VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllPool.cpp@ 20136

Last change on this file since 20136 was 20136, checked in by vboxsync, 16 years ago

Missing descriptions

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 161.9 KB
Line 
1/* $Id: PGMAllPool.cpp 20136 2009-05-29 08:12:12Z vboxsync $ */
2/** @file
3 * PGM Shadow Page Pool.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.215389.xyz. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM_POOL
27#include <VBox/pgm.h>
28#include <VBox/mm.h>
29#include <VBox/em.h>
30#include <VBox/cpum.h>
31#ifdef IN_RC
32# include <VBox/patm.h>
33#endif
34#include "PGMInternal.h"
35#include <VBox/vm.h>
36#include <VBox/disopcode.h>
37#include <VBox/hwacc_vmx.h>
38
39#include <VBox/log.h>
40#include <VBox/err.h>
41#include <iprt/asm.h>
42#include <iprt/string.h>
43
44
45/*******************************************************************************
46* Internal Functions *
47*******************************************************************************/
48__BEGIN_DECLS
49static void pgmPoolFlushAllInt(PPGMPOOL pPool);
50#ifdef PGMPOOL_WITH_USER_TRACKING
51DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind);
52DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind);
53static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
54#endif
55#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
56static void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint);
57#endif
58#ifdef PGMPOOL_WITH_CACHE
59static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable);
60#endif
61#ifdef PGMPOOL_WITH_MONITORING
62static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
63#endif
64#ifndef IN_RING3
65DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser);
66#endif
67#ifdef LOG_ENABLED
68static const char *pgmPoolPoolKindToStr(uint8_t enmKind);
69#endif
70
71void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs);
72void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt);
73int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage);
74PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt);
75void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt);
76void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt);
77
78__END_DECLS
79
80
81/**
82 * Checks if the specified page pool kind is for a 4MB or 2MB guest page.
83 *
84 * @returns true if it's the shadow of a 4MB or 2MB guest page, otherwise false.
85 * @param enmKind The page kind.
86 */
87DECLINLINE(bool) pgmPoolIsBigPage(PGMPOOLKIND enmKind)
88{
89 switch (enmKind)
90 {
91 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
92 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
93 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
94 return true;
95 default:
96 return false;
97 }
98}
99
100/** @def PGMPOOL_PAGE_2_LOCKED_PTR
101 * Maps a pool page pool into the current context and lock it (RC only).
102 *
103 * @returns VBox status code.
104 * @param pVM The VM handle.
105 * @param pPage The pool page.
106 *
107 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
108 * small page window employeed by that function. Be careful.
109 * @remark There is no need to assert on the result.
110 */
111#if defined(IN_RC)
112DECLINLINE(void *) PGMPOOL_PAGE_2_LOCKED_PTR(PVM pVM, PPGMPOOLPAGE pPage)
113{
114 void *pv = pgmPoolMapPageInlined(&pVM->pgm.s, pPage);
115
116 /* Make sure the dynamic mapping will not be reused. */
117 if (pv)
118 PGMDynLockHCPage(pVM, (uint8_t *)pv);
119
120 return pv;
121}
122#else
123# define PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage) PGMPOOL_PAGE_2_PTR(pVM, pPage)
124#endif
125
126/** @def PGMPOOL_UNLOCK_PTR
127 * Unlock a previously locked dynamic caching (RC only).
128 *
129 * @returns VBox status code.
130 * @param pVM The VM handle.
131 * @param pPage The pool page.
132 *
133 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
134 * small page window employeed by that function. Be careful.
135 * @remark There is no need to assert on the result.
136 */
137#if defined(IN_RC)
138DECLINLINE(void) PGMPOOL_UNLOCK_PTR(PVM pVM, void *pvPage)
139{
140 if (pvPage)
141 PGMDynUnlockHCPage(pVM, (uint8_t *)pvPage);
142}
143#else
144# define PGMPOOL_UNLOCK_PTR(pVM, pPage) do {} while (0)
145#endif
146
147
148#ifdef PGMPOOL_WITH_MONITORING
149/**
150 * Determin the size of a write instruction.
151 * @returns number of bytes written.
152 * @param pDis The disassembler state.
153 */
154static unsigned pgmPoolDisasWriteSize(PDISCPUSTATE pDis)
155{
156 /*
157 * This is very crude and possibly wrong for some opcodes,
158 * but since it's not really supposed to be called we can
159 * probably live with that.
160 */
161 return DISGetParamSize(pDis, &pDis->param1);
162}
163
164
165/**
166 * Flushes a chain of pages sharing the same access monitor.
167 *
168 * @returns VBox status code suitable for scheduling.
169 * @param pPool The pool.
170 * @param pPage A page in the chain.
171 */
172int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
173{
174 LogFlow(("pgmPoolMonitorChainFlush: Flush page %RGp type=%d\n", pPage->GCPhys, pPage->enmKind));
175
176 /*
177 * Find the list head.
178 */
179 uint16_t idx = pPage->idx;
180 if (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
181 {
182 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
183 {
184 idx = pPage->iMonitoredPrev;
185 Assert(idx != pPage->idx);
186 pPage = &pPool->aPages[idx];
187 }
188 }
189
190 /*
191 * Iterate the list flushing each shadow page.
192 */
193 int rc = VINF_SUCCESS;
194 for (;;)
195 {
196 idx = pPage->iMonitoredNext;
197 Assert(idx != pPage->idx);
198 if (pPage->idx >= PGMPOOL_IDX_FIRST)
199 {
200 int rc2 = pgmPoolFlushPage(pPool, pPage);
201 AssertRC(rc2);
202 }
203 /* next */
204 if (idx == NIL_PGMPOOL_IDX)
205 break;
206 pPage = &pPool->aPages[idx];
207 }
208 return rc;
209}
210
211
212/**
213 * Wrapper for getting the current context pointer to the entry being modified.
214 *
215 * @returns VBox status code suitable for scheduling.
216 * @param pVM VM Handle.
217 * @param pvDst Destination address
218 * @param pvSrc Source guest virtual address.
219 * @param GCPhysSrc The source guest physical address.
220 * @param cb Size of data to read
221 */
222DECLINLINE(int) pgmPoolPhysSimpleReadGCPhys(PVM pVM, void *pvDst, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvSrc, RTGCPHYS GCPhysSrc, size_t cb)
223{
224#if defined(IN_RING3)
225 memcpy(pvDst, (RTHCPTR)((uintptr_t)pvSrc & ~(RTHCUINTPTR)(cb - 1)), cb);
226 return VINF_SUCCESS;
227#else
228 /* @todo in RC we could attempt to use the virtual address, although this can cause many faults (PAE Windows XP guest). */
229 return PGMPhysSimpleReadGCPhys(pVM, pvDst, GCPhysSrc & ~(RTGCPHYS)(cb - 1), cb);
230#endif
231}
232
233/**
234 * Process shadow entries before they are changed by the guest.
235 *
236 * For PT entries we will clear them. For PD entries, we'll simply check
237 * for mapping conflicts and set the SyncCR3 FF if found.
238 *
239 * @param pVCpu VMCPU handle
240 * @param pPool The pool.
241 * @param pPage The head page.
242 * @param GCPhysFault The guest physical fault address.
243 * @param uAddress In R0 and GC this is the guest context fault address (flat).
244 * In R3 this is the host context 'fault' address.
245 * @param pCpu The disassembler state for figuring out the write size.
246 * This need not be specified if the caller knows we won't do cross entry accesses.
247 */
248void pgmPoolMonitorChainChanging(PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvAddress, PDISCPUSTATE pCpu)
249{
250 Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
251 const unsigned off = GCPhysFault & PAGE_OFFSET_MASK;
252 const unsigned cbWrite = (pCpu) ? pgmPoolDisasWriteSize(pCpu) : 0;
253 PVM pVM = pPool->CTX_SUFF(pVM);
254
255 LogFlow(("pgmPoolMonitorChainChanging: %RGv phys=%RGp kind=%s cbWrite=%d\n", (RTGCPTR)pvAddress, GCPhysFault, pgmPoolPoolKindToStr(pPage->enmKind), cbWrite));
256 for (;;)
257 {
258 union
259 {
260 void *pv;
261 PX86PT pPT;
262 PX86PTPAE pPTPae;
263 PX86PD pPD;
264 PX86PDPAE pPDPae;
265 PX86PDPT pPDPT;
266 PX86PML4 pPML4;
267 } uShw;
268
269 uShw.pv = NULL;
270 switch (pPage->enmKind)
271 {
272 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
273 {
274 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
275 const unsigned iShw = off / sizeof(X86PTE);
276 LogFlow(("PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT iShw=%x\n", iShw));
277 if (uShw.pPT->a[iShw].n.u1Present)
278 {
279# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
280 X86PTE GstPte;
281
282 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
283 AssertRC(rc);
284 Log4(("pgmPoolMonitorChainChanging 32_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
285 pgmPoolTracDerefGCPhysHint(pPool, pPage,
286 uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK,
287 GstPte.u & X86_PTE_PG_MASK);
288# endif
289 ASMAtomicWriteSize(&uShw.pPT->a[iShw], 0);
290 }
291 break;
292 }
293
294 /* page/2 sized */
295 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
296 {
297 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
298 if (!((off ^ pPage->GCPhys) & (PAGE_SIZE / 2)))
299 {
300 const unsigned iShw = (off / sizeof(X86PTE)) & (X86_PG_PAE_ENTRIES - 1);
301 LogFlow(("PGMPOOLKIND_PAE_PT_FOR_32BIT_PT iShw=%x\n", iShw));
302 if (uShw.pPTPae->a[iShw].n.u1Present)
303 {
304# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
305 X86PTE GstPte;
306 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
307 AssertRC(rc);
308
309 Log4(("pgmPoolMonitorChainChanging pae_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
310 pgmPoolTracDerefGCPhysHint(pPool, pPage,
311 uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK,
312 GstPte.u & X86_PTE_PG_MASK);
313# endif
314 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw], 0);
315 }
316 }
317 break;
318 }
319
320 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
321 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
322 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
323 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
324 {
325 unsigned iGst = off / sizeof(X86PDE);
326 unsigned iShwPdpt = iGst / 256;
327 unsigned iShw = (iGst % 256) * 2;
328 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
329
330 LogFlow(("pgmPoolMonitorChainChanging PAE for 32 bits: iGst=%x iShw=%x idx = %d page idx=%d\n", iGst, iShw, iShwPdpt, pPage->enmKind - PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD));
331 if (iShwPdpt == pPage->enmKind - (unsigned)PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD)
332 {
333 for (unsigned i = 0; i < 2; i++)
334 {
335# ifndef IN_RING0
336 if ((uShw.pPDPae->a[iShw + i].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
337 {
338 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
339 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
340 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw=%#x!\n", iShwPdpt, iShw+i));
341 break;
342 }
343 else
344# endif /* !IN_RING0 */
345 if (uShw.pPDPae->a[iShw+i].n.u1Present)
346 {
347 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw+i, uShw.pPDPae->a[iShw+i].u));
348 pgmPoolFree(pVM,
349 uShw.pPDPae->a[iShw+i].u & X86_PDE_PAE_PG_MASK,
350 pPage->idx,
351 iShw + i);
352 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw+i], 0);
353 }
354
355 /* paranoia / a bit assumptive. */
356 if ( pCpu
357 && (off & 3)
358 && (off & 3) + cbWrite > 4)
359 {
360 const unsigned iShw2 = iShw + 2 + i;
361 if (iShw2 < RT_ELEMENTS(uShw.pPDPae->a))
362 {
363# ifndef IN_RING0
364 if ((uShw.pPDPae->a[iShw2].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
365 {
366 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
367 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
368 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw2=%#x!\n", iShwPdpt, iShw2));
369 break;
370 }
371 else
372# endif /* !IN_RING0 */
373 if (uShw.pPDPae->a[iShw2].n.u1Present)
374 {
375 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
376 pgmPoolFree(pVM,
377 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
378 pPage->idx,
379 iShw2);
380 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
381 }
382 }
383 }
384 }
385 }
386 break;
387 }
388
389 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
390 {
391 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
392 const unsigned iShw = off / sizeof(X86PTEPAE);
393 if (uShw.pPTPae->a[iShw].n.u1Present)
394 {
395# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
396 X86PTEPAE GstPte;
397 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
398 AssertRC(rc);
399
400 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PAE_PG_MASK));
401 pgmPoolTracDerefGCPhysHint(pPool, pPage,
402 uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK,
403 GstPte.u & X86_PTE_PAE_PG_MASK);
404# endif
405 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw].u, 0);
406 }
407
408 /* paranoia / a bit assumptive. */
409 if ( pCpu
410 && (off & 7)
411 && (off & 7) + cbWrite > sizeof(X86PTEPAE))
412 {
413 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTEPAE);
414 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPTPae->a));
415
416 if (uShw.pPTPae->a[iShw2].n.u1Present)
417 {
418# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
419 X86PTEPAE GstPte;
420# ifdef IN_RING3
421 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, (RTHCPTR)((RTHCUINTPTR)pvAddress + sizeof(GstPte)), GCPhysFault + sizeof(GstPte), sizeof(GstPte));
422# else
423 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress + sizeof(GstPte), GCPhysFault + sizeof(GstPte), sizeof(GstPte));
424# endif
425 AssertRC(rc);
426 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", uShw.pPTPae->a[iShw2].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PAE_PG_MASK));
427 pgmPoolTracDerefGCPhysHint(pPool, pPage,
428 uShw.pPTPae->a[iShw2].u & X86_PTE_PAE_PG_MASK,
429 GstPte.u & X86_PTE_PAE_PG_MASK);
430# endif
431 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw2].u ,0);
432 }
433 }
434 break;
435 }
436
437 case PGMPOOLKIND_32BIT_PD:
438 {
439 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
440 const unsigned iShw = off / sizeof(X86PTE); // ASSUMING 32-bit guest paging!
