16) == 1);
3177 uint16_t iPhysExt;
3178 PPGMPOOLPHYSEXT pPhysExt = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
3179 if (pPhysExt)
3180 {
3181 LogFlow(("pgmPoolTrackPhysExtAddref: new extent: %d:{%d, %d}\n", iPhysExt, PGMPOOL_TD_GET_IDX(u16), iShwPT));
3182 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliased);
3183 pPhysExt->aidx[0] = PGMPOOL_TD_GET_IDX(u16);
3184 pPhysExt->aidx[1] = iShwPT;
3185 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3186 }
3187 else
3188 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3189 }
3190 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
3191 {
3192 /*
3193 * Insert into the extent list.
3194 */
3195 u16 = pgmPoolTrackPhysExtInsert(pVM, PGMPOOL_TD_GET_IDX(u16), iShwPT);
3196 }
3197 else
3198 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedLots);
3199 pgmUnlock(pVM);
3200 return u16;
3201}
3202
3203
3204/**
3205 * Clear references to guest physical memory.
3206 *
3207 * @param pPool The pool.
3208 * @param pPage The page.
3209 * @param pPhysPage Pointer to the aPages entry in the ram range.
3210 */
3211void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMPAGE pPhysPage)
3212{
3213 const unsigned cRefs = PGM_PAGE_GET_TD_CREFS(pPhysPage);
3214 AssertFatalMsg(cRefs == PGMPOOL_TD_CREFS_PHYSEXT, ("cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
3215
3216 uint16_t iPhysExt = PGM_PAGE_GET_TD_IDX(pPhysPage);
3217 if (iPhysExt != PGMPOOL_TD_IDX_OVERFLOWED)
3218 {
3219 PVM pVM = pPool->CTX_SUFF(pVM);
3220 pgmLock(pVM);
3221
3222 uint16_t iPhysExtPrev = NIL_PGMPOOL_PHYSEXT_INDEX;
3223 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3224 do
3225 {
3226 Assert(iPhysExt < pPool->cMaxPhysExts);
3227
3228 /*
3229 * Look for the shadow page and check if it's all freed.
3230 */
3231 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3232 {
3233 if (paPhysExts[iPhysExt].aidx[i] == pPage->idx)
3234 {
3235 paPhysExts[iPhysExt].aidx[i] = NIL_PGMPOOL_IDX;
3236
3237 for (i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3238 if (paPhysExts[iPhysExt].aidx[i] != NIL_PGMPOOL_IDX)
3239 {
3240 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
3241 pgmUnlock(pVM);
3242 return;
3243 }
3244
3245 /* we can free the node. */
3246 const uint16_t iPhysExtNext = paPhysExts[iPhysExt].iNext;
3247 if ( iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX
3248 && iPhysExtNext == NIL_PGMPOOL_PHYSEXT_INDEX)
3249 {
3250 /* lonely node */
3251 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3252 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d lonely\n", pPhysPage, pPage->idx));
3253 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
3254 }
3255 else if (iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX)
3256 {
3257 /* head */
3258 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d head\n", pPhysPage, pPage->idx));
3259 PGM_PAGE_SET_TRACKING(pPhysPage, PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtNext));
3260 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3261 }
3262 else
3263 {
3264 /* in list */
3265 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
3266 paPhysExts[iPhysExtPrev].iNext = iPhysExtNext;
3267 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3268 }
3269 iPhysExt = iPhysExtNext;
3270 pgmUnlock(pVM);
3271 return;
3272 }
3273 }
3274
3275 /* next */
3276 iPhysExtPrev = iPhysExt;
3277 iPhysExt = paPhysExts[iPhysExt].iNext;
3278 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3279
3280 pgmUnlock(pVM);
3281 AssertFatalMsgFailed(("not-found! cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
3282 }
3283 else /* nothing to do */
3284 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage]\n", pPhysPage));
3285}
3286
3287
3288/**
3289 * Clear references to guest physical memory.
3290 *
3291 * This is the same as pgmPoolTracDerefGCPhys except that the guest physical address
3292 * is assumed to be correct, so the linear search can be skipped and we can assert
3293 * at an earlier point.
3294 *
3295 * @param pPool The pool.
3296 * @param pPage The page.
3297 * @param HCPhys The host physical address corresponding to the guest page.
3298 * @param GCPhys The guest physical address corresponding to HCPhys.
3299 */
3300static void pgmPoolTracDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhys)
3301{
3302 /*
3303 * Walk range list.
3304 */
3305 PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3306 while (pRam)
3307 {
3308 RTGCPHYS off = GCPhys - pRam->GCPhys;
3309 if (off < pRam->cb)
3310 {
3311 /* does it match? */
3312 const unsigned iPage = off >> PAGE_SHIFT;
3313 Assert(PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]));
3314#ifdef LOG_ENABLED
3315RTHCPHYS HCPhysPage = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]);
3316Log2(("pgmPoolTracDerefGCPhys %RHp vs %RHp\n", HCPhysPage, HCPhys));
3317#endif
3318 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3319 {
3320 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3321 return;
3322 }
3323 break;
3324 }
3325 pRam = pRam->CTX_SUFF(pNext);
3326 }
3327 AssertFatalMsgFailed(("HCPhys=%RHp GCPhys=%RGp\n", HCPhys, GCPhys));
3328}
3329
3330
3331/**
3332 * Clear references to guest physical memory.
3333 *
3334 * @param pPool The pool.
3335 * @param pPage The page.
3336 * @param HCPhys The host physical address corresponding to the guest page.
3337 * @param GCPhysHint The guest physical address which may corresponding to HCPhys.