441
442 LogFlow(("pgmPoolMonitorChainChanging: PGMPOOLKIND_32BIT_PD %x\n", iShw));
443# ifndef IN_RING0
444 if (uShw.pPD->a[iShw].u & PGM_PDFLAGS_MAPPING)
445 {
446 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
447 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
448 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
449 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
450 break;
451 }
452# endif /* !IN_RING0 */
453# ifndef IN_RING0
454 else
455# endif /* !IN_RING0 */
456 {
457 if (uShw.pPD->a[iShw].n.u1Present)
458 {
459 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
460 pgmPoolFree(pVM,
461 uShw.pPD->a[iShw].u & X86_PDE_PAE_PG_MASK,
462 pPage->idx,
463 iShw);
464 ASMAtomicWriteSize(&uShw.pPD->a[iShw].u, 0);
465 }
466 }
467 /* paranoia / a bit assumptive. */
468 if ( pCpu
469 && (off & 3)
470 && (off & 3) + cbWrite > sizeof(X86PTE))
471 {
472 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTE);
473 if ( iShw2 != iShw
474 && iShw2 < RT_ELEMENTS(uShw.pPD->a))
475 {
476# ifndef IN_RING0
477 if (uShw.pPD->a[iShw2].u & PGM_PDFLAGS_MAPPING)
478 {
479 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
480 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
481 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
482 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
483 break;
484 }
485# endif /* !IN_RING0 */
486# ifndef IN_RING0
487 else
488# endif /* !IN_RING0 */
489 {
490 if (uShw.pPD->a[iShw2].n.u1Present)
491 {
492 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPD->a[iShw2].u));
493 pgmPoolFree(pVM,
494 uShw.pPD->a[iShw2].u & X86_PDE_PAE_PG_MASK,
495 pPage->idx,
496 iShw2);
497 ASMAtomicWriteSize(&uShw.pPD->a[iShw2].u, 0);
498 }
499 }
500 }
501 }
502#if 0 /* useful when running PGMAssertCR3(), a bit too troublesome for general use (TLBs). */
503 if ( uShw.pPD->a[iShw].n.u1Present
504 && !VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
505 {
506 LogFlow(("pgmPoolMonitorChainChanging: iShw=%#x: %RX32 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
507# ifdef IN_RC /* TLB load - we're pushing things a bit... */
508 ASMProbeReadByte(pvAddress);
509# endif
510 pgmPoolFree(pVM, uShw.pPD->a[iShw].u & X86_PDE_PG_MASK, pPage->idx, iShw);
511 ASMAtomicWriteSize(&uShw.pPD->a[iShw].u, 0);
512 }
513#endif
514 break;
515 }
516
517 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
518 {
519 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
520 const unsigned iShw = off / sizeof(X86PDEPAE);
521#ifndef IN_RING0
522 if (uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING)
523 {
524 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
525 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
526 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
527 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
528 break;
529 }
530#endif /* !IN_RING0 */
531 /*
532 * Causes trouble when the guest uses a PDE to refer to the whole page table level
533 * structure. (Invalidate here; faults later on when it tries to change the page
534 * table entries -> recheck; probably only applies to the RC case.)
535 */
536# ifndef IN_RING0
537 else
538# endif /* !IN_RING0 */
539 {
540 if (uShw.pPDPae->a[iShw].n.u1Present)
541 {
542 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
543 pgmPoolFree(pVM,
544 uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK,
545 pPage->idx,
546 iShw);
547 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw].u, 0);
548 }
549 }
550 /* paranoia / a bit assumptive. */
551 if ( pCpu
552 && (off & 7)
553 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
554 {
555 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
556 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
557
558#ifndef IN_RING0
559 if ( iShw2 != iShw
560 && uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING)
561 {
562 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
563 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
564 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
565 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
566 break;
567 }
568#endif /* !IN_RING0 */
569# ifndef IN_RING0
570 else
571# endif /* !IN_RING0 */
572 if (uShw.pPDPae->a[iShw2].n.u1Present)
573 {
574 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
575 pgmPoolFree(pVM,
576 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
577 pPage->idx,
578 iShw2);
579 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
580 }
581 }
582 break;
583 }
584
585 case PGMPOOLKIND_PAE_PDPT:
586 {
587 /*
588 * Hopefully this doesn't happen very often:
589 * - touching unused parts of the page
590 * - messing with the bits of pd pointers without changing the physical address
591 */
592 /* PDPT roots are not page aligned; 32 byte only! */
593 const unsigned offPdpt = GCPhysFault - pPage->GCPhys;
594
595 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
596 const unsigned iShw = offPdpt / sizeof(X86PDPE);
597 if (iShw < X86_PG_PAE_PDPE_ENTRIES) /* don't use RT_ELEMENTS(uShw.pPDPT->a), because that's for long mode only */
598 {
599# ifndef IN_RING0
600 if (uShw.pPDPT->a[iShw].u & PGM_PLXFLAGS_MAPPING)
601 {
602 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
603 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
604 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
605 LogFlow(("pgmPoolMonitorChainChanging: Detected pdpt conflict at iShw=%#x!\n", iShw));
606 break;
607 }
608# endif /* !IN_RING0 */
609# ifndef IN_RING0
610 else
611# endif /* !IN_RING0 */
612 if (uShw.pPDPT->a[iShw].n.u1Present)
613 {
614 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
615 pgmPoolFree(pVM,
616 uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK,
617 pPage->idx,
618 iShw);
619 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw].u, 0);
620 }
621
622 /* paranoia / a bit assumptive. */
623 if ( pCpu
624 && (offPdpt & 7)
625 && (offPdpt & 7) + cbWrite > sizeof(X86PDPE))
626 {
627 const unsigned iShw2 = (offPdpt + cbWrite - 1) / sizeof(X86PDPE);
628 if ( iShw2 != iShw
629 && iShw2 < X86_PG_PAE_PDPE_ENTRIES)
630 {
631# ifndef IN_RING0
632 if (uShw.pPDPT->a[iShw2].u & PGM_PLXFLAGS_MAPPING)
633 {
634 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
635 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
636 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
637 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
638 break;
639 }
640# endif /* !IN_RING0 */
641# ifndef IN_RING0
642 else
643# endif /* !IN_RING0 */
644 if (uShw.pPDPT->a[iShw2].n.u1Present)
645 {
646 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
647 pgmPoolFree(pVM,
648 uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK,
649 pPage->idx,
650 iShw2);
651 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw2].u, 0);
652 }
653 }
654 }
655 }
656 break;
657 }
658
659#ifndef IN_RC
660 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
661 {
662 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
663 const unsigned iShw = off / sizeof(X86PDEPAE);
664 Assert(!(uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING));
665 if (uShw.pPDPae->a[iShw].n.u1Present)
666 {
667 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
668 pgmPoolFree(pVM,
669 uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK,
670 pPage->idx,
671 iShw);
672 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw].u, 0);
673 }
674 /* paranoia / a bit assumptive. */
675 if ( pCpu
676 && (off & 7)
677 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
678 {
679 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
680 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
681
682 Assert(!(uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING));
683 if (uShw.pPDPae->a[iShw2].n.u1Present)
684 {
685 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
686 pgmPoolFree(pVM,
687 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
688 pPage->idx,
689 iShw2);
690 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
691 }
692 }
693 break;
694 }
695
696 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
697 {
698 /*
699 * Hopefully this doesn't happen very often:
700 * - messing with the bits of pd pointers without changing the physical address
701 */
702 if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
703 {
704 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
705 const unsigned iShw = off / sizeof(X86PDPE);
706 if (uShw.pPDPT->a[iShw].n.u1Present)
707 {
708 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
709 pgmPoolFree(pVM, uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK, pPage->idx, iShw);
710 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw].u, 0);
711 }
712 /* paranoia / a bit assumptive. */
713 if ( pCpu
714 && (off & 7)
715 && (off & 7) + cbWrite > sizeof(X86PDPE))
716 {
717 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDPE);
718 if (uShw.pPDPT->a[iShw2].n.u1Present)
719 {
720 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
721 pgmPoolFree(pVM, uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK, pPage->idx, iShw2);
722 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw2].u, 0);
723 }
724 }
725 }
726 break;
727 }
728
729 case PGMPOOLKIND_64BIT_PML4:
730 {
731 /*
732 * Hopefully this doesn't happen very often:
733 * - messing with the bits of pd pointers without changing the physical address
734 */
735 if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
736 {
737 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
738 const unsigned iShw = off / sizeof(X86PDPE);
739 if (uShw.pPML4->a[iShw].n.u1Present)
740 {
741 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPML4->a[iShw].u));
742 pgmPoolFree(pVM, uShw.pPML4->a[iShw].u & X86_PML4E_PG_MASK, pPage->idx, iShw);
743 ASMAtomicWriteSize(&uShw.pPML4->a[iShw].u, 0);
744 }
745 /* paranoia / a bit assumptive. */
746 if ( pCpu
747 && (off & 7)
748 && (off & 7) + cbWrite > sizeof(X86PDPE))
749 {
750 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PML4E);
751 if (uShw.pPML4->a[iShw2].n.u1Present)
752 {
753 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPML4->a[iShw2].u));
754 pgmPoolFree(pVM, uShw.pPML4->a[iShw2].u & X86_PML4E_PG_MASK, pPage->idx, iShw2);
755 ASMAtomicWriteSize(&uShw.pPML4->a[iShw2].u, 0);
756 }
757 }
758 }
759 break;
760 }
761#endif /* IN_RING0 */
762
763 default:
764 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
765 }
766 PGMPOOL_UNLOCK_PTR(pVM, uShw.pv);
767
768 /* next */
769 if (pPage->iMonitoredNext == NIL_PGMPOOL_IDX)
770 return;
771 pPage = &pPool->aPages[pPage->iMonitoredNext];
772 }
773}
774
775# ifndef IN_RING3
776/**
777 * Checks if a access could be a fork operation in progress.
778 *
779 * Meaning, that the guest is setuping up the parent process for Copy-On-Write.
780 *
781 * @returns true if it's likly that we're forking, otherwise false.
782 * @param pPool The pool.
783 * @param pCpu The disassembled instruction.
784 * @param offFault The access offset.
785 */
786DECLINLINE(bool) pgmPoolMonitorIsForking(PPGMPOOL pPool, PDISCPUSTATE pCpu, unsigned offFault)
787{
788 /*
789 * i386 linux is using btr to clear X86_PTE_RW.
790 * The functions involved are (2.6.16 source inspection):
791 * clear_bit
792 * ptep_set_wrprotect
793 * copy_one_pte
794 * copy_pte_range
795 * copy_pmd_range
796 * copy_pud_range
797 * copy_page_range
798 * dup_mmap
799 * dup_mm
800 * copy_mm
801 * copy_process
802 * do_fork
803 */
804 if ( pCpu->pCurInstr->opcode == OP_BTR
805 && !(offFault & 4)
806 /** @todo Validate that the bit index is X86_PTE_RW. */
807 )
808 {
809 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,Fork));
810 return true;
811 }
812 return false;
813}
814
815
816/**
817 * Determine whether the page is likely to have been reused.
818 *
819 * @returns true if we consider the page as being reused for a different purpose.
820 * @returns false if we consider it to still be a paging page.
821 * @param pVM VM Handle.
822 * @param pRegFrame Trap register frame.
823 * @param pCpu The disassembly info for the faulting instruction.
824 * @param pvFault The fault address.
825 *
826 * @remark The REP prefix check is left to the caller because of STOSD/W.
827 */
828DECLINLINE(bool) pgmPoolMonitorIsReused(PVM pVM, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pCpu, RTGCPTR pvFault)
829{
830#ifndef IN_RC
831 /** @todo could make this general, faulting close to rsp should be safe reuse heuristic. */
832 if ( HWACCMHasPendingIrq(pVM)
833 && (pRegFrame->rsp - pvFault) < 32)
834 {
835 /* Fault caused by stack writes while trying to inject an interrupt event. */
836 Log(("pgmPoolMonitorIsReused: reused %RGv for interrupt stack (rsp=%RGv).\n", pvFault, pRegFrame->rsp));
837 return true;
838 }
839#else
840 NOREF(pVM); NOREF(pvFault);
841#endif
842
843 switch (pCpu->pCurInstr->opcode)
844 {
845 /* call implies the actual push of the return address faulted */
846 case OP_CALL:
847 Log4(("pgmPoolMonitorIsReused: CALL\n"));
848 return true;
849 case OP_PUSH:
850 Log4(("pgmPoolMonitorIsReused: PUSH\n"));
851 return true;
852 case OP_PUSHF:
853 Log4(("pgmPoolMonitorIsReused: PUSHF\n"));
854 return true;
855 case OP_PUSHA:
856 Log4(("pgmPoolMonitorIsReused: PUSHA\n"));
857 return true;
858 case OP_FXSAVE:
859 Log4(("pgmPoolMonitorIsReused: FXSAVE\n"));
860 return true;
861 case OP_MOVNTI: /* solaris - block_zero_no_xmm */
862 Log4(("pgmPoolMonitorIsReused: MOVNTI\n"));
863 return true;
864 case OP_MOVNTDQ: /* solaris - hwblkclr & hwblkpagecopy */
865 Log4(("pgmPoolMonitorIsReused: MOVNTDQ\n"));
866 return true;
867 case OP_MOVSWD:
868 case OP_STOSWD:
869 if ( pCpu->prefix == (PREFIX_REP|PREFIX_REX)
870 && pRegFrame->rcx >= 0x40
871 )
872 {
873 Assert(pCpu->mode == CPUMODE_64BIT);
874
875 Log(("pgmPoolMonitorIsReused: OP_STOSQ\n"));
876 return true;
877 }
878 return false;
879 }
880 if ( (pCpu->param1.flags & USE_REG_GEN32)
881 && (pCpu->param1.base.reg_gen == USE_REG_ESP))
882 {
883 Log4(("pgmPoolMonitorIsReused: ESP\n"));
884 return true;
885 }
886
887 return false;
888}
889
890
891/**
892 * Flushes the page being accessed.
893 *
894 * @returns VBox status code suitable for scheduling.
895 * @param pVM The VM handle.
896 * @param pVCpu The VMCPU handle.
897 * @param pPool The pool.
898 * @param pPage The pool page (head).
899 * @param pCpu The disassembly of the write instruction.
900 * @param pRegFrame The trap register frame.
901 * @param GCPhysFault The fault address as guest physical address.
902 * @param pvFault The fault address.
903 */
904static int pgmPoolAccessHandlerFlush(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu,
905 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
906{
907 /*
908 * First, do the flushing.
909 */
910 int rc = pgmPoolMonitorChainFlush(pPool, pPage);
911
912 /*
913 * Emulate the instruction (xp/w2k problem, requires pc/cr2/sp detection).
914 */
915 uint32_t cbWritten;
916 int rc2 = EMInterpretInstructionCPU(pVM, pVCpu, pCpu, pRegFrame, pvFault, &cbWritten);
917 if (RT_SUCCESS(rc2))
918 pRegFrame->rip += pCpu->opsize;
919 else if (rc2 == VERR_EM_INTERPRETER)
920 {
921#ifdef IN_RC
922 if (PATMIsPatchGCAddr(pVM, (RTRCPTR)pRegFrame->eip))
923 {
924 LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for patch code %04x:%RGv, ignoring.\n",
925 pRegFrame->cs, (RTGCPTR)pRegFrame->eip));
926 rc = VINF_SUCCESS;
927 STAM_COUNTER_INC(&pPool->StatMonitorRZIntrFailPatch2);
928 }
929 else
930#endif
931 {
932 rc = VINF_EM_RAW_EMULATE_INSTR;
933 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,EmulateInstr));
934 }
935 }
936 else
937 rc = rc2;
938
939 /* See use in pgmPoolAccessHandlerSimple(). */
940 PGM_INVL_VCPU_TLBS(pVCpu);
941
942 LogFlow(("pgmPoolAccessHandlerPT: returns %Rrc (flushed)\n", rc));
943 return rc;
944
945}
946
947
948/**
949 * Handles the STOSD write accesses.
950 *
951 * @returns VBox status code suitable for scheduling.
952 * @param pVM The VM handle.
953 * @param pPool The pool.
954 * @param pPage The pool page (head).
955 * @param pCpu The disassembly of the write instruction.
956 * @param pRegFrame The trap register frame.
957 * @param GCPhysFault The fault address as guest physical address.
958 * @param pvFault The fault address.
959 */
960DECLINLINE(int) pgmPoolAccessHandlerSTOSD(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu,
961 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
962{
963 Assert(pCpu->mode == CPUMODE_32BIT);
964
965 Log3(("pgmPoolAccessHandlerSTOSD\n"));
966
967 /*
968 * Increment the modification counter and insert it into the list
969 * of modified pages the first time.
970 */
971 if (!pPage->cModifications++)
972 pgmPoolMonitorModifiedInsert(pPool, pPage);
973
974 /*
975 * Execute REP STOSD.
976 *
977 * This ASSUMES that we're not invoked by Trap0e on in a out-of-sync
978 * write situation, meaning that it's safe to write here.
979 */
980 PVMCPU pVCpu = VMMGetCpu(pPool->CTX_SUFF(pVM));
981 RTGCUINTPTR pu32 = (RTGCUINTPTR)pvFault;
982 while (pRegFrame->ecx)
983 {
984#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
985 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
986 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, (RTGCPTR)pu32, NULL);
987 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
988#else
989 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, (RTGCPTR)pu32, NULL);
990#endif
991#ifdef IN_RC
992 *(uint32_t *)pu32 = pRegFrame->eax;
993#else
994 PGMPhysSimpleWriteGCPhys(pVM, GCPhysFault, &pRegFrame->eax, 4);
995#endif
996 pu32 += 4;
997 GCPhysFault += 4;
998 pRegFrame->edi += 4;
999 pRegFrame->ecx--;
1000 }
1001 pRegFrame->rip += pCpu->opsize;
1002
1003#ifdef IN_RC
1004 /* See use in pgmPoolAccessHandlerSimple(). */
1005 PGM_INVL_VCPU_TLBS(pVCpu);
1006#endif
1007
1008 LogFlow(("pgmPoolAccessHandlerSTOSD: returns\n"));
1009 return VINF_SUCCESS;
1010}
1011
1012
1013/**
1014 * Handles the simple write accesses.
1015 *
1016 * @returns VBox status code suitable for scheduling.
1017 * @param pVM The VM handle.
1018 * @param pVCpu The VMCPU handle.
1019 * @param pPool The pool.
1020 * @param pPage The pool page (head).
1021 * @param pCpu The disassembly of the write instruction.
1022 * @param pRegFrame The trap register frame.
1023 * @param GCPhysFault The fault address as guest physical address.
1024 * @param pvFault The fault address.
1025 */
1026DECLINLINE(int) pgmPoolAccessHandlerSimple(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu,
1027 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
1028{
1029 Log3(("pgmPoolAccessHandlerSimple\n"));
1030 /*
1031 * Increment the modification counter and insert it into the list
1032 * of modified pages the first time.
1033 */
1034 if (!pPage->cModifications++)
1035 pgmPoolMonitorModifiedInsert(pPool, pPage);
1036
1037 /*
1038 * Clear all the pages. ASSUMES that pvFault is readable.
1039 */
1040#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
1041 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
1042 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, pvFault, pCpu);
1043 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
1044#else
1045 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, pvFault, pCpu);
1046#endif
1047
1048 /*
1049 * Interpret the instruction.
1050 */
1051 uint32_t cb;
1052 int rc = EMInterpretInstructionCPU(pVM, pVCpu, pCpu, pRegFrame, pvFault, &cb);
1053 if (RT_SUCCESS(rc))
1054 pRegFrame->rip += pCpu->opsize;
1055 else if (rc == VERR_EM_INTERPRETER)
1056 {
1057 LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for %04x:%RGv - opcode=%d\n",
1058 pRegFrame->cs, (RTGCPTR)pRegFrame->rip, pCpu->pCurInstr->opcode));
1059 rc = VINF_EM_RAW_EMULATE_INSTR;
1060 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,EmulateInstr));
1061 }
1062
1063#ifdef IN_RC
1064 /*
1065 * Quick hack, with logging enabled we're getting stale
1066 * code TLBs but no data TLB for EIP and crash in EMInterpretDisasOne.
1067 * Flushing here is BAD and expensive, I think EMInterpretDisasOne will
1068 * have to be fixed to support this. But that'll have to wait till next week.
1069 *
1070 * An alternative is to keep track of the changed PTEs together with the
1071 * GCPhys from the guest PT. This may proove expensive though.
1072 *
1073 * At the moment, it's VITAL that it's done AFTER the instruction interpreting
1074 * because we need the stale TLBs in some cases (XP boot). This MUST be fixed properly!
1075 */
1076 PGM_INVL_VCPU_TLBS(pVCpu);
1077#endif
1078
1079 LogFlow(("pgmPoolAccessHandlerSimple: returns %Rrc cb=%d\n", rc, cb));
1080 return rc;
1081}
1082
1083/**
1084 * \#PF Handler callback for PT write accesses.
1085 *
1086 * @returns VBox status code (appropriate for GC return).
1087 * @param pVM VM Handle.
1088 * @param uErrorCode CPU Error code.
1089 * @param pRegFrame Trap register frame.
1090 * NULL on DMA and other non CPU access.
1091 * @param pvFault The fault address (cr2).
1092 * @param GCPhysFault The GC physical address corresponding to pvFault.
1093 * @param pvUser User argument.
1094 */
1095DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
1096{
1097 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), a);
1098 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1099 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
1100 PVMCPU pVCpu = VMMGetCpu(pVM);
1101
1102 LogFlow(("pgmPoolAccessHandler: pvFault=%RGv pPage=%p:{.idx=%d} GCPhysFault=%RGp\n", pvFault, pPage, pPage->idx, GCPhysFault));
1103
1104 /*
1105 * We should ALWAYS have the list head as user parameter. This
1106 * is because we use that page to record the changes.
1107 */
1108 Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1109
1110 /*
1111 * Disassemble the faulting instruction.
1112 */
1113 DISCPUSTATE Cpu;
1114 int rc = EMInterpretDisasOne(pVM, pVCpu, pRegFrame, &Cpu, NULL);
1115 AssertRCReturn(rc, rc);
1116
1117 pgmLock(pVM);
1118 if (PHYS_PAGE_ADDRESS(GCPhysFault) != PHYS_PAGE_ADDRESS(pPage->GCPhys))
1119 {
1120 /* Pool page changed while we were waiting for the lock; ignore. */
1121 Log(("CPU%d: pgmPoolAccessHandler pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhysFault), PHYS_PAGE_ADDRESS(pPage->GCPhys)));
1122 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,Handled), a);
1123 pgmUnlock(pVM);
1124 return VINF_SUCCESS;
1125 }
1126
1127 /*
1128 * Check if it's worth dealing with.
1129 */
1130 bool fReused = false;
1131 if ( ( pPage->cModifications < 48 /** @todo #define */ /** @todo need to check that it's not mapping EIP. */ /** @todo adjust this! */
1132 || pgmPoolIsPageLocked(&pVM->pgm.s, pPage)
1133 )
1134 && !(fReused = pgmPoolMonitorIsReused(pVM, pRegFrame, &Cpu, pvFault))
1135 && !pgmPoolMonitorIsForking(pPool, &Cpu, GCPhysFault & PAGE_OFFSET_MASK))
1136 {
1137 /*
1138 * Simple instructions, no REP prefix.
1139 */
1140 if (!(Cpu.prefix & (PREFIX_REP | PREFIX_REPNE)))
1141 {
1142 rc = pgmPoolAccessHandlerSimple(pVM, pVCpu, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault);
1143 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,Handled), a);
1144 pgmUnlock(pVM);
1145 return rc;
1146 }
1147
1148 /*
1149 * Windows is frequently doing small memset() operations (netio test 4k+).
1150 * We have to deal with these or we'll kill the cache and performance.
1151 */
1152 if ( Cpu.pCurInstr->opcode == OP_STOSWD
1153 && CPUMGetGuestCPL(pVCpu, pRegFrame) == 0
1154 && pRegFrame->ecx <= 0x20
1155 && pRegFrame->ecx * 4 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK)
1156 && !((uintptr_t)pvFault & 3)
1157 && (pRegFrame->eax == 0 || pRegFrame->eax == 0x80) /* the two values observed. */
1158 && Cpu.mode == CPUMODE_32BIT
1159 && Cpu.opmode == CPUMODE_32BIT
1160 && Cpu.addrmode == CPUMODE_32BIT
1161 && Cpu.prefix == PREFIX_REP
1162 && !pRegFrame->eflags.Bits.u1DF
1163 )
1164 {
1165 rc = pgmPoolAccessHandlerSTOSD(pVM, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault);
1166 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,RepStosd), a);
1167 pgmUnlock(pVM);
1168 return rc;
1169 }
1170
1171 /* REP prefix, don't bother. */
1172 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,RepPrefix));
1173 Log4(("pgmPoolAccessHandler: eax=%#x ecx=%#x edi=%#x esi=%#x rip=%RGv opcode=%d prefix=%#x\n",
1174 pRegFrame->eax, pRegFrame->ecx, pRegFrame->edi, pRegFrame->esi, (RTGCPTR)pRegFrame->rip, Cpu.pCurInstr->opcode, Cpu.prefix));
1175 }
1176
1177 /*
1178 * Not worth it, so flush it.
1179 *
1180 * If we considered it to be reused, don't go back to ring-3
1181 * to emulate failed instructions since we usually cannot
1182 * interpret then. This may be a bit risky, in which case
1183 * the reuse detection must be fixed.
1184 */
1185 rc = pgmPoolAccessHandlerFlush(pVM, pVCpu, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault);
1186 if (rc == VINF_EM_RAW_EMULATE_INSTR && fReused)
1187 rc = VINF_SUCCESS;
1188 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,FlushPage), a);
1189 pgmUnlock(pVM);
1190 return rc;
1191}
1192
1193# endif /* !IN_RING3 */
1194#endif /* PGMPOOL_WITH_MONITORING */
1195
1196#ifdef PGMPOOL_WITH_CACHE
1197
1198/**
1199 * Inserts a page into the GCPhys hash table.
1200 *
1201 * @param pPool The pool.
1202 * @param pPage The page.
1203 */
1204DECLINLINE(void) pgmPoolHashInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1205{
1206 Log3(("pgmPoolHashInsert: %RGp\n", pPage->GCPhys));
1207 Assert(pPage->GCPhys != NIL_RTGCPHYS); Assert(pPage->iNext == NIL_PGMPOOL_IDX);
1208 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1209 pPage->iNext = pPool->aiHash[iHash];
1210 pPool->aiHash[iHash] = pPage->idx;
1211}
1212
1213
1214/**
1215 * Removes a page from the GCPhys hash table.
1216 *
1217 * @param pPool The pool.
1218 * @param pPage The page.
1219 */
1220DECLINLINE(void) pgmPoolHashRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1221{
1222 Log3(("pgmPoolHashRemove: %RGp\n", pPage->GCPhys));
1223 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1224 if (pPool->aiHash[iHash] == pPage->idx)
1225 pPool->aiHash[iHash] = pPage->iNext;
1226 else
1227 {
1228 uint16_t iPrev = pPool->aiHash[iHash];
1229 for (;;)
1230 {
1231 const int16_t i = pPool->aPages[iPrev].iNext;
1232 if (i == pPage->idx)
1233 {
1234 pPool->aPages[iPrev].iNext = pPage->iNext;
1235 break;
1236 }
1237 if (i == NIL_PGMPOOL_IDX)
1238 {
1239 AssertReleaseMsgFailed(("GCPhys=%RGp idx=%#x\n", pPage->GCPhys, pPage->idx));
1240 break;
1241 }
1242 iPrev = i;
1243 }
1244 }
1245 pPage->iNext = NIL_PGMPOOL_IDX;
1246}
1247
1248
1249/**
1250 * Frees up one cache page.
1251 *
1252 * @returns VBox status code.
1253 * @retval VINF_SUCCESS on success.
1254 * @param pPool The pool.
1255 * @param iUser The user index.
1256 */
1257static int pgmPoolCacheFreeOne(PPGMPOOL pPool, uint16_t iUser)
1258{
1259#ifndef IN_RC
1260 const PVM pVM = pPool->CTX_SUFF(pVM);
1261#endif
1262 Assert(pPool->iAgeHead != pPool->iAgeTail); /* We shouldn't be here if there < 2 cached entries! */
1263 STAM_COUNTER_INC(&pPool->StatCacheFreeUpOne);
1264
1265 /*
1266 * Select one page from the tail of the age list.
1267 */
1268 PPGMPOOLPAGE pPage;
1269 for (unsigned iLoop = 0; ; iLoop++)
1270 {
1271 uint16_t iToFree = pPool->iAgeTail;
1272 if (iToFree == iUser)
1273 iToFree = pPool->aPages[iToFree].iAgePrev;
1274/* This is the alternative to the SyncCR3 pgmPoolCacheUsed calls.
1275 if (pPool->aPages[iToFree].iUserHead != NIL_PGMPOOL_USER_INDEX)
1276 {
1277 uint16_t i = pPool->aPages[iToFree].iAgePrev;
1278 for (unsigned j = 0; j < 10 && i != NIL_PGMPOOL_USER_INDEX; j++, i = pPool->aPages[i].iAgePrev)
1279 {
1280 if (pPool->aPages[iToFree].iUserHead == NIL_PGMPOOL_USER_INDEX)
1281 continue;
1282 iToFree = i;
1283 break;
1284 }
1285 }
1286*/
1287 Assert(iToFree != iUser);
1288 AssertRelease(iToFree != NIL_PGMPOOL_IDX);
1289 pPage = &pPool->aPages[iToFree];
1290
1291 /*
1292 * Reject any attempts at flushing the currently active shadow CR3 mapping.