3338 */
3339static void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint)
3340{
3341 Log4(("pgmPoolTracDerefGCPhysHint %RHp %RGp\n", HCPhys, GCPhysHint));
3342
3343 /*
3344 * Walk range list.
3345 */
3346 PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3347 while (pRam)
3348 {
3349 RTGCPHYS off = GCPhysHint - pRam->GCPhys;
3350 if (off < pRam->cb)
3351 {
3352 /* does it match? */
3353 const unsigned iPage = off >> PAGE_SHIFT;
3354 Assert(PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]));
3355 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3356 {
3357 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3358 return;
3359 }
3360 break;
3361 }
3362 pRam = pRam->CTX_SUFF(pNext);
3363 }
3364
3365 /*
3366 * Damn, the hint didn't work. We'll have to do an expensive linear search.
3367 */
3368 STAM_COUNTER_INC(&pPool->StatTrackLinearRamSearches);
3369 pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3370 while (pRam)
3371 {
3372 unsigned iPage = pRam->cb >> PAGE_SHIFT;
3373 while (iPage-- > 0)
3374 {
3375 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3376 {
3377 Log4(("pgmPoolTracDerefGCPhysHint: Linear HCPhys=%RHp GCPhysHint=%RGp GCPhysReal=%RGp\n",
3378 HCPhys, GCPhysHint, pRam->GCPhys + (iPage << PAGE_SHIFT)));
3379 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3380 return;
3381 }
3382 }
3383 pRam = pRam->CTX_SUFF(pNext);
3384 }
3385
3386 AssertFatalMsgFailed(("HCPhys=%RHp GCPhysHint=%RGp\n", HCPhys, GCPhysHint));
3387}
3388
3389
3390/**
3391 * Clear references to guest physical memory in a 32-bit / 32-bit page table.
3392 *
3393 * @param pPool The pool.
3394 * @param pPage The page.
3395 * @param pShwPT The shadow page table (mapping of the page).
3396 * @param pGstPT The guest page table.
3397 */
3398DECLINLINE(void) pgmPoolTrackDerefPT32Bit32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT, PCX86PT pGstPT)
3399{
3400 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
3401 if (pShwPT->a[i].n.u1Present)
3402 {
3403 Log4(("pgmPoolTrackDerefPT32Bit32Bit: i=%d pte=%RX32 hint=%RX32\n",
3404 i, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
3405 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK);
3406 if (!--pPage->cPresent)
3407 break;
3408 }
3409}
3410
3411
3412/**
3413 * Clear references to guest physical memory in a PAE / 32-bit page table.
3414 *
3415 * @param pPool The pool.
3416 * @param pPage The page.
3417 * @param pShwPT The shadow page table (mapping of the page).
3418 * @param pGstPT The guest page table (just a half one).
3419 */
3420DECLINLINE(void) pgmPoolTrackDerefPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PT pGstPT)
3421{
3422 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++)
3423 if (pShwPT->a[i].n.u1Present)
3424 {
3425 Log4(("pgmPoolTrackDerefPTPae32Bit: i=%d pte=%RX64 hint=%RX32\n",
3426 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
3427 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK);
3428 }
3429}
3430
3431
3432/**
3433 * Clear references to guest physical memory in a PAE / PAE page table.
3434 *
3435 * @param pPool The pool.
3436 * @param pPage The page.
3437 * @param pShwPT The shadow page table (mapping of the page).
3438 * @param pGstPT The guest page table.
3439 */
3440DECLINLINE(void) pgmPoolTrackDerefPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PTPAE pGstPT)
3441{
3442 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++)
3443 if (pShwPT->a[i].n.u1Present)
3444 {
3445 Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX32 hint=%RX32\n",
3446 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK));
3447 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK);
3448 }
3449}
3450
3451
3452/**
3453 * Clear references to guest physical memory in a 32-bit / 4MB page table.
3454 *
3455 * @param pPool The pool.
3456 * @param pPage The page.
3457 * @param pShwPT The shadow page table (mapping of the page).
3458 */
3459DECLINLINE(void) pgmPoolTrackDerefPT32Bit4MB(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT)
3460{
3461 RTGCPHYS GCPhys = pPage->GCPhys;
3462 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
3463 if (pShwPT->a[i].n.u1Present)
3464 {
3465 Log4(("pgmPoolTrackDerefPT32Bit4MB: i=%d pte=%RX32 GCPhys=%RGp\n",
3466 i, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys));
3467 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys);
3468 }
3469}
3470
3471
3472/**
3473 * Clear references to guest physical memory in a PAE / 2/4MB page table.
3474 *
3475 * @param pPool The pool.
3476 * @param pPage The page.
3477 * @param pShwPT The shadow page table (mapping of the page).
3478 */
3479DECLINLINE(void) pgmPoolTrackDerefPTPaeBig(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT)
3480{
3481 RTGCPHYS GCPhys = pPage->GCPhys;
3482 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
3483 if (pShwPT->a[i].n.u1Present)
3484 {
3485 Log4(("pgmPoolTrackDerefPTPaeBig: i=%d pte=%RX64 hint=%RGp\n",
3486 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys));
3487 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys);
3488 }
3489}
3490
3491#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
3492
3493
3494/**
3495 * Clear references to shadowed pages in a 32 bits page directory.
3496 *
3497 * @param pPool The pool.
3498 * @param pPage The page.
3499 * @param pShwPD The shadow page directory (mapping of the page).
3500 */
3501DECLINLINE(void) pgmPoolTrackDerefPD(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PD pShwPD)
3502{
3503 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
3504 {
3505 if ( pShwPD->a[i].n.u1Present
3506 && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)
3507 )
3508 {
3509 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PG_MASK);
3510 if (pSubPage)
3511 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3512 else
3513 AssertFatalMsgFailed(("%x\n", pShwPD->a[i].u & X86_PDE_PG_MASK));
3514 }
3515 }
3516}
3517
3518/**
3519 * Clear references to shadowed pages in a PAE (legacy or 64 bits) page directory.