1293 * Call pgmPoolCacheUsed to move the page to the head of the age list.
1294 */
1295 if (!pgmPoolIsPageLocked(&pPool->CTX_SUFF(pVM)->pgm.s, pPage))
1296 break;
1297 LogFlow(("pgmPoolCacheFreeOne: refuse CR3 mapping\n"));
1298 pgmPoolCacheUsed(pPool, pPage);
1299 AssertLogRelReturn(iLoop < 8192, VERR_INTERNAL_ERROR);
1300 }
1301
1302 /*
1303 * Found a usable page, flush it and return.
1304 */
1305 int rc = pgmPoolFlushPage(pPool, pPage);
1306 /* This flush was initiated by us and not the guest, so explicitly flush the TLB. */
1307 if (rc == VINF_SUCCESS)
1308 PGM_INVL_ALL_VCPU_TLBS(pVM);
1309 return rc;
1310}
1311
1312
1313/**
1314 * Checks if a kind mismatch is really a page being reused
1315 * or if it's just normal remappings.
1316 *
1317 * @returns true if reused and the cached page (enmKind1) should be flushed
1318 * @returns false if not reused.
1319 * @param enmKind1 The kind of the cached page.
1320 * @param enmKind2 The kind of the requested page.
1321 */
1322static bool pgmPoolCacheReusedByKind(PGMPOOLKIND enmKind1, PGMPOOLKIND enmKind2)
1323{
1324 switch (enmKind1)
1325 {
1326 /*
1327 * Never reuse them. There is no remapping in non-paging mode.
1328 */
1329 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1330 case PGMPOOLKIND_32BIT_PD_PHYS:
1331 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1332 case PGMPOOLKIND_PAE_PD_PHYS:
1333 case PGMPOOLKIND_PAE_PDPT_PHYS:
1334 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1335 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1336 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1337 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1338 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1339 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: /* never reuse them for other types */
1340 return false;
1341
1342 /*
1343 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
1344 */
1345 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1346 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1347 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1348 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1349 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1350 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1351 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1352 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1353 case PGMPOOLKIND_32BIT_PD:
1354 case PGMPOOLKIND_PAE_PDPT:
1355 switch (enmKind2)
1356 {
1357 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1358 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1359 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1360 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1361 case PGMPOOLKIND_64BIT_PML4:
1362 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1363 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1364 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1365 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1366 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1367 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1368 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1369 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1370 return true;
1371 default:
1372 return false;
1373 }
1374
1375 /*
1376 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
1377 */
1378 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1379 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1380 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1381 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1382 case PGMPOOLKIND_64BIT_PML4:
1383 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1384 switch (enmKind2)
1385 {
1386 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1387 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1388 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1389 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1390 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1391 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1392 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1393 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1394 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1395 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1396 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1397 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1398 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1399 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1400 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1401 return true;
1402 default:
1403 return false;
1404 }
1405
1406 /*
1407 * These cannot be flushed, and it's common to reuse the PDs as PTs.
1408 */
1409 case PGMPOOLKIND_ROOT_NESTED:
1410 return false;
1411
1412 default:
1413 AssertFatalMsgFailed(("enmKind1=%d\n", enmKind1));
1414 }
1415}
1416
1417
1418/**
1419 * Attempts to satisfy a pgmPoolAlloc request from the cache.
1420 *
1421 * @returns VBox status code.
1422 * @retval VINF_PGM_CACHED_PAGE on success.
1423 * @retval VERR_FILE_NOT_FOUND if not found.
1424 * @param pPool The pool.
1425 * @param GCPhys The GC physical address of the page we're gonna shadow.
1426 * @param enmKind The kind of mapping.
1427 * @param enmAccess Access type for the mapping (only relevant for big pages)
1428 * @param iUser The shadow page pool index of the user table.
1429 * @param iUserTable The index into the user table (shadowed).
1430 * @param ppPage Where to store the pointer to the page.
1431 */
1432static int pgmPoolCacheAlloc(PPGMPOOL pPool, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage)
1433{
1434#ifndef IN_RC
1435 const PVM pVM = pPool->CTX_SUFF(pVM);
1436#endif
1437 /*
1438 * Look up the GCPhys in the hash.
1439 */
1440 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
1441 Log3(("pgmPoolCacheAlloc: %RGp kind %s iUser=%x iUserTable=%x SLOT=%d\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable, i));
1442 if (i != NIL_PGMPOOL_IDX)
1443 {
1444 do
1445 {
1446 PPGMPOOLPAGE pPage = &pPool->aPages[i];
1447 Log4(("pgmPoolCacheAlloc: slot %d found page %RGp\n", i, pPage->GCPhys));
1448 if (pPage->GCPhys == GCPhys)
1449 {
1450 if ( (PGMPOOLKIND)pPage->enmKind == enmKind
1451 && (PGMPOOLACCESS)pPage->enmAccess == enmAccess)
1452 {
1453 /* Put it at the start of the use list to make sure pgmPoolTrackAddUser
1454 * doesn't flush it in case there are no more free use records.
1455 */
1456 pgmPoolCacheUsed(pPool, pPage);
1457
1458 int rc = pgmPoolTrackAddUser(pPool, pPage, iUser, iUserTable);
1459 if (RT_SUCCESS(rc))
1460 {
1461 Assert((PGMPOOLKIND)pPage->enmKind == enmKind);
1462 *ppPage = pPage;
1463 STAM_COUNTER_INC(&pPool->StatCacheHits);
1464 return VINF_PGM_CACHED_PAGE;
1465 }
1466 return rc;
1467 }
1468
1469 if ((PGMPOOLKIND)pPage->enmKind != enmKind)
1470 {
1471 /*
1472 * The kind is different. In some cases we should now flush the page
1473 * as it has been reused, but in most cases this is normal remapping
1474 * of PDs as PT or big pages using the GCPhys field in a slightly
1475 * different way than the other kinds.
1476 */
1477 if (pgmPoolCacheReusedByKind((PGMPOOLKIND)pPage->enmKind, enmKind))
1478 {
1479 STAM_COUNTER_INC(&pPool->StatCacheKindMismatches);
1480 pgmPoolFlushPage(pPool, pPage);
1481 PGM_INVL_VCPU_TLBS(VMMGetCpu(pVM)); /* see PT handler. */
1482 break;
1483 }
1484 }
1485 }
1486
1487 /* next */
1488 i = pPage->iNext;
1489 } while (i != NIL_PGMPOOL_IDX);
1490 }
1491
1492 Log3(("pgmPoolCacheAlloc: Missed GCPhys=%RGp enmKind=%s\n", GCPhys, pgmPoolPoolKindToStr(enmKind)));
1493 STAM_COUNTER_INC(&pPool->StatCacheMisses);
1494 return VERR_FILE_NOT_FOUND;
1495}
1496
1497
1498/**
1499 * Inserts a page into the cache.
1500 *
1501 * @param pPool The pool.
1502 * @param pPage The cached page.
1503 * @param fCanBeCached Set if the page is fit for caching from the caller's point of view.
1504 */
1505static void pgmPoolCacheInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fCanBeCached)
1506{
1507 /*
1508 * Insert into the GCPhys hash if the page is fit for that.
1509 */
1510 Assert(!pPage->fCached);
1511 if (fCanBeCached)
1512 {
1513 pPage->fCached = true;
1514 pgmPoolHashInsert(pPool, pPage);
1515 Log3(("pgmPoolCacheInsert: Caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
1516 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
1517 STAM_COUNTER_INC(&pPool->StatCacheCacheable);
1518 }
1519 else
1520 {
1521 Log3(("pgmPoolCacheInsert: Not caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
1522 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
1523 STAM_COUNTER_INC(&pPool->StatCacheUncacheable);
1524 }
1525
1526 /*
1527 * Insert at the head of the age list.
1528 */
1529 pPage->iAgePrev = NIL_PGMPOOL_IDX;
1530 pPage->iAgeNext = pPool->iAgeHead;
1531 if (pPool->iAgeHead != NIL_PGMPOOL_IDX)
1532 pPool->aPages[pPool->iAgeHead].iAgePrev = pPage->idx;
1533 else
1534 pPool->iAgeTail = pPage->idx;
1535 pPool->iAgeHead = pPage->idx;
1536}
1537
1538
1539/**
1540 * Flushes a cached page.
1541 *
1542 * @param pPool The pool.
1543 * @param pPage The cached page.
1544 */
1545static void pgmPoolCacheFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1546{
1547 Log3(("pgmPoolCacheFlushPage: %RGp\n", pPage->GCPhys));
1548
1549 /*
1550 * Remove the page from the hash.
1551 */
1552 if (pPage->fCached)
1553 {
1554 pPage->fCached = false;
1555 pgmPoolHashRemove(pPool, pPage);
1556 }
1557 else
1558 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
1559
1560 /*
1561 * Remove it from the age list.
1562 */
1563 if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
1564 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
1565 else
1566 pPool->iAgeTail = pPage->iAgePrev;
1567 if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
1568 pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
1569 else
1570 pPool->iAgeHead = pPage->iAgeNext;
1571 pPage->iAgeNext = NIL_PGMPOOL_IDX;
1572 pPage->iAgePrev = NIL_PGMPOOL_IDX;
1573}
1574
1575#endif /* PGMPOOL_WITH_CACHE */
1576#ifdef PGMPOOL_WITH_MONITORING
1577
1578/**
1579 * Looks for pages sharing the monitor.
1580 *
1581 * @returns Pointer to the head page.
1582 * @returns NULL if not found.
1583 * @param pPool The Pool
1584 * @param pNewPage The page which is going to be monitored.
1585 */
1586static PPGMPOOLPAGE pgmPoolMonitorGetPageByGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pNewPage)
1587{
1588#ifdef PGMPOOL_WITH_CACHE
1589 /*
1590 * Look up the GCPhys in the hash.
1591 */
1592 RTGCPHYS GCPhys = pNewPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
1593 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
1594 if (i == NIL_PGMPOOL_IDX)
1595 return NULL;
1596 do
1597 {
1598 PPGMPOOLPAGE pPage = &pPool->aPages[i];
1599 if ( pPage->GCPhys - GCPhys < PAGE_SIZE
1600 && pPage != pNewPage)
1601 {
1602 switch (pPage->enmKind)
1603 {
1604 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1605 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1606 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1607 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1608 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1609 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1610 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1611 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1612 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1613 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1614 case PGMPOOLKIND_64BIT_PML4:
1615 case PGMPOOLKIND_32BIT_PD:
1616 case PGMPOOLKIND_PAE_PDPT:
1617 {
1618 /* find the head */
1619 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
1620 {
1621 Assert(pPage->iMonitoredPrev != pPage->idx);
1622 pPage = &pPool->aPages[pPage->iMonitoredPrev];
1623 }
1624 return pPage;
1625 }
1626
1627 /* ignore, no monitoring. */
1628 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1629 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1630 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1631 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1632 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1633 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1634 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1635 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1636 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1637 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1638 case PGMPOOLKIND_ROOT_NESTED:
1639 case PGMPOOLKIND_PAE_PD_PHYS:
1640 case PGMPOOLKIND_PAE_PDPT_PHYS:
1641 case PGMPOOLKIND_32BIT_PD_PHYS:
1642 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
1643 break;
1644 default:
1645 AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx));
1646 }
1647 }
1648
1649 /* next */
1650 i = pPage->iNext;
1651 } while (i != NIL_PGMPOOL_IDX);
1652#endif
1653 return NULL;
1654}
1655
1656
1657/**
1658 * Enabled write monitoring of a guest page.
1659 *
1660 * @returns VBox status code.
1661 * @retval VINF_SUCCESS on success.
1662 * @param pPool The pool.
1663 * @param pPage The cached page.
1664 */
1665static int pgmPoolMonitorInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1666{
1667 LogFlow(("pgmPoolMonitorInsert %RGp\n", pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1)));
1668
1669 /*
1670 * Filter out the relevant kinds.
1671 */
1672 switch (pPage->enmKind)
1673 {
1674 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1675 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1676 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1677 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1678 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1679 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1680 case PGMPOOLKIND_64BIT_PML4:
1681 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1682 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1683 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1684 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1685 case PGMPOOLKIND_32BIT_PD:
1686 case PGMPOOLKIND_PAE_PDPT:
1687 break;
1688
1689 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1690 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1691 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1692 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1693 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1694 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1695 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1696 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1697 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1698 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1699 case PGMPOOLKIND_ROOT_NESTED:
1700 /* Nothing to monitor here. */
1701 return VINF_SUCCESS;
1702
1703 case PGMPOOLKIND_32BIT_PD_PHYS:
1704 case PGMPOOLKIND_PAE_PDPT_PHYS:
1705 case PGMPOOLKIND_PAE_PD_PHYS:
1706 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
1707 /* Nothing to monitor here. */
1708 return VINF_SUCCESS;
1709#ifdef PGMPOOL_WITH_MIXED_PT_CR3
1710 break;
1711#else
1712 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1713#endif
1714 default:
1715 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
1716 }
1717
1718 /*
1719 * Install handler.
1720 */
1721 int rc;
1722 PPGMPOOLPAGE pPageHead = pgmPoolMonitorGetPageByGCPhys(pPool, pPage);
1723 if (pPageHead)
1724 {
1725 Assert(pPageHead != pPage); Assert(pPageHead->iMonitoredNext != pPage->idx);
1726 Assert(pPageHead->iMonitoredPrev != pPage->idx);
1727 pPage->iMonitoredPrev = pPageHead->idx;
1728 pPage->iMonitoredNext = pPageHead->iMonitoredNext;
1729 if (pPageHead->iMonitoredNext != NIL_PGMPOOL_IDX)
1730 pPool->aPages[pPageHead->iMonitoredNext].iMonitoredPrev = pPage->idx;
1731 pPageHead->iMonitoredNext = pPage->idx;
1732 rc = VINF_SUCCESS;
1733 }
1734 else
1735 {
1736 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX); Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1737 PVM pVM = pPool->CTX_SUFF(pVM);
1738 const RTGCPHYS GCPhysPage = pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
1739 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
1740 GCPhysPage, GCPhysPage + (PAGE_SIZE - 1),
1741 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage),
1742 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage),
1743 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pPage),
1744 pPool->pszAccessHandler);
1745 /** @todo we should probably deal with out-of-memory conditions here, but for now increasing
1746 * the heap size should suffice. */
1747 AssertFatalMsgRC(rc, ("PGMHandlerPhysicalRegisterEx %RGp failed with %Rrc\n", GCPhysPage, rc));
1748 Assert(!(pVM->pgm.s.fGlobalSyncFlags & PGM_GLOBAL_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_ISSET(VMMGetCpu(pVM), VMCPU_FF_PGM_SYNC_CR3));
1749 }
1750 pPage->fMonitored = true;
1751 return rc;
1752}
1753
1754
1755/**
1756 * Disables write monitoring of a guest page.
1757 *
1758 * @returns VBox status code.
1759 * @retval VINF_SUCCESS on success.
1760 * @param pPool The pool.
1761 * @param pPage The cached page.
1762 */
1763static int pgmPoolMonitorFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1764{
1765 /*
1766 * Filter out the relevant kinds.
1767 */
1768 switch (pPage->enmKind)
1769 {
1770 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1771 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1772 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1773 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1774 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1775 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1776 case PGMPOOLKIND_64BIT_PML4:
1777 case PGMPOOLKIND_32BIT_PD:
1778 case PGMPOOLKIND_PAE_PDPT:
1779 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1780 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1781 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1782 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1783 break;
1784
1785 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1786 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1787 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1788 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1789 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1790 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1791 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1792 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1793 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1794 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1795 case PGMPOOLKIND_ROOT_NESTED:
1796 case PGMPOOLKIND_PAE_PD_PHYS:
1797 case PGMPOOLKIND_PAE_PDPT_PHYS:
1798 case PGMPOOLKIND_32BIT_PD_PHYS:
1799 /* Nothing to monitor here. */
1800 return VINF_SUCCESS;
1801
1802#ifdef PGMPOOL_WITH_MIXED_PT_CR3
1803 break;
1804#endif
1805 default:
1806 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
1807 }
1808
1809 /*
1810 * Remove the page from the monitored list or uninstall it if last.
1811 */
1812 const PVM pVM = pPool->CTX_SUFF(pVM);
1813 int rc;
1814 if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX
1815 || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
1816 {
1817 if (pPage->iMonitoredPrev == NIL_PGMPOOL_IDX)
1818 {
1819 PPGMPOOLPAGE pNewHead = &pPool->aPages[pPage->iMonitoredNext];
1820 pNewHead->iMonitoredPrev = NIL_PGMPOOL_IDX;
1821 rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1),
1822 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pNewHead),
1823 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pNewHead),
1824 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pNewHead),
1825 pPool->pszAccessHandler);
1826 AssertFatalRCSuccess(rc);
1827 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
1828 }
1829 else
1830 {
1831 pPool->aPages[pPage->iMonitoredPrev].iMonitoredNext = pPage->iMonitoredNext;
1832 if (pPage->iMonitoredNext != NIL_PGMPOOL_IDX)
1833 {
1834 pPool->aPages[pPage->iMonitoredNext].iMonitoredPrev = pPage->iMonitoredPrev;
1835 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
1836 }
1837 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
1838 rc = VINF_SUCCESS;
1839 }
1840 }
1841 else
1842 {
1843 rc = PGMHandlerPhysicalDeregister(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1));
1844 AssertFatalRC(rc);
1845 AssertMsg(!(pVM->pgm.s.fGlobalSyncFlags & PGM_GLOBAL_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_ISSET(VMMGetCpu(pVM), VMCPU_FF_PGM_SYNC_CR3),
1846 ("%#x %#x\n", pVM->pgm.s.fGlobalSyncFlags, pVM->fGlobalForcedActions));
1847 }
1848 pPage->fMonitored = false;
1849
1850 /*
1851 * Remove it from the list of modified pages (if in it).
1852 */
1853 pgmPoolMonitorModifiedRemove(pPool, pPage);
1854
1855 return rc;
1856}
1857
1858
1859/**
1860 * Inserts the page into the list of modified pages.
1861 *
1862 * @param pPool The pool.
1863 * @param pPage The page.
1864 */
1865void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1866{
1867 Log3(("pgmPoolMonitorModifiedInsert: idx=%d\n", pPage->idx));
1868 AssertMsg( pPage->iModifiedNext == NIL_PGMPOOL_IDX
1869 && pPage->iModifiedPrev == NIL_PGMPOOL_IDX
1870 && pPool->iModifiedHead != pPage->idx,
1871 ("Next=%d Prev=%d idx=%d cModifications=%d Head=%d cModifiedPages=%d\n",
1872 pPage->iModifiedNext, pPage->iModifiedPrev, pPage->idx, pPage->cModifications,
1873 pPool->iModifiedHead, pPool->cModifiedPages));
1874
1875 pPage->iModifiedNext = pPool->iModifiedHead;
1876 if (pPool->iModifiedHead != NIL_PGMPOOL_IDX)
1877 pPool->aPages[pPool->iModifiedHead].iModifiedPrev = pPage->idx;
1878 pPool->iModifiedHead = pPage->idx;
1879 pPool->cModifiedPages++;
1880#ifdef VBOX_WITH_STATISTICS
1881 if (pPool->cModifiedPages > pPool->cModifiedPagesHigh)
1882 pPool->cModifiedPagesHigh = pPool->cModifiedPages;
1883#endif
1884}
1885
1886
1887/**
1888 * Removes the page from the list of modified pages and resets the
1889 * moficiation counter.
1890 *
1891 * @param pPool The pool.
1892 * @param pPage The page which is believed to be in the list of modified pages.
1893 */
1894static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1895{
1896 Log3(("pgmPoolMonitorModifiedRemove: idx=%d cModifications=%d\n", pPage->idx, pPage->cModifications));
1897 if (pPool->iModifiedHead == pPage->idx)
1898 {
1899 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
1900 pPool->iModifiedHead = pPage->iModifiedNext;
1901 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
1902 {
1903 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = NIL_PGMPOOL_IDX;
1904 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
1905 }
1906 pPool->cModifiedPages--;
1907 }
1908 else if (pPage->iModifiedPrev != NIL_PGMPOOL_IDX)
1909 {
1910 pPool->aPages[pPage->iModifiedPrev].iModifiedNext = pPage->iModifiedNext;
1911 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
1912 {
1913 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = pPage->iModifiedPrev;
1914 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
1915 }
1916 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
1917 pPool->cModifiedPages--;
1918 }
1919 else
1920 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
1921 pPage->cModifications = 0;
1922}
1923
1924
1925/**
1926 * Zaps the list of modified pages, resetting their modification counters in the process.
1927 *
1928 * @param pVM The VM handle.
1929 */
1930void pgmPoolMonitorModifiedClearAll(PVM pVM)
1931{
1932 pgmLock(pVM);
1933 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1934 LogFlow(("pgmPoolMonitorModifiedClearAll: cModifiedPages=%d\n", pPool->cModifiedPages));
1935
1936 unsigned cPages = 0; NOREF(cPages);
1937 uint16_t idx = pPool->iModifiedHead;
1938 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
1939 while (idx != NIL_PGMPOOL_IDX)
1940 {
1941 PPGMPOOLPAGE pPage = &pPool->aPages[idx];
1942 idx = pPage->iModifiedNext;
1943 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
1944 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
1945 pPage->cModifications = 0;
1946 Assert(++cPages);
1947 }
1948 AssertMsg(cPages == pPool->cModifiedPages, ("%d != %d\n", cPages, pPool->cModifiedPages));
1949 pPool->cModifiedPages = 0;
1950 pgmUnlock(pVM);
1951}
1952
1953
1954#ifdef IN_RING3
1955/**
1956 * Callback to clear all shadow pages and clear all modification counters.
1957 *
1958 * @returns VBox status code.
1959 * @param pVM The VM handle.
1960 * @param pvUser Unused parameter
1961 * @remark Should only be used when monitoring is available, thus placed in
1962 * the PGMPOOL_WITH_MONITORING #ifdef.
1963 */
1964DECLCALLBACK(int) pgmPoolClearAll(PVM pVM, void *pvUser)
1965{
1966 NOREF(pvUser);
1967 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1968 STAM_PROFILE_START(&pPool->StatClearAll, c);
1969 LogFlow(("pgmPoolClearAll: cUsedPages=%d\n", pPool->cUsedPages));
1970
1971 pgmLock(pVM);
1972
1973 /*
1974 * Iterate all the pages until we've encountered all that in use.
1975 * This is simple but not quite optimal solution.
1976 */
1977 unsigned cModifiedPages = 0; NOREF(cModifiedPages);
1978 unsigned cLeft = pPool->cUsedPages;
1979 unsigned iPage = pPool->cCurPages;
1980 while (--iPage >= PGMPOOL_IDX_FIRST)
1981 {
1982 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
1983 if (pPage->GCPhys != NIL_RTGCPHYS)
1984 {
1985 switch (pPage->enmKind)
1986 {
1987 /*
1988 * We only care about shadow page tables.
1989 */
1990 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1991 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1992 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1993 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1994 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1995 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1996 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1997 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1998 {
1999#ifdef PGMPOOL_WITH_USER_TRACKING
2000 if (pPage->cPresent)
2001#endif
2002 {
2003 void *pvShw = PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
2004 STAM_PROFILE_START(&pPool->StatZeroPage, z);
2005 ASMMemZeroPage(pvShw);
2006 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
2007#ifdef PGMPOOL_WITH_USER_TRACKING
2008 pPage->cPresent = 0;
2009 pPage->iFirstPresent = ~0;
2010#endif
2011 }
2012 }
2013 /* fall thru */
2014
2015 default:
2016 Assert(!pPage->cModifications || ++cModifiedPages);
2017 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
2018 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
2019 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2020 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2021 pPage->cModifications = 0;
2022 break;
2023
2024 }
2025 if (!--cLeft)
2026 break;
2027 }
2028 }
2029
2030 /* swipe the special pages too. */
2031 for (iPage = PGMPOOL_IDX_FIRST_SPECIAL; iPage < PGMPOOL_IDX_FIRST; iPage++)
2032 {
2033 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
2034 if (pPage->GCPhys != NIL_RTGCPHYS)
2035 {
2036 Assert(!pPage->cModifications || ++cModifiedPages);
2037 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
2038 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
2039 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2040 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2041 pPage->cModifications = 0;
2042 }
2043 }
2044
2045#ifndef DEBUG_michael
2046 AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages));
2047#endif
2048 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
2049 pPool->cModifiedPages = 0;
2050
2051#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2052 /*
2053 * Clear all the GCPhys links and rebuild the phys ext free list.
2054 */
2055 for (PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
2056 pRam;
2057 pRam = pRam->CTX_SUFF(pNext))
2058 {
2059 unsigned iPage = pRam->cb >> PAGE_SHIFT;
2060 while (iPage-- > 0)
2061 PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0);
2062 }
2063
2064 pPool->iPhysExtFreeHead = 0;
2065 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
2066 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
2067 for (unsigned i = 0; i < cMaxPhysExts; i++)
2068 {
2069 paPhysExts[i].iNext = i + 1;
2070 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
2071 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
2072 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
2073 }
2074 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
2075#endif
2076
2077 pPool->cPresent = 0;
2078 pgmUnlock(pVM);
2079 PGM_INVL_ALL_VCPU_TLBS(pVM);
2080 STAM_PROFILE_STOP(&pPool->StatClearAll, c);
2081 return VINF_SUCCESS;
2082}
2083#endif /* IN_RING3 */
2084
2085
2086/**
2087 * Handle SyncCR3 pool tasks
2088 *
2089 * @returns VBox status code.
2090 * @retval VINF_SUCCESS if successfully added.
2091 * @retval VINF_PGM_SYNC_CR3 is it needs to be deferred to ring 3 (GC only)
2092 * @param pVM The VM handle.
2093 * @remark Should only be used when monitoring is available, thus placed in
2094 * the PGMPOOL_WITH_MONITORING #ifdef.
2095 */
2096int pgmPoolSyncCR3(PVM pVM)
2097{
2098 LogFlow(("pgmPoolSyncCR3\n"));
2099 /*
2100 * When monitoring shadowed pages, we reset the modification counters on CR3 sync.
2101 * Occasionally we will have to clear all the shadow page tables because we wanted
2102 * to monitor a page which was mapped by too many shadowed page tables. This operation
2103 * sometimes refered to as a 'lightweight flush'.
2104 */
2105# ifdef IN_RING3 /* Don't flush in ring-0 or raw mode, it's taking too long. */
2106 if (ASMBitTestAndClear(&pVM->pgm.s.fGlobalSyncFlags, PGM_GLOBAL_SYNC_CLEAR_PGM_POOL_BIT))
2107 {
2108 VMMR3AtomicExecuteHandler(pVM, pgmPoolClearAll, NULL);
2109# else /* !IN_RING3 */
2110 if (pVM->pgm.s.fGlobalSyncFlags & PGM_GLOBAL_SYNC_CLEAR_PGM_POOL)
2111 {
2112 LogFlow(("SyncCR3: PGM_GLOBAL_SYNC_CLEAR_PGM_POOL is set -> VINF_PGM_SYNC_CR3\n"));
2113 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
2114 return VINF_PGM_SYNC_CR3;
2115# endif /* !IN_RING3 */
2116 }
2117 else
2118 pgmPoolMonitorModifiedClearAll(pVM);
2119
2120 return VINF_SUCCESS;
2121}
2122
2123#endif /* PGMPOOL_WITH_MONITORING */
2124#ifdef PGMPOOL_WITH_USER_TRACKING
2125
2126/**
2127 * Frees up at least one user entry.
2128 *
2129 * @returns VBox status code.
2130 * @retval VINF_SUCCESS if successfully added.
2131 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2132 * @param pPool The pool.
2133 * @param iUser The user index.
2134 */
2135static int pgmPoolTrackFreeOneUser(PPGMPOOL pPool, uint16_t iUser)
2136{
2137 STAM_COUNTER_INC(&pPool->StatTrackFreeUpOneUser);
2138#ifdef PGMPOOL_WITH_CACHE
2139 /*
2140 * Just free cached pages in a braindead fashion.
2141 */
2142 /** @todo walk the age list backwards and free the first with usage. */
2143 int rc = VINF_SUCCESS;
2144 do
2145 {
2146 int rc2 = pgmPoolCacheFreeOne(pPool, iUser);
2147 if (RT_FAILURE(rc2) && rc == VINF_SUCCESS)
2148 rc = rc2;
2149 } while (pPool->iUserFreeHead == NIL_PGMPOOL_USER_INDEX);
2150 return rc;
2151#else
2152 /*
2153 * Lazy approach.