3520 *
3521 * @param pPool The pool.
3522 * @param pPage The page.
3523 * @param pShwPD The shadow page directory (mapping of the page).
3524 */
3525DECLINLINE(void) pgmPoolTrackDerefPDPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPAE pShwPD)
3526{
3527 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
3528 {
3529 if ( pShwPD->a[i].n.u1Present
3530 && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)
3531 )
3532 {
3533 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PAE_PG_MASK);
3534 if (pSubPage)
3535 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3536 else
3537 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & X86_PDE_PAE_PG_MASK));
3538 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3539 }
3540 }
3541}
3542
3543/**
3544 * Clear references to shadowed pages in a PAE page directory pointer table.
3545 *
3546 * @param pPool The pool.
3547 * @param pPage The page.
3548 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
3549 */
3550DECLINLINE(void) pgmPoolTrackDerefPDPTPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
3551{
3552 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
3553 {
3554 if ( pShwPDPT->a[i].n.u1Present
3555 && !(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING)
3556 )
3557 {
3558 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK);
3559 if (pSubPage)
3560 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3561 else
3562 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK));
3563 }
3564 }
3565}
3566
3567
3568/**
3569 * Clear references to shadowed pages in a 64-bit page directory pointer table.
3570 *
3571 * @param pPool The pool.
3572 * @param pPage The page.
3573 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
3574 */
3575DECLINLINE(void) pgmPoolTrackDerefPDPT64Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
3576{
3577 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
3578 {
3579 Assert(!(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING));
3580 if (pShwPDPT->a[i].n.u1Present)
3581 {
3582 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK);
3583 if (pSubPage)
3584 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3585 else
3586 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK));
3587 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3588 }
3589 }
3590}
3591
3592
3593/**
3594 * Clear references to shadowed pages in a 64-bit level 4 page table.
3595 *
3596 * @param pPool The pool.
3597 * @param pPage The page.
3598 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
3599 */
3600DECLINLINE(void) pgmPoolTrackDerefPML464Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PML4 pShwPML4)
3601{
3602 for (unsigned i = 0; i < RT_ELEMENTS(pShwPML4->a); i++)
3603 {
3604 if (pShwPML4->a[i].n.u1Present)
3605 {
3606 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPML4->a[i].u & X86_PDPE_PG_MASK);
3607 if (pSubPage)
3608 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3609 else
3610 AssertFatalMsgFailed(("%RX64\n", pShwPML4->a[i].u & X86_PML4E_PG_MASK));
3611 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3612 }
3613 }
3614}
3615
3616
3617/**
3618 * Clear references to shadowed pages in an EPT page table.
3619 *
3620 * @param pPool The pool.
3621 * @param pPage The page.
3622 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
3623 */
3624DECLINLINE(void) pgmPoolTrackDerefPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPT pShwPT)
3625{
3626 RTGCPHYS GCPhys = pPage->GCPhys;
3627 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
3628 if (pShwPT->a[i].n.u1Present)
3629 {
3630 Log4(("pgmPoolTrackDerefPTEPT: i=%d pte=%RX64 GCPhys=%RX64\n",
3631 i, pShwPT->a[i].u & EPT_PTE_PG_MASK, pPage->GCPhys));
3632 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & EPT_PTE_PG_MASK, GCPhys);
3633 }
3634}
3635
3636
3637/**
3638 * Clear references to shadowed pages in an EPT page directory.
3639 *
3640 * @param pPool The pool.
3641 * @param pPage The page.
3642 * @param pShwPD The shadow page directory (mapping of the page).
3643 */
3644DECLINLINE(void) pgmPoolTrackDerefPDEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPD pShwPD)
3645{
3646 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
3647 {
3648 if (pShwPD->a[i].n.u1Present)
3649 {
3650 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & EPT_PDE_PG_MASK);
3651 if (pSubPage)
3652 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3653 else
3654 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & EPT_PDE_PG_MASK));
3655 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3656 }
3657 }
3658}
3659
3660
3661/**
3662 * Clear references to shadowed pages in an EPT page directory pointer table.
3663 *
3664 * @param pPool The pool.
3665 * @param pPage The page.
3666 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
3667 */
3668DECLINLINE(void) pgmPoolTrackDerefPDPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPDPT pShwPDPT)
3669{
3670 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
3671 {
3672 if (pShwPDPT->a[i].n.u1Present)
3673 {
3674 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK);
3675 if (pSubPage)
3676 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3677 else
3678 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK));
3679 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3680 }
3681 }
3682}
3683
3684
3685/**
3686 * Clears all references made by this page.
3687 *
3688 * This includes other shadow pages and GC physical addresses.
3689 *
3690 * @param pPool The pool.
3691 * @param pPage The page.
3692 */
3693static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3694{
3695 /*
3696 * Map the shadow page and take action according to the page kind.