2154 */
2155 /* @todo This path no longer works (CR3 root pages will be flushed)!! */
2156 AssertCompileFailed();
2157 Assert(!CPUMIsGuestInLongMode(pVM));
2158 pgmPoolFlushAllInt(pPool);
2159 return VERR_PGM_POOL_FLUSHED;
2160#endif
2161}
2162
2163
2164/**
2165 * Inserts a page into the cache.
2166 *
2167 * This will create user node for the page, insert it into the GCPhys
2168 * hash, and insert it into the age list.
2169 *
2170 * @returns VBox status code.
2171 * @retval VINF_SUCCESS if successfully added.
2172 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2173 * @param pPool The pool.
2174 * @param pPage The cached page.
2175 * @param GCPhys The GC physical address of the page we're gonna shadow.
2176 * @param iUser The user index.
2177 * @param iUserTable The user table index.
2178 */
2179DECLINLINE(int) pgmPoolTrackInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhys, uint16_t iUser, uint32_t iUserTable)
2180{
2181 int rc = VINF_SUCCESS;
2182 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2183
2184 LogFlow(("pgmPoolTrackInsert GCPhys=%RGp iUser %x iUserTable %x\n", GCPhys, iUser, iUserTable));
2185
2186#ifdef VBOX_STRICT
2187 /*
2188 * Check that the entry doesn't already exists.
2189 */
2190 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2191 {
2192 uint16_t i = pPage->iUserHead;
2193 do
2194 {
2195 Assert(i < pPool->cMaxUsers);
2196 AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2197 i = paUsers[i].iNext;
2198 } while (i != NIL_PGMPOOL_USER_INDEX);
2199 }
2200#endif
2201
2202 /*
2203 * Find free a user node.
2204 */
2205 uint16_t i = pPool->iUserFreeHead;
2206 if (i == NIL_PGMPOOL_USER_INDEX)
2207 {
2208 int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2209 if (RT_FAILURE(rc))
2210 return rc;
2211 i = pPool->iUserFreeHead;
2212 }
2213
2214 /*
2215 * Unlink the user node from the free list,
2216 * initialize and insert it into the user list.
2217 */
2218 pPool->iUserFreeHead = paUsers[i].iNext;
2219 paUsers[i].iNext = NIL_PGMPOOL_USER_INDEX;
2220 paUsers[i].iUser = iUser;
2221 paUsers[i].iUserTable = iUserTable;
2222 pPage->iUserHead = i;
2223
2224 /*
2225 * Insert into cache and enable monitoring of the guest page if enabled.
2226 *
2227 * Until we implement caching of all levels, including the CR3 one, we'll
2228 * have to make sure we don't try monitor & cache any recursive reuse of
2229 * a monitored CR3 page. Because all windows versions are doing this we'll
2230 * have to be able to do combined access monitoring, CR3 + PT and
2231 * PD + PT (guest PAE).
2232 *
2233 * Update:
2234 * We're now cooperating with the CR3 monitor if an uncachable page is found.
2235 */
2236#if defined(PGMPOOL_WITH_MONITORING) || defined(PGMPOOL_WITH_CACHE)
2237# ifdef PGMPOOL_WITH_MIXED_PT_CR3
2238 const bool fCanBeMonitored = true;
2239# else
2240 bool fCanBeMonitored = pPool->CTX_SUFF(pVM)->pgm.s.GCPhysGstCR3Monitored == NIL_RTGCPHYS
2241 || (GCPhys & X86_PTE_PAE_PG_MASK) != (pPool->CTX_SUFF(pVM)->pgm.s.GCPhysGstCR3Monitored & X86_PTE_PAE_PG_MASK)
2242 || pgmPoolIsBigPage((PGMPOOLKIND)pPage->enmKind);
2243# endif
2244# ifdef PGMPOOL_WITH_CACHE
2245 pgmPoolCacheInsert(pPool, pPage, fCanBeMonitored); /* This can be expanded. */
2246# endif
2247 if (fCanBeMonitored)
2248 {
2249# ifdef PGMPOOL_WITH_MONITORING
2250 rc = pgmPoolMonitorInsert(pPool, pPage);
2251 AssertRC(rc);
2252 }
2253# endif
2254#endif /* PGMPOOL_WITH_MONITORING */
2255 return rc;
2256}
2257
2258
2259# ifdef PGMPOOL_WITH_CACHE /* (only used when the cache is enabled.) */
2260/**
2261 * Adds a user reference to a page.
2262 *
2263 * This will move the page to the head of the
2264 *
2265 * @returns VBox status code.
2266 * @retval VINF_SUCCESS if successfully added.
2267 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2268 * @param pPool The pool.
2269 * @param pPage The cached page.
2270 * @param iUser The user index.
2271 * @param iUserTable The user table.
2272 */
2273static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2274{
2275 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2276
2277 Log3(("pgmPoolTrackAddUser GCPhys = %RGp iUser %x iUserTable %x\n", pPage->GCPhys, iUser, iUserTable));
2278
2279# ifdef VBOX_STRICT
2280 /*
2281 * Check that the entry doesn't already exists. We only allow multiple users of top-level paging structures (SHW_POOL_ROOT_IDX).
2282 */
2283 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2284 {
2285 uint16_t i = pPage->iUserHead;
2286 do
2287 {
2288 Assert(i < pPool->cMaxUsers);
2289 AssertMsg(iUser != PGMPOOL_IDX_PD || iUser != PGMPOOL_IDX_PDPT || iUser != PGMPOOL_IDX_NESTED_ROOT || iUser != PGMPOOL_IDX_AMD64_CR3 ||
2290 paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2291 i = paUsers[i].iNext;
2292 } while (i != NIL_PGMPOOL_USER_INDEX);
2293 }
2294# endif
2295
2296 /*
2297 * Allocate a user node.
2298 */
2299 uint16_t i = pPool->iUserFreeHead;
2300 if (i == NIL_PGMPOOL_USER_INDEX)
2301 {
2302 int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2303 if (RT_FAILURE(rc))
2304 return rc;
2305 i = pPool->iUserFreeHead;
2306 }
2307 pPool->iUserFreeHead = paUsers[i].iNext;
2308
2309 /*
2310 * Initialize the user node and insert it.
2311 */
2312 paUsers[i].iNext = pPage->iUserHead;
2313 paUsers[i].iUser = iUser;
2314 paUsers[i].iUserTable = iUserTable;
2315 pPage->iUserHead = i;
2316
2317# ifdef PGMPOOL_WITH_CACHE
2318 /*
2319 * Tell the cache to update its replacement stats for this page.
2320 */
2321 pgmPoolCacheUsed(pPool, pPage);
2322# endif
2323 return VINF_SUCCESS;
2324}
2325# endif /* PGMPOOL_WITH_CACHE */
2326
2327
2328/**
2329 * Frees a user record associated with a page.
2330 *
2331 * This does not clear the entry in the user table, it simply replaces the
2332 * user record to the chain of free records.
2333 *
2334 * @param pPool The pool.
2335 * @param HCPhys The HC physical address of the shadow page.
2336 * @param iUser The shadow page pool index of the user table.
2337 * @param iUserTable The index into the user table (shadowed).
2338 */
2339static void pgmPoolTrackFreeUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2340{
2341 /*
2342 * Unlink and free the specified user entry.
2343 */
2344 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2345
2346 Log3(("pgmPoolTrackFreeUser %RGp %x %x\n", pPage->GCPhys, iUser, iUserTable));
2347 /* Special: For PAE and 32-bit paging, there is usually no more than one user. */
2348 uint16_t i = pPage->iUserHead;
2349 if ( i != NIL_PGMPOOL_USER_INDEX
2350 && paUsers[i].iUser == iUser
2351 && paUsers[i].iUserTable == iUserTable)
2352 {
2353 pPage->iUserHead = paUsers[i].iNext;
2354
2355 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2356 paUsers[i].iNext = pPool->iUserFreeHead;
2357 pPool->iUserFreeHead = i;
2358 return;
2359 }
2360
2361 /* General: Linear search. */
2362 uint16_t iPrev = NIL_PGMPOOL_USER_INDEX;
2363 while (i != NIL_PGMPOOL_USER_INDEX)
2364 {
2365 if ( paUsers[i].iUser == iUser
2366 && paUsers[i].iUserTable == iUserTable)
2367 {
2368 if (iPrev != NIL_PGMPOOL_USER_INDEX)
2369 paUsers[iPrev].iNext = paUsers[i].iNext;
2370 else
2371 pPage->iUserHead = paUsers[i].iNext;
2372
2373 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2374 paUsers[i].iNext = pPool->iUserFreeHead;
2375 pPool->iUserFreeHead = i;
2376 return;
2377 }
2378 iPrev = i;
2379 i = paUsers[i].iNext;
2380 }
2381
2382 /* Fatal: didn't find it */
2383 AssertFatalMsgFailed(("Didn't find the user entry! iUser=%#x iUserTable=%#x GCPhys=%RGp\n",
2384 iUser, iUserTable, pPage->GCPhys));
2385}
2386
2387
2388/**
2389 * Gets the entry size of a shadow table.
2390 *
2391 * @param enmKind The kind of page.
2392 *
2393 * @returns The size of the entry in bytes. That is, 4 or 8.
2394 * @returns If the kind is not for a table, an assertion is raised and 0 is
2395 * returned.
2396 */
2397DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind)
2398{
2399 switch (enmKind)
2400 {
2401 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2402 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2403 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2404 case PGMPOOLKIND_32BIT_PD:
2405 case PGMPOOLKIND_32BIT_PD_PHYS:
2406 return 4;
2407
2408 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2409 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2410 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2411 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2412 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2413 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2414 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2415 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2416 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2417 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2418 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2419 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2420 case PGMPOOLKIND_64BIT_PML4:
2421 case PGMPOOLKIND_PAE_PDPT:
2422 case PGMPOOLKIND_ROOT_NESTED:
2423 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2424 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2425 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2426 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2427 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2428 case PGMPOOLKIND_PAE_PD_PHYS:
2429 case PGMPOOLKIND_PAE_PDPT_PHYS:
2430 return 8;
2431
2432 default:
2433 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
2434 }
2435}
2436
2437
2438/**
2439 * Gets the entry size of a guest table.
2440 *
2441 * @param enmKind The kind of page.
2442 *
2443 * @returns The size of the entry in bytes. That is, 0, 4 or 8.
2444 * @returns If the kind is not for a table, an assertion is raised and 0 is
2445 * returned.
2446 */
2447DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind)
2448{
2449 switch (enmKind)
2450 {
2451 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2452 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2453 case PGMPOOLKIND_32BIT_PD:
2454 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2455 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2456 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2457 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2458 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2459 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2460 return 4;
2461
2462 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2463 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2464 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2465 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2466 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2467 case PGMPOOLKIND_64BIT_PML4:
2468 case PGMPOOLKIND_PAE_PDPT:
2469 return 8;
2470
2471 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2472 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2473 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2474 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2475 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2476 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2477 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2478 case PGMPOOLKIND_ROOT_NESTED:
2479 case PGMPOOLKIND_PAE_PD_PHYS:
2480 case PGMPOOLKIND_PAE_PDPT_PHYS:
2481 case PGMPOOLKIND_32BIT_PD_PHYS:
2482 /** @todo can we return 0? (nobody is calling this...) */
2483 AssertFailed();
2484 return 0;
2485
2486 default:
2487 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
2488 }
2489}
2490
2491#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2492
2493/**
2494 * Scans one shadow page table for mappings of a physical page.
2495 *
2496 * @param pVM The VM handle.
2497 * @param pPhysPage The guest page in question.
2498 * @param iShw The shadow page table.
2499 * @param cRefs The number of references made in that PT.
2500 */
2501static void pgmPoolTrackFlushGCPhysPTInt(PVM pVM, PCPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs)
2502{
2503 LogFlow(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%R[pgmpage] iShw=%d cRefs=%d\n", pPhysPage, iShw, cRefs));
2504 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2505
2506 /*
2507 * Assert sanity.
2508 */
2509 Assert(cRefs == 1);
2510 AssertFatalMsg(iShw < pPool->cCurPages && iShw != NIL_PGMPOOL_IDX, ("iShw=%d\n", iShw));
2511 PPGMPOOLPAGE pPage = &pPool->aPages[iShw];
2512
2513 /*
2514 * Then, clear the actual mappings to the page in the shadow PT.
2515 */
2516 switch (pPage->enmKind)
2517 {
2518 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2519 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2520 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2521 {
2522 const uint32_t u32 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2523 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2524 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2525 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
2526 {
2527 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX32 cRefs=%#x\n", i, pPT->a[i], cRefs));
2528 pPT->a[i].u = 0;
2529 cRefs--;
2530 if (!cRefs)
2531 return;
2532 }
2533#ifdef LOG_ENABLED
2534 RTLogPrintf("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent);
2535 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
2536 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
2537 {
2538 RTLogPrintf("i=%d cRefs=%d\n", i, cRefs--);
2539 pPT->a[i].u = 0;
2540 }
2541#endif
2542 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
2543 break;
2544 }
2545
2546 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2547 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2548 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2549 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2550 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2551 {
2552 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2553 PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2554 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2555 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
2556 {
2557 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64 cRefs=%#x\n", i, pPT->a[i], cRefs));
2558 pPT->a[i].u = 0;
2559 cRefs--;
2560 if (!cRefs)
2561 return;
2562 }
2563#ifdef LOG_ENABLED
2564 RTLogPrintf("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent);
2565 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
2566 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
2567 {
2568 RTLogPrintf("i=%d cRefs=%d\n", i, cRefs--);
2569 pPT->a[i].u = 0;
2570 }
2571#endif
2572 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d u64=%RX64\n", cRefs, pPage->iFirstPresent, pPage->cPresent, u64));
2573 break;
2574 }
2575
2576 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2577 {
2578 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2579 PEPTPT pPT = (PEPTPT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2580 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2581 if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64)
2582 {
2583 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64 cRefs=%#x\n", i, pPT->a[i], cRefs));
2584 pPT->a[i].u = 0;
2585 cRefs--;
2586 if (!cRefs)
2587 return;
2588 }
2589#ifdef LOG_ENABLED
2590 RTLogPrintf("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent);
2591 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
2592 if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64)
2593 {
2594 RTLogPrintf("i=%d cRefs=%d\n", i, cRefs--);
2595 pPT->a[i].u = 0;
2596 }
2597#endif
2598 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
2599 break;
2600 }
2601
2602 default:
2603 AssertFatalMsgFailed(("enmKind=%d iShw=%d\n", pPage->enmKind, iShw));
2604 }
2605}
2606
2607
2608/**
2609 * Scans one shadow page table for mappings of a physical page.