3697 */
3698 void *pvShw = PGMPOOL_PAGE_2_LOCKED_PTR(pPool->CTX_SUFF(pVM), pPage);
3699 switch (pPage->enmKind)
3700 {
3701#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3702 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3703 {
3704 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3705 void *pvGst;
3706 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
3707 pgmPoolTrackDerefPT32Bit32Bit(pPool, pPage, (PX86PT)pvShw, (PCX86PT)pvGst);
3708 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3709 break;
3710 }
3711
3712 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3713 {
3714 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3715 void *pvGst;
3716 int rc = PGM_GCPHYS_2_PTR_EX(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
3717 pgmPoolTrackDerefPTPae32Bit(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PT)pvGst);
3718 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3719 break;
3720 }
3721
3722 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3723 {
3724 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3725 void *pvGst;
3726 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
3727 pgmPoolTrackDerefPTPaePae(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PTPAE)pvGst);
3728 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3729 break;
3730 }
3731
3732 case PGMPOOLKIND_32BIT_PT_FOR_PHYS: /* treat it like a 4 MB page */
3733 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3734 {
3735 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3736 pgmPoolTrackDerefPT32Bit4MB(pPool, pPage, (PX86PT)pvShw);
3737 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3738 break;
3739 }
3740
3741 case PGMPOOLKIND_PAE_PT_FOR_PHYS: /* treat it like a 2 MB page */
3742 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3743 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3744 {
3745 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3746 pgmPoolTrackDerefPTPaeBig(pPool, pPage, (PX86PTPAE)pvShw);
3747 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3748 break;
3749 }
3750
3751#else /* !PGMPOOL_WITH_GCPHYS_TRACKING */
3752 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3753 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3754 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3755 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3756 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3757 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3758 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3759 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3760 break;
3761#endif /* !PGMPOOL_WITH_GCPHYS_TRACKING */
3762
3763 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3764 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3765 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3766 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3767 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3768 case PGMPOOLKIND_PAE_PD_PHYS:
3769 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3770 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3771 pgmPoolTrackDerefPDPae(pPool, pPage, (PX86PDPAE)pvShw);
3772 break;
3773
3774 case PGMPOOLKIND_32BIT_PD_PHYS:
3775 case PGMPOOLKIND_32BIT_PD:
3776 pgmPoolTrackDerefPD(pPool, pPage, (PX86PD)pvShw);
3777 break;
3778
3779 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
3780 case PGMPOOLKIND_PAE_PDPT:
3781 case PGMPOOLKIND_PAE_PDPT_PHYS:
3782 pgmPoolTrackDerefPDPTPae(pPool, pPage, (PX86PDPT)pvShw);
3783 break;
3784
3785 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3786 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3787 pgmPoolTrackDerefPDPT64Bit(pPool, pPage, (PX86PDPT)pvShw);
3788 break;
3789
3790 case PGMPOOLKIND_64BIT_PML4:
3791 pgmPoolTrackDerefPML464Bit(pPool, pPage, (PX86PML4)pvShw);
3792 break;
3793
3794 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3795 pgmPoolTrackDerefPTEPT(pPool, pPage, (PEPTPT)pvShw);
3796 break;
3797
3798 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3799 pgmPoolTrackDerefPDEPT(pPool, pPage, (PEPTPD)pvShw);
3800 break;
3801
3802 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3803 pgmPoolTrackDerefPDPTEPT(pPool, pPage, (PEPTPDPT)pvShw);
3804 break;
3805
3806 default:
3807 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
3808 }
3809
3810 /* paranoia, clear the shadow page. Remove this laser (i.e. let Alloc and ClearAll do it). */
3811 STAM_PROFILE_START(&pPool->StatZeroPage, z);
3812 ASMMemZeroPage(pvShw);
3813 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
3814 pPage->fZeroed = true;
3815 PGMPOOL_UNLOCK_PTR(pPool->CTX_SUFF(pVM), pvShw);
3816}
3817#endif /* PGMPOOL_WITH_USER_TRACKING */
3818
3819/**
3820 * Flushes a pool page.
3821 *
3822 * This moves the page to the free list after removing all user references to it.
3823 *
3824 * @returns VBox status code.
3825 * @retval VINF_SUCCESS on success.
3826 * @param pPool The pool.
3827 * @param HCPhys The HC physical address of the shadow page.
3828 */
3829int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3830{
3831 PVM pVM = pPool->CTX_SUFF(pVM);
3832
3833 int rc = VINF_SUCCESS;
3834 STAM_PROFILE_START(&pPool->StatFlushPage, f);
3835 LogFlow(("pgmPoolFlushPage: pPage=%p:{.Key=%RHp, .idx=%d, .enmKind=%s, .GCPhys=%RGp}\n",
3836 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
3837
3838 /*
3839 * Quietly reject any attempts at flushing any of the special root pages.
3840 */
3841 if (pPage->idx < PGMPOOL_IDX_FIRST)
3842 {
3843 AssertFailed(); /* can no longer happen */
3844 Log(("pgmPoolFlushPage: special root page, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
3845 return VINF_SUCCESS;
3846 }
3847
3848 pgmLock(pVM);
3849
3850 /*
3851 * Quietly reject any attempts at flushing the currently active shadow CR3 mapping
3852 */
3853 if (pgmPoolIsPageLocked(&pVM->pgm.s, pPage))
3854 {
3855 AssertMsg( pPage->enmKind == PGMPOOLKIND_64BIT_PML4
3856 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT
3857 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT_FOR_32BIT
3858 || pPage->enmKind == PGMPOOLKIND_32BIT_PD
3859 || pPage->enmKind == PGMPOOLKIND_PAE_PD_FOR_PAE_PD
3860 || pPage->enmKind == PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD
3861 || pPage->enmKind == PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD
3862 || pPage->enmKind == PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD
3863 || pPage->enmKind == PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD,
3864 ("Can't free the shadow CR3! (%RHp vs %RHp kind=%d\n", PGMGetHyperCR3(VMMGetCpu(pVM)), pPage->Core.Key, pPage->enmKind));
3865 Log(("pgmPoolFlushPage: current active shadow CR3, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
3866 pgmUnlock(pVM);
3867 return VINF_SUCCESS;
3868 }
3869
3870#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3871 /* Start a subset so we won't run out of mapping space. */
3872 PVMCPU pVCpu = VMMGetCpu(pVM);
3873 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
3874#endif
3875
3876 /*
3877 * Mark the page as being in need of a ASMMemZeroPage().
3878 */
3879 pPage->fZeroed = false;
3880
3881#ifdef PGMPOOL_WITH_USER_TRACKING
3882 /*
3883 * Clear the page.
3884 */
3885 pgmPoolTrackClearPageUsers(pPool, pPage);
3886 STAM_PROFILE_START(&pPool->StatTrackDeref,a);
3887 pgmPoolTrackDeref(pPool, pPage);
3888 STAM_PROFILE_STOP(&pPool->StatTrackDeref,a);
3889#endif
3890
3891#ifdef PGMPOOL_WITH_CACHE
3892 /*
3893 * Flush it from the cache.
3894 */
3895 pgmPoolCacheFlushPage(pPool, pPage);
3896#endif /* PGMPOOL_WITH_CACHE */
3897
3898#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3899 /* Heavy stuff done. */
3900 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
3901#endif
3902
3903#ifdef PGMPOOL_WITH_MONITORING
3904 /*
3905 * Deregistering the monitoring.
3906 */
3907 if (pPage->fMonitored)
3908 rc = pgmPoolMonitorFlush(pPool, pPage);
3909#endif
3910
3911 /*
3912 * Free the page.
3913 */
3914 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
3915 pPage->iNext = pPool->iFreeHead;
3916 pPool->iFreeHead = pPage->idx;
3917 pPage->enmKind = PGMPOOLKIND_FREE;
3918 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
3919 pPage->GCPhys = NIL_RTGCPHYS;
3920 pPage->fReusedFlushPending = false;
3921
3922 pPool->cUsedPages--;
3923 pgmUnlock(pVM);
3924 STAM_PROFILE_STOP(&pPool->StatFlushPage, f);
3925 return rc;
3926}
3927
3928
3929/**
3930 * Frees a usage of a pool page.
3931 *
3932 * The caller is responsible to updating the user table so that it no longer
3933 * references the shadow page.
3934 *
3935 * @param pPool The pool.
3936 * @param HCPhys The HC physical address of the shadow page.
3937 * @param iUser The shadow page pool index of the user table.
3938 * @param iUserTable The index into the user table (shadowed).
3939 */
3940void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
3941{
3942 PVM pVM = pPool->CTX_SUFF(pVM);
3943
3944 STAM_PROFILE_START(&pPool->StatFree, a);
3945 LogFlow(("pgmPoolFreeByPage: pPage=%p:{.Key=%RHp, .idx=%d, enmKind=%s} iUser=%#x iUserTable=%#x\n",
3946 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), iUser, iUserTable));
3947 Assert(pPage->idx >= PGMPOOL_IDX_FIRST);
3948 pgmLock(pVM);
3949#ifdef PGMPOOL_WITH_USER_TRACKING
3950 pgmPoolTrackFreeUser(pPool, pPage, iUser, iUserTable);
3951#endif
3952#ifdef PGMPOOL_WITH_CACHE
3953 if (!pPage->fCached)
3954#endif
3955 pgmPoolFlushPage(pPool, pPage);
3956 pgmUnlock(pVM);
3957 STAM_PROFILE_STOP(&pPool->StatFree, a);
3958}
3959
3960
3961/**
3962 * Makes one or more free page free.
3963 *
3964 * @returns VBox status code.
3965 * @retval VINF_SUCCESS on success.
3966 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
3967 *
3968 * @param pPool The pool.
3969 * @param enmKind Page table kind
3970 * @param iUser The user of the page.
3971 */
3972static int pgmPoolMakeMoreFreePages(PPGMPOOL pPool, PGMPOOLKIND enmKind, uint16_t iUser)
3973{
3974 PVM pVM = pPool->CTX_SUFF(pVM);
3975
3976 LogFlow(("pgmPoolMakeMoreFreePages: iUser=%#x\n", iUser));
3977
3978 /*
3979 * If the pool isn't full grown yet, expand it.
3980 */
3981 if ( pPool->cCurPages < pPool->cMaxPages
3982#if defined(IN_RC)
3983 /* Hack alert: we can't deal with jumps to ring 3 when called from MapCR3 and allocating pages for PAE PDs. */
3984 && enmKind != PGMPOOLKIND_PAE_PD_FOR_PAE_PD
3985 && (enmKind < PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD || enmKind > PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD)
3986#endif
3987 )
3988 {
3989 STAM_PROFILE_ADV_SUSPEND(&pPool->StatAlloc, a);
3990#ifdef IN_RING3
3991 int rc = PGMR3PoolGrow(pVM);
3992#else
3993 int rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_POOL_GROW, 0);
3994#endif
3995 if (RT_FAILURE(rc))
3996 return rc;
3997 STAM_PROFILE_ADV_RESUME(&pPool->StatAlloc, a);
3998 if (pPool->iFreeHead != NIL_PGMPOOL_IDX)
3999 return VINF_SUCCESS;
4000 }
4001
4002#ifdef PGMPOOL_WITH_CACHE
4003 /*
4004 * Free one cached page.
4005 */
4006 return pgmPoolCacheFreeOne(pPool, iUser);
4007#else
4008 /*
4009 * Flush the pool.
4010 *
4011 * If we have tracking enabled, it should be possible to come up with
4012 * a cheap replacement strategy...
4013 */
4014 /* @todo This path no longer works (CR3 root pages will be flushed)!! */
4015 AssertCompileFailed();
4016 Assert(!CPUMIsGuestInLongMode(pVM));
4017 pgmPoolFlushAllInt(pPool);
4018 return VERR_PGM_POOL_FLUSHED;
4019#endif
4020}
4021
4022/**
4023 * Allocates a page from the pool.