2610 *
2611 * @param pVM The VM handle.
2612 * @param pPhysPage The guest page in question.
2613 * @param iShw The shadow page table.
2614 * @param cRefs The number of references made in that PT.
2615 */
2616void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs)
2617{
2618 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
2619 LogFlow(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%R[pgmpage] iShw=%d cRefs=%d\n", pPhysPage, iShw, cRefs));
2620 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPT, f);
2621 pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, iShw, cRefs);
2622 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
2623 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPT, f);
2624}
2625
2626
2627/**
2628 * Flushes a list of shadow page tables mapping the same physical page.
2629 *
2630 * @param pVM The VM handle.
2631 * @param pPhysPage The guest page in question.
2632 * @param iPhysExt The physical cross reference extent list to flush.
2633 */
2634void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt)
2635{
2636 Assert(PGMIsLockOwner(pVM));
2637 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2638 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTs, f);
2639 LogFlow(("pgmPoolTrackFlushGCPhysPTs: pPhysPage=%R[pgmpage] iPhysExt\n", pPhysPage, iPhysExt));
2640
2641 const uint16_t iPhysExtStart = iPhysExt;
2642 PPGMPOOLPHYSEXT pPhysExt;
2643 do
2644 {
2645 Assert(iPhysExt < pPool->cMaxPhysExts);
2646 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
2647 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
2648 if (pPhysExt->aidx[i] != NIL_PGMPOOL_IDX)
2649 {
2650 pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, pPhysExt->aidx[i], 1);
2651 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
2652 }
2653
2654 /* next */
2655 iPhysExt = pPhysExt->iNext;
2656 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
2657
2658 /* insert the list into the free list and clear the ram range entry. */
2659 pPhysExt->iNext = pPool->iPhysExtFreeHead;
2660 pPool->iPhysExtFreeHead = iPhysExtStart;
2661 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
2662
2663 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTs, f);
2664}
2665
2666#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
2667
2668/**
2669 * Flushes all shadow page table mappings of the given guest page.
2670 *
2671 * This is typically called when the host page backing the guest one has been
2672 * replaced or when the page protection was changed due to an access handler.
2673 *
2674 * @returns VBox status code.
2675 * @retval VINF_SUCCESS if all references has been successfully cleared.
2676 * @retval VINF_PGM_SYNC_CR3 if we're better off with a CR3 sync and a page
2677 * pool cleaning. FF and sync flags are set.
2678 *
2679 * @param pVM The VM handle.
2680 * @param pPhysPage The guest page in question.
2681 * @param pfFlushTLBs This is set to @a true if the shadow TLBs should be
2682 * flushed, it is NOT touched if this isn't necessary.
2683 * The caller MUST initialized this to @a false.
2684 */
2685int pgmPoolTrackFlushGCPhys(PVM pVM, PPGMPAGE pPhysPage, bool *pfFlushTLBs)
2686{
2687 pgmLock(pVM);
2688 int rc = VINF_SUCCESS;
2689#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2690 const uint16_t u16 = PGM_PAGE_GET_TRACKING(pPhysPage);
2691 if (u16)
2692 {
2693 /*
2694 * The zero page is currently screwing up the tracking and we'll
2695 * have to flush the whole shebang. Unless VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2696 * is defined, zero pages won't normally be mapped. Some kind of solution
2697 * will be needed for this problem of course, but it will have to wait...
2698 */
2699 if (PGM_PAGE_IS_ZERO(pPhysPage))
2700 rc = VINF_PGM_GCPHYS_ALIASED;
2701 else
2702 {
2703# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2704 /* Start a subset here because pgmPoolTrackFlushGCPhysPTsSlow and
2705 pgmPoolTrackFlushGCPhysPTs will/may kill the pool otherwise. */
2706 PVMCPU pVCpu = VMMGetCpu(pVM);
2707 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
2708# endif
2709
2710 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
2711 pgmPoolTrackFlushGCPhysPT(pVM,
2712 pPhysPage,
2713 PGMPOOL_TD_GET_IDX(u16),
2714 PGMPOOL_TD_GET_CREFS(u16));
2715 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
2716 pgmPoolTrackFlushGCPhysPTs(pVM, pPhysPage, PGMPOOL_TD_GET_IDX(u16));
2717 else
2718 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage);
2719 *pfFlushTLBs = true;
2720
2721# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2722 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
2723# endif
2724 }
2725 }
2726
2727#elif defined(PGMPOOL_WITH_CACHE)
2728 if (PGM_PAGE_IS_ZERO(pPhysPage))
2729 rc = VINF_PGM_GCPHYS_ALIASED;
2730 else
2731 {
2732# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2733 /* Start a subset here because pgmPoolTrackFlushGCPhysPTsSlow kill the pool otherwise. */
2734 PVMCPU pVCpu = VMMGetCpu(pVM);
2735 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
2736# endif
2737 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage);
2738 if (rc == VINF_SUCCESS)
2739 *pfFlushTLBs = true;
2740 }
2741
2742# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2743 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
2744# endif
2745
2746#else
2747 rc = VINF_PGM_GCPHYS_ALIASED;
2748#endif
2749
2750 if (rc == VINF_PGM_GCPHYS_ALIASED)
2751 {
2752 pVM->pgm.s.fGlobalSyncFlags |= PGM_GLOBAL_SYNC_CLEAR_PGM_POOL;
2753 for (unsigned i=0;i<pVM->cCPUs;i++)
2754 {
2755 PVMCPU pVCpu = &pVM->aCpus[i];
2756 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2757 }
2758 rc = VINF_PGM_SYNC_CR3;
2759 }
2760 pgmUnlock(pVM);
2761 return rc;
2762}
2763
2764
2765/**
2766 * Scans all shadow page tables for mappings of a physical page.
2767 *
2768 * This may be slow, but it's most likely more efficient than cleaning
2769 * out the entire page pool / cache.
2770 *
2771 * @returns VBox status code.
2772 * @retval VINF_SUCCESS if all references has been successfully cleared.
2773 * @retval VINF_PGM_GCPHYS_ALIASED if we're better off with a CR3 sync and
2774 * a page pool cleaning.
2775 *
2776 * @param pVM The VM handle.
2777 * @param pPhysPage The guest page in question.
2778 */
2779int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage)
2780{
2781 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2782 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTsSlow, s);
2783 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: cUsedPages=%d cPresent=%d pPhysPage=%R[pgmpage]\n",
2784 pPool->cUsedPages, pPool->cPresent, pPhysPage));
2785
2786#if 1
2787 /*
2788 * There is a limit to what makes sense.
2789 */
2790 if (pPool->cPresent > 1024)
2791 {
2792 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent));
2793 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
2794 return VINF_PGM_GCPHYS_ALIASED;
2795 }
2796#endif
2797
2798 /*
2799 * Iterate all the pages until we've encountered all that in use.
2800 * This is simple but not quite optimal solution.
2801 */
2802 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2803 const uint32_t u32 = u64;
2804 unsigned cLeft = pPool->cUsedPages;
2805 unsigned iPage = pPool->cCurPages;
2806 while (--iPage >= PGMPOOL_IDX_FIRST)
2807 {
2808 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
2809 if (pPage->GCPhys != NIL_RTGCPHYS)
2810 {
2811 switch (pPage->enmKind)
2812 {
2813 /*
2814 * We only care about shadow page tables.
2815 */
2816 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2817 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2818 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2819 {
2820 unsigned cPresent = pPage->cPresent;
2821 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2822 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2823 if (pPT->a[i].n.u1Present)
2824 {
2825 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
2826 {
2827 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX32\n", iPage, i, pPT->a[i]));
2828 pPT->a[i].u = 0;
2829 }
2830 if (!--cPresent)
2831 break;
2832 }
2833 break;
2834 }
2835
2836 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2837 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2838 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2839 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2840 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2841 {
2842 unsigned cPresent = pPage->cPresent;
2843 PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2844 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2845 if (pPT->a[i].n.u1Present)
2846 {
2847 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
2848 {
2849 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i]));
2850 pPT->a[i].u = 0;
2851 }
2852 if (!--cPresent)
2853 break;
2854 }
2855 break;
2856 }
2857 }
2858 if (!--cLeft)
2859 break;
2860 }
2861 }
2862
2863 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
2864 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
2865 return VINF_SUCCESS;
2866}
2867
2868
2869/**
2870 * Clears the user entry in a user table.
2871 *
2872 * This is used to remove all references to a page when flushing it.
2873 */
2874static void pgmPoolTrackClearPageUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PCPGMPOOLUSER pUser)
2875{
2876 Assert(pUser->iUser != NIL_PGMPOOL_IDX);
2877 Assert(pUser->iUser < pPool->cCurPages);
2878 uint32_t iUserTable = pUser->iUserTable;
2879
2880 /*
2881 * Map the user page.
2882 */
2883 PPGMPOOLPAGE pUserPage = &pPool->aPages[pUser->iUser];
2884 union
2885 {
2886 uint64_t *pau64;
2887 uint32_t *pau32;
2888 } u;
2889 u.pau64 = (uint64_t *)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pUserPage);
2890
2891 LogFlow(("pgmPoolTrackClearPageUser: clear %x in %s (%RGp) (flushing %s)\n", iUserTable, pgmPoolPoolKindToStr(pUserPage->enmKind), pUserPage->Core.Key, pgmPoolPoolKindToStr(pPage->enmKind)));
2892
2893 /* Safety precaution in case we change the paging for other modes too in the future. */
2894 Assert(!pgmPoolIsPageLocked(&pPool->CTX_SUFF(pVM)->pgm.s, pPage));
2895
2896#ifdef VBOX_STRICT
2897 /*
2898 * Some sanity checks.
2899 */
2900 switch (pUserPage->enmKind)
2901 {
2902 case PGMPOOLKIND_32BIT_PD:
2903 case PGMPOOLKIND_32BIT_PD_PHYS:
2904 Assert(iUserTable < X86_PG_ENTRIES);
2905 break;
2906 case PGMPOOLKIND_PAE_PDPT:
2907 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2908 case PGMPOOLKIND_PAE_PDPT_PHYS:
2909 Assert(iUserTable < 4);
2910 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
2911 break;
2912 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2913 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2914 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2915 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2916 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2917 case PGMPOOLKIND_PAE_PD_PHYS:
2918 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2919 break;
2920 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2921 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2922 Assert(!(u.pau64[iUserTable] & PGM_PDFLAGS_MAPPING));
2923 break;
2924 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2925 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2926 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
2927 break;
2928 case PGMPOOLKIND_64BIT_PML4:
2929 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
2930 /* GCPhys >> PAGE_SHIFT is the index here */
2931 break;
2932 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2933 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2934 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2935 break;
2936
2937 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2938 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2939 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2940 break;
2941
2942 case PGMPOOLKIND_ROOT_NESTED:
2943 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2944 break;
2945
2946 default:
2947 AssertMsgFailed(("enmKind=%d\n", pUserPage->enmKind));
2948 break;
2949 }
2950#endif /* VBOX_STRICT */
2951
2952 /*
2953 * Clear the entry in the user page.
2954 */
2955 switch (pUserPage->enmKind)
2956 {
2957 /* 32-bit entries */
2958 case PGMPOOLKIND_32BIT_PD:
2959 case PGMPOOLKIND_32BIT_PD_PHYS:
2960 u.pau32[iUserTable] = 0;
2961 break;
2962
2963 /* 64-bit entries */
2964 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2965 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2966 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2967 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2968 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2969#if defined(IN_RC)
2970 /* In 32 bits PAE mode we *must* invalidate the TLB when changing a PDPT entry; the CPU fetches them only during cr3 load, so any
2971 * non-present PDPT will continue to cause page faults.
2972 */
2973 ASMReloadCR3();
2974#endif
2975 /* no break */
2976 case PGMPOOLKIND_PAE_PD_PHYS:
2977 case PGMPOOLKIND_PAE_PDPT_PHYS:
2978 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2979 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2980 case PGMPOOLKIND_64BIT_PML4:
2981 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2982 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2983 case PGMPOOLKIND_PAE_PDPT:
2984 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2985 case PGMPOOLKIND_ROOT_NESTED:
2986 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2987 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2988 u.pau64[iUserTable] = 0;
2989 break;
2990
2991 default:
2992 AssertFatalMsgFailed(("enmKind=%d iUser=%#x iUserTable=%#x\n", pUserPage->enmKind, pUser->iUser, pUser->iUserTable));
2993 }
2994}
2995
2996
2997/**
2998 * Clears all users of a page.
2999 */
3000static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3001{
3002 /*
3003 * Free all the user records.
3004 */
3005 LogFlow(("pgmPoolTrackClearPageUsers %RGp\n", pPage->GCPhys));
3006
3007 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
3008 uint16_t i = pPage->iUserHead;
3009 while (i != NIL_PGMPOOL_USER_INDEX)
3010 {
3011 /* Clear enter in user table. */
3012 pgmPoolTrackClearPageUser(pPool, pPage, &paUsers[i]);
3013
3014 /* Free it. */
3015 const uint16_t iNext = paUsers[i].iNext;
3016 paUsers[i].iUser = NIL_PGMPOOL_IDX;
3017 paUsers[i].iNext = pPool->iUserFreeHead;
3018 pPool->iUserFreeHead = i;
3019
3020 /* Next. */
3021 i = iNext;
3022 }
3023 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
3024}
3025
3026#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3027
3028/**
3029 * Allocates a new physical cross reference extent.
3030 *
3031 * @returns Pointer to the allocated extent on success. NULL if we're out of them.
3032 * @param pVM The VM handle.
3033 * @param piPhysExt Where to store the phys ext index.
3034 */
3035PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt)
3036{
3037 Assert(PGMIsLockOwner(pVM));
3038 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3039 uint16_t iPhysExt = pPool->iPhysExtFreeHead;
3040 if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX)
3041 {
3042 STAM_COUNTER_INC(&pPool->StamTrackPhysExtAllocFailures);
3043 return NULL;
3044 }
3045 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3046 pPool->iPhysExtFreeHead = pPhysExt->iNext;
3047 pPhysExt->iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
3048 *piPhysExt = iPhysExt;
3049 return pPhysExt;
3050}
3051
3052
3053/**
3054 * Frees a physical cross reference extent.
3055 *
3056 * @param pVM The VM handle.
3057 * @param iPhysExt The extent to free.