4024 *
4025 * This page may actually be a cached page and not in need of any processing
4026 * on the callers part.
4027 *
4028 * @returns VBox status code.
4029 * @retval VINF_SUCCESS if a NEW page was allocated.
4030 * @retval VINF_PGM_CACHED_PAGE if a CACHED page was returned.
4031 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
4032 * @param pVM The VM handle.
4033 * @param GCPhys The GC physical address of the page we're gonna shadow.
4034 * For 4MB and 2MB PD entries, it's the first address the
4035 * shadow PT is covering.
4036 * @param enmKind The kind of mapping.
4037 * @param enmAccess Access type for the mapping (only relevant for big pages)
4038 * @param iUser The shadow page pool index of the user table.
4039 * @param iUserTable The index into the user table (shadowed).
4040 * @param ppPage Where to store the pointer to the page. NULL is stored here on failure.
4041 */
4042int pgmPoolAllocEx(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage)
4043{
4044 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4045 STAM_PROFILE_ADV_START(&pPool->StatAlloc, a);
4046 LogFlow(("pgmPoolAlloc: GCPhys=%RGp enmKind=%s iUser=%#x iUserTable=%#x\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable));
4047 *ppPage = NULL;
4048 /** @todo CSAM/PGMPrefetchPage messes up here during CSAMR3CheckGates
4049 * (TRPMR3SyncIDT) because of FF priority. Try fix that?
4050 * Assert(!(pVM->pgm.s.fGlobalSyncFlags & PGM_GLOBAL_SYNC_CLEAR_PGM_POOL)); */
4051
4052 pgmLock(pVM);
4053
4054#ifdef PGMPOOL_WITH_CACHE
4055 if (pPool->fCacheEnabled)
4056 {
4057 int rc2 = pgmPoolCacheAlloc(pPool, GCPhys, enmKind, enmAccess, iUser, iUserTable, ppPage);
4058 if (RT_SUCCESS(rc2))
4059 {
4060 pgmUnlock(pVM);
4061 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4062 LogFlow(("pgmPoolAlloc: cached returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d}\n", rc2, *ppPage, (*ppPage)->Core.Key, (*ppPage)->idx));
4063 return rc2;
4064 }
4065 }
4066#endif
4067
4068 /*
4069 * Allocate a new one.
4070 */
4071 int rc = VINF_SUCCESS;
4072 uint16_t iNew = pPool->iFreeHead;
4073 if (iNew == NIL_PGMPOOL_IDX)
4074 {
4075 rc = pgmPoolMakeMoreFreePages(pPool, enmKind, iUser);
4076 if (RT_FAILURE(rc))
4077 {
4078 pgmUnlock(pVM);
4079 Log(("pgmPoolAlloc: returns %Rrc (Free)\n", rc));
4080 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4081 return rc;
4082 }
4083 iNew = pPool->iFreeHead;
4084 AssertReleaseReturn(iNew != NIL_PGMPOOL_IDX, VERR_INTERNAL_ERROR);
4085 }
4086
4087 /* unlink the free head */
4088 PPGMPOOLPAGE pPage = &pPool->aPages[iNew];
4089 pPool->iFreeHead = pPage->iNext;
4090 pPage->iNext = NIL_PGMPOOL_IDX;
4091
4092 /*
4093 * Initialize it.
4094 */
4095 pPool->cUsedPages++; /* physical handler registration / pgmPoolTrackFlushGCPhysPTsSlow requirement. */
4096 pPage->enmKind = enmKind;
4097 pPage->enmAccess = enmAccess;
4098 pPage->GCPhys = GCPhys;
4099 pPage->fSeenNonGlobal = false; /* Set this to 'true' to disable this feature. */
4100 pPage->fMonitored = false;
4101 pPage->fCached = false;
4102 pPage->fReusedFlushPending = false;
4103#ifdef PGMPOOL_WITH_MONITORING
4104 pPage->cModifications = 0;
4105 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
4106 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
4107#else
4108 pPage->fCR3Mix = false;
4109#endif
4110#ifdef PGMPOOL_WITH_USER_TRACKING
4111 pPage->cPresent = 0;
4112 pPage->iFirstPresent = ~0;
4113
4114 /*
4115 * Insert into the tracking and cache. If this fails, free the page.
4116 */
4117 int rc3 = pgmPoolTrackInsert(pPool, pPage, GCPhys, iUser, iUserTable);
4118 if (RT_FAILURE(rc3))
4119 {
4120 pPool->cUsedPages--;
4121 pPage->enmKind = PGMPOOLKIND_FREE;
4122 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
4123 pPage->GCPhys = NIL_RTGCPHYS;
4124 pPage->iNext = pPool->iFreeHead;
4125 pPool->iFreeHead = pPage->idx;
4126 pgmUnlock(pVM);
4127 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4128 Log(("pgmPoolAlloc: returns %Rrc (Insert)\n", rc3));
4129 return rc3;
4130 }
4131#endif /* PGMPOOL_WITH_USER_TRACKING */
4132
4133 /*
4134 * Commit the allocation, clear the page and return.
4135 */
4136#ifdef VBOX_WITH_STATISTICS
4137 if (pPool->cUsedPages > pPool->cUsedPagesHigh)
4138 pPool->cUsedPagesHigh = pPool->cUsedPages;
4139#endif
4140
4141 if (!pPage->fZeroed)
4142 {
4143 STAM_PROFILE_START(&pPool->StatZeroPage, z);
4144 void *pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
4145 ASMMemZeroPage(pv);
4146 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
4147 }
4148
4149 *ppPage = pPage;
4150 pgmUnlock(pVM);
4151 LogFlow(("pgmPoolAlloc: returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d, .fCached=%RTbool, .fMonitored=%RTbool}\n",
4152 rc, pPage, pPage->Core.Key, pPage->idx, pPage->fCached, pPage->fMonitored));
4153 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4154 return rc;
4155}
4156
4157
4158/**
4159 * Frees a usage of a pool page.
4160 *
4161 * @param pVM The VM handle.
4162 * @param HCPhys The HC physical address of the shadow page.
4163 * @param iUser The shadow page pool index of the user table.
4164 * @param iUserTable The index into the user table (shadowed).
4165 */
4166void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable)
4167{
4168 LogFlow(("pgmPoolFree: HCPhys=%RHp iUser=%#x iUserTable=%#x\n", HCPhys, iUser, iUserTable));
4169 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4170 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, HCPhys), iUser, iUserTable);
4171}
4172
4173/**
4174 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
4175 *
4176 * @returns Pointer to the shadow page structure.
4177 * @param pPool The pool.
4178 * @param HCPhys The HC physical address of the shadow page.
4179 */
4180PPGMPOOLPAGE pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys)
4181{
4182 PVM pVM = pPool->CTX_SUFF(pVM);
4183
4184 /*
4185 * Look up the page.
4186 */
4187 pgmLock(pVM);
4188 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
4189 pgmUnlock(pVM);
4190
4191 AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0));
4192 return pPage;
4193}
4194
4195
4196#ifdef IN_RING3
4197/**
4198 * Flushes the entire cache.
4199 *
4200 * It will assert a global CR3 flush (FF) and assumes the caller is aware of this
4201 * and execute this CR3 flush.
4202 *
4203 * @param pPool The pool.
4204 */
4205void pgmR3PoolReset(PVM pVM)
4206{
4207 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4208
4209 Assert(PGMIsLockOwner(pVM));
4210 STAM_PROFILE_START(&pPool->StatFlushAllInt, a);
4211 LogFlow(("pgmPoolFlushAllInt:\n"));
4212
4213 /*
4214 * If there are no pages in the pool, there is nothing to do.
4215 */
4216 if (pPool->cCurPages <= PGMPOOL_IDX_FIRST)
4217 {
4218 STAM_PROFILE_STOP(&pPool->StatFlushAllInt, a);
4219 return;
4220 }
4221
4222 /*
4223 * Exit the shadow mode since we're going to clear everything,
4224 * including the root page.
4225 */
4226 for (unsigned i=0;i<pVM->cCPUs;i++)
4227 {
4228 PVMCPU pVCpu = &pVM->aCpus[i];
4229 pgmR3ExitShadowModeBeforePoolFlush(pVM, pVCpu);
4230 }
4231
4232 /*
4233 * Nuke the free list and reinsert all pages into it.
4234 */
4235 for (unsigned i = pPool->cCurPages - 1; i >= PGMPOOL_IDX_FIRST; i--)
4236 {
4237 PPGMPOOLPAGE pPage = &pPool->aPages[i];
4238
4239 Assert(pPage->Core.Key == MMPage2Phys(pVM, pPage->pvPageR3));
4240#ifdef PGMPOOL_WITH_MONITORING
4241 if (pPage->fMonitored)
4242 pgmPoolMonitorFlush(pPool, pPage);
4243 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
4244 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
4245 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
4246 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
4247 pPage->cModifications = 0;
4248#endif
4249 pPage->GCPhys = NIL_RTGCPHYS;
4250 pPage->enmKind = PGMPOOLKIND_FREE;
4251 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
4252 Assert(pPage->idx == i);
4253 pPage->iNext = i + 1;
4254 pPage->fZeroed = false; /* This could probably be optimized, but better safe than sorry. */
4255 pPage->fSeenNonGlobal = false;
4256 pPage->fMonitored = false;
4257 pPage->fCached = false;
4258 pPage->fReusedFlushPending = false;
4259#ifdef PGMPOOL_WITH_USER_TRACKING
4260 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
4261#else
4262 pPage->fCR3Mix = false;
4263#endif
4264#ifdef PGMPOOL_WITH_CACHE
4265 pPage->iAgeNext = NIL_PGMPOOL_IDX;
4266 pPage->iAgePrev = NIL_PGMPOOL_IDX;
4267#endif
4268 pPage->cLocked = 0;
4269 }
4270 pPool->aPages[pPool->cCurPages - 1].iNext = NIL_PGMPOOL_IDX;
4271 pPool->iFreeHead = PGMPOOL_IDX_FIRST;
4272 pPool->cUsedPages = 0;
4273
4274#ifdef PGMPOOL_WITH_USER_TRACKING
4275 /*
4276 * Zap and reinitialize the user records.
4277 */
4278 pPool->cPresent = 0;
4279 pPool->iUserFreeHead = 0;
4280 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
4281 const unsigned cMaxUsers = pPool->cMaxUsers;
4282 for (unsigned i = 0; i < cMaxUsers; i++)
4283 {
4284 paUsers[i].iNext = i + 1;
4285 paUsers[i].iUser = NIL_PGMPOOL_IDX;
4286 paUsers[i].iUserTable = 0xfffffffe;
4287 }
4288 paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
4289#endif
4290
4291#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
4292 /*
4293 * Clear all the GCPhys links and rebuild the phys ext free list.
4294 */
4295 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
4296 pRam;
4297 pRam = pRam->CTX_SUFF(pNext))
4298 {
4299 unsigned iPage = pRam->cb >> PAGE_SHIFT;
4300 while (iPage-- > 0)
4301 PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0);
4302 }
4303
4304 pPool->iPhysExtFreeHead = 0;
4305 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
4306 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
4307 for (unsigned i = 0; i < cMaxPhysExts; i++)
4308 {
4309 paPhysExts[i].iNext = i + 1;
4310 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
4311 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
4312 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
4313 }
4314 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
4315#endif
4316
4317#ifdef PGMPOOL_WITH_MONITORING
4318 /*
4319 * Just zap the modified list.