3058 */
3059void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt)
3060{
3061 Assert(PGMIsLockOwner(pVM));
3062 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3063 Assert(iPhysExt < pPool->cMaxPhysExts);
3064 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3065 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3066 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3067 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3068 pPool->iPhysExtFreeHead = iPhysExt;
3069}
3070
3071
3072/**
3073 * Frees a physical cross reference extent.
3074 *
3075 * @param pVM The VM handle.
3076 * @param iPhysExt The extent to free.
3077 */
3078void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt)
3079{
3080 Assert(PGMIsLockOwner(pVM));
3081 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3082
3083 const uint16_t iPhysExtStart = iPhysExt;
3084 PPGMPOOLPHYSEXT pPhysExt;
3085 do
3086 {
3087 Assert(iPhysExt < pPool->cMaxPhysExts);
3088 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3089 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3090 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3091
3092 /* next */
3093 iPhysExt = pPhysExt->iNext;
3094 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3095
3096 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3097 pPool->iPhysExtFreeHead = iPhysExtStart;
3098}
3099
3100
3101/**
3102 * Insert a reference into a list of physical cross reference extents.
3103 *
3104 * @returns The new tracking data for PGMPAGE.
3105 *
3106 * @param pVM The VM handle.
3107 * @param iPhysExt The physical extent index of the list head.
3108 * @param iShwPT The shadow page table index.
3109 *
3110 */
3111static uint16_t pgmPoolTrackPhysExtInsert(PVM pVM, uint16_t iPhysExt, uint16_t iShwPT)
3112{
3113 Assert(PGMIsLockOwner(pVM));
3114 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3115 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3116
3117 /* special common case. */
3118 if (paPhysExts[iPhysExt].aidx[2] == NIL_PGMPOOL_IDX)
3119 {
3120 paPhysExts[iPhysExt].aidx[2] = iShwPT;
3121 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany);
3122 LogFlow(("pgmPoolTrackPhysExtAddref: %d:{,,%d}\n", iPhysExt, iShwPT));
3123 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3124 }
3125
3126 /* general treatment. */
3127 const uint16_t iPhysExtStart = iPhysExt;
3128 unsigned cMax = 15;
3129 for (;;)
3130 {
3131 Assert(iPhysExt < pPool->cMaxPhysExts);
3132 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3133 if (paPhysExts[iPhysExt].aidx[i] == NIL_PGMPOOL_IDX)
3134 {
3135 paPhysExts[iPhysExt].aidx[i] = iShwPT;
3136 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany);
3137 LogFlow(("pgmPoolTrackPhysExtAddref: %d:{%d} i=%d cMax=%d\n", iPhysExt, iShwPT, i, cMax));
3138 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtStart);
3139 }
3140 if (!--cMax)
3141 {
3142 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows);
3143 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
3144 LogFlow(("pgmPoolTrackPhysExtAddref: overflow (1) iShwPT=%d\n", iShwPT));
3145 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3146 }
3147 }
3148
3149 /* add another extent to the list. */
3150 PPGMPOOLPHYSEXT pNew = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
3151 if (!pNew)
3152 {
3153 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows);
3154 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
3155 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3156 }
3157 pNew->iNext = iPhysExtStart;
3158 pNew->aidx[0] = iShwPT;
3159 LogFlow(("pgmPoolTrackPhysExtAddref: added new extent %d:{%d}->%d\n", iPhysExt, iShwPT, iPhysExtStart));
3160 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3161}
3162
3163
3164/**
3165 * Add a reference to guest physical page where extents are in use.
3166 *
3167 * @returns The new tracking data for PGMPAGE.
3168 *
3169 * @param pVM The VM handle.
3170 * @param u16 The ram range flags (top 16-bits).
3171 * @param iShwPT The shadow page table index.
3172 */
3173uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT)
3174{
3175 pgmLock(pVM);
3176 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
3177 {
3178 /*
3179 * Convert to extent list.
3180 */
3181 Assert(PGMPOOL_TD_GET_CREFS(u16) == 1);
3182 uint16_t iPhysExt;
3183 PPGMPOOLPHYSEXT pPhysExt = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
3184 if (pPhysExt)
3185 {
3186 LogFlow(("pgmPoolTrackPhysExtAddref: new extent: %d:{%d, %d}\n", iPhysExt, PGMPOOL_TD_GET_IDX(u16), iShwPT));
3187 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliased);
3188 pPhysExt->aidx[0] = PGMPOOL_TD_GET_IDX(u16);
3189 pPhysExt->aidx[1] = iShwPT;
3190 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3191 }
3192 else
3193 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3194 }
3195 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
3196 {
3197 /*
3198 * Insert into the extent list.
3199 */
3200 u16 = pgmPoolTrackPhysExtInsert(pVM, PGMPOOL_TD_GET_IDX(u16), iShwPT);
3201 }
3202 else
3203 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedLots);
3204 pgmUnlock(pVM);
3205 return u16;
3206}
3207
3208
3209/**
3210 * Clear references to guest physical memory.
3211 *
3212 * @param pPool The pool.
3213 * @param pPage The page.
3214 * @param pPhysPage Pointer to the aPages entry in the ram range.
3215 */
3216void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMPAGE pPhysPage)
3217{
3218 const unsigned cRefs = PGM_PAGE_GET_TD_CREFS(pPhysPage);
3219 AssertFatalMsg(cRefs == PGMPOOL_TD_CREFS_PHYSEXT, ("cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
3220
3221 uint16_t iPhysExt = PGM_PAGE_GET_TD_IDX(pPhysPage);
3222 if (iPhysExt != PGMPOOL_TD_IDX_OVERFLOWED)
3223 {
3224 PVM pVM = pPool->CTX_SUFF(pVM);
3225 pgmLock(pVM);
3226
3227 uint16_t iPhysExtPrev = NIL_PGMPOOL_PHYSEXT_INDEX;
3228 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3229 do
3230 {
3231 Assert(iPhysExt < pPool->cMaxPhysExts);
3232
3233 /*
3234 * Look for the shadow page and check if it's all freed.
3235 */
3236 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3237 {
3238 if (paPhysExts[iPhysExt].aidx[i] == pPage->idx)
3239 {
3240 paPhysExts[iPhysExt].aidx[i] = NIL_PGMPOOL_IDX;
3241
3242 for (i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3243 if (paPhysExts[iPhysExt].aidx[i] != NIL_PGMPOOL_IDX)
3244 {
3245 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
3246 pgmUnlock(pVM);
3247 return;
3248 }
3249
3250 /* we can free the node. */
3251 const uint16_t iPhysExtNext = paPhysExts[iPhysExt].iNext;
3252 if ( iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX
3253 && iPhysExtNext == NIL_PGMPOOL_PHYSEXT_INDEX)
3254 {
3255 /* lonely node */
3256 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3257 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d lonely\n", pPhysPage, pPage->idx));
3258 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
3259 }
3260 else if (iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX)
3261 {
3262 /* head */
3263 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d head\n", pPhysPage, pPage->idx));
3264 PGM_PAGE_SET_TRACKING(pPhysPage, PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtNext));
3265 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3266 }
3267 else
3268 {
3269 /* in list */
3270 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
3271 paPhysExts[iPhysExtPrev].iNext = iPhysExtNext;
3272 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3273 }
3274 iPhysExt = iPhysExtNext;
3275 pgmUnlock(pVM);
3276 return;
3277 }
3278 }
3279
3280 /* next */
3281 iPhysExtPrev = iPhysExt;
3282 iPhysExt = paPhysExts[iPhysExt].iNext;
3283 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3284
3285 pgmUnlock(pVM);
3286 AssertFatalMsgFailed(("not-found! cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
3287 }
3288 else /* nothing to do */
3289 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage]\n", pPhysPage));
3290}
3291
3292
3293/**
3294 * Clear references to guest physical memory.
3295 *
3296 * This is the same as pgmPoolTracDerefGCPhys except that the guest physical address
3297 * is assumed to be correct, so the linear search can be skipped and we can assert
3298 * at an earlier point.
3299 *
3300 * @param pPool The pool.
3301 * @param pPage The page.
3302 * @param HCPhys The host physical address corresponding to the guest page.
3303 * @param GCPhys The guest physical address corresponding to HCPhys.
3304 */
3305static void pgmPoolTracDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhys)
3306{
3307 /*
3308 * Walk range list.
3309 */
3310 PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3311 while (pRam)
3312 {
3313 RTGCPHYS off = GCPhys - pRam->GCPhys;
3314 if (off < pRam->cb)
3315 {
3316 /* does it match? */
3317 const unsigned iPage = off >> PAGE_SHIFT;
3318 Assert(PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]));
3319#ifdef LOG_ENABLED
3320RTHCPHYS HCPhysPage = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]);
3321Log2(("pgmPoolTracDerefGCPhys %RHp vs %RHp\n", HCPhysPage, HCPhys));
3322#endif
3323 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3324 {
3325 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3326 return;
3327 }
3328 break;
3329 }
3330 pRam = pRam->CTX_SUFF(pNext);
3331 }
3332 AssertFatalMsgFailed(("HCPhys=%RHp GCPhys=%RGp\n", HCPhys, GCPhys));
3333}
3334
3335
3336/**
3337 * Clear references to guest physical memory.
3338 *
3339 * @param pPool The pool.
3340 * @param pPage The page.
3341 * @param HCPhys The host physical address corresponding to the guest page.
3342 * @param GCPhysHint The guest physical address which may corresponding to HCPhys.
3343 */
3344static void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint)
3345{
3346 Log4(("pgmPoolTracDerefGCPhysHint %RHp %RGp\n", HCPhys, GCPhysHint));
3347
3348 /*
3349 * Walk range list.
3350 */
3351 PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3352 while (pRam)
3353 {
3354 RTGCPHYS off = GCPhysHint - pRam->GCPhys;
3355 if (off < pRam->cb)
3356 {
3357 /* does it match? */
3358 const unsigned iPage = off >> PAGE_SHIFT;
3359 Assert(PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]));
3360 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3361 {
3362 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3363 return;
3364 }
3365 break;
3366 }
3367 pRam = pRam->CTX_SUFF(pNext);
3368 }
3369
3370 /*
3371 * Damn, the hint didn't work. We'll have to do an expensive linear search.
3372 */
3373 STAM_COUNTER_INC(&pPool->StatTrackLinearRamSearches);
3374 pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3375 while (pRam)
3376 {
3377 unsigned iPage = pRam->cb >> PAGE_SHIFT;
3378 while (iPage-- > 0)
3379 {
3380 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3381 {
3382 Log4(("pgmPoolTracDerefGCPhysHint: Linear HCPhys=%RHp GCPhysHint=%RGp GCPhysReal=%RGp\n",
3383 HCPhys, GCPhysHint, pRam->GCPhys + (iPage << PAGE_SHIFT)));
3384 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3385 return;
3386 }
3387 }
3388 pRam = pRam->CTX_SUFF(pNext);
3389 }
3390
3391 AssertFatalMsgFailed(("HCPhys=%RHp GCPhysHint=%RGp\n", HCPhys, GCPhysHint));
3392}
3393
3394
3395/**
3396 * Clear references to guest physical memory in a 32-bit / 32-bit page table.
3397 *
3398 * @param pPool The pool.
3399 * @param pPage The page.
3400 * @param pShwPT The shadow page table (mapping of the page).
3401 * @param pGstPT The guest page table.
3402 */
3403DECLINLINE(void) pgmPoolTrackDerefPT32Bit32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT, PCX86PT pGstPT)
3404{
3405 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
3406 if (pShwPT->a[i].n.u1Present)
3407 {
3408 Log4(("pgmPoolTrackDerefPT32Bit32Bit: i=%d pte=%RX32 hint=%RX32\n",
3409 i, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
3410 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK);
3411 if (!--pPage->cPresent)
3412 break;
3413 }
3414}
3415
3416
3417/**
3418 * Clear references to guest physical memory in a PAE / 32-bit page table.
3419 *
3420 * @param pPool The pool.
3421 * @param pPage The page.
3422 * @param pShwPT The shadow page table (mapping of the page).
3423 * @param pGstPT The guest page table (just a half one).
3424 */
3425DECLINLINE(void) pgmPoolTrackDerefPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PT pGstPT)
3426{
3427 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++)
3428 if (pShwPT->a[i].n.u1Present)
3429 {
3430 Log4(("pgmPoolTrackDerefPTPae32Bit: i=%d pte=%RX64 hint=%RX32\n",
3431 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
3432 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK);
3433 }
3434}
3435
3436
3437/**
3438 * Clear references to guest physical memory in a PAE / PAE page table.
3439 *
3440 * @param pPool The pool.
3441 * @param pPage The page.
3442 * @param pShwPT The shadow page table (mapping of the page).
3443 * @param pGstPT The guest page table.
3444 */
3445DECLINLINE(void) pgmPoolTrackDerefPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PTPAE pGstPT)
3446{
3447 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++)
3448 if (pShwPT->a[i].n.u1Present)
3449 {
3450 Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX32 hint=%RX32\n",
3451 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK));
3452 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK);
3453 }
3454}
3455
3456
3457/**
3458 * Clear references to guest physical memory in a 32-bit / 4MB page table.
3459 *
3460 * @param pPool The pool.
3461 * @param pPage The page.
3462 * @param pShwPT The shadow page table (mapping of the page).
3463 */
3464DECLINLINE(void) pgmPoolTrackDerefPT32Bit4MB(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT)
3465{
3466 RTGCPHYS GCPhys = pPage->GCPhys;
3467 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
3468 if (pShwPT->a[i].n.u1Present)
3469 {
3470 Log4(("pgmPoolTrackDerefPT32Bit4MB: i=%d pte=%RX32 GCPhys=%RGp\n",
3471 i, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys));
3472 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys);
3473 }
3474}
3475
3476
3477/**
3478 * Clear references to guest physical memory in a PAE / 2/4MB page table.
3479 *
3480 * @param pPool The pool.
3481 * @param pPage The page.
3482 * @param pShwPT The shadow page table (mapping of the page).
3483 */
3484DECLINLINE(void) pgmPoolTrackDerefPTPaeBig(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT)
3485{
3486 RTGCPHYS GCPhys = pPage->GCPhys;
3487 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
3488 if (pShwPT->a[i].n.u1Present)
3489 {
3490 Log4(("pgmPoolTrackDerefPTPaeBig: i=%d pte=%RX64 hint=%RGp\n",
3491 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys));
3492 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys);
3493 }
3494}
3495
3496#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
3497
3498
3499/**
3500 * Clear references to shadowed pages in a 32 bits