4320 */
4321 pPool->cModifiedPages = 0;
4322 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
4323#endif
4324
4325#ifdef PGMPOOL_WITH_CACHE
4326 /*
4327 * Clear the GCPhys hash and the age list.
4328 */
4329 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
4330 pPool->aiHash[i] = NIL_PGMPOOL_IDX;
4331 pPool->iAgeHead = NIL_PGMPOOL_IDX;
4332 pPool->iAgeTail = NIL_PGMPOOL_IDX;
4333#endif
4334
4335 /*
4336 * Reinsert active pages into the hash and ensure monitoring chains are correct.
4337 */
4338 for (unsigned i = PGMPOOL_IDX_FIRST_SPECIAL; i < PGMPOOL_IDX_FIRST; i++)
4339 {
4340 PPGMPOOLPAGE pPage = &pPool->aPages[i];
4341 pPage->iNext = NIL_PGMPOOL_IDX;
4342#ifdef PGMPOOL_WITH_MONITORING
4343 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
4344 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
4345 pPage->cModifications = 0;
4346 /* ASSUMES that we're not sharing with any of the other special pages (safe for now). */
4347 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
4348 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
4349 if (pPage->fMonitored)
4350 {
4351 int rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1),
4352 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage),
4353 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage),
4354 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pPage),
4355 pPool->pszAccessHandler);
4356 AssertFatalRCSuccess(rc);
4357# ifdef PGMPOOL_WITH_CACHE
4358 pgmPoolHashInsert(pPool, pPage);
4359# endif
4360 }
4361#endif
4362#ifdef PGMPOOL_WITH_USER_TRACKING
4363 Assert(pPage->iUserHead == NIL_PGMPOOL_USER_INDEX); /* for now */
4364#endif
4365#ifdef PGMPOOL_WITH_CACHE
4366 Assert(pPage->iAgeNext == NIL_PGMPOOL_IDX);
4367 Assert(pPage->iAgePrev == NIL_PGMPOOL_IDX);
4368#endif
4369 }
4370
4371 for (unsigned i=0;i<pVM->cCPUs;i++)
4372 {
4373 PVMCPU pVCpu = &pVM->aCpus[i];
4374 /*
4375 * Re-enter the shadowing mode and assert Sync CR3 FF.
4376 */
4377 pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu);
4378 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4379 }
4380
4381 STAM_PROFILE_STOP(&pPool->StatFlushAllInt, a);
4382}
4383#endif /* IN_RING3 */
4384
4385#ifdef LOG_ENABLED
4386static const char *pgmPoolPoolKindToStr(uint8_t enmKind)
4387{
4388 switch(enmKind)
4389 {
4390 case PGMPOOLKIND_INVALID:
4391 return "PGMPOOLKIND_INVALID";
4392 case PGMPOOLKIND_FREE:
4393 return "PGMPOOLKIND_FREE";
4394 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
4395 return "PGMPOOLKIND_32BIT_PT_FOR_PHYS";
4396 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
4397 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT";
4398 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
4399 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB";
4400 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
4401 return "PGMPOOLKIND_PAE_PT_FOR_PHYS";
4402 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
4403 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_PT";
4404 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
4405 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB";
4406 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
4407 return "PGMPOOLKIND_PAE_PT_FOR_PAE_PT";
4408 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
4409 return "PGMPOOLKIND_PAE_PT_FOR_PAE_2MB";
4410 case PGMPOOLKIND_32BIT_PD:
4411 return "PGMPOOLKIND_32BIT_PD";
4412 case PGMPOOLKIND_32BIT_PD_PHYS:
4413 return "PGMPOOLKIND_32BIT_PD_PHYS";
4414 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
4415 return "PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD";
4416 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
4417 return "PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD";
4418 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
4419 return "PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD";
4420 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
4421 return "PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD";
4422 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
4423 return "PGMPOOLKIND_PAE_PD_FOR_PAE_PD";
4424 case PGMPOOLKIND_PAE_PD_PHYS:
4425 return "PGMPOOLKIND_PAE_PD_PHYS";
4426 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
4427 return "PGMPOOLKIND_PAE_PDPT_FOR_32BIT";
4428 case PGMPOOLKIND_PAE_PDPT:
4429 return "PGMPOOLKIND_PAE_PDPT";
4430 case PGMPOOLKIND_PAE_PDPT_PHYS:
4431 return "PGMPOOLKIND_PAE_PDPT_PHYS";
4432 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
4433 return "PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT";
4434 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
4435 return "PGMPOOLKIND_64BIT_PDPT_FOR_PHYS";
4436 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
4437 return "PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD";
4438 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
4439 return "PGMPOOLKIND_64BIT_PD_FOR_PHYS";
4440 case PGMPOOLKIND_64BIT_PML4:
4441 return "PGMPOOLKIND_64BIT_PML4";
4442 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
4443 return "PGMPOOLKIND_EPT_PDPT_FOR_PHYS";
4444 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
4445 return "PGMPOOLKIND_EPT_PD_FOR_PHYS";
4446 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
4447 return "PGMPOOLKIND_EPT_PT_FOR_PHYS";
4448 case PGMPOOLKIND_ROOT_NESTED:
4449 return "PGMPOOLKIND_ROOT_NESTED";
4450 }
4451 return "Unknown kind!";
4452}
4453#endif /* LOG_ENABLED*/
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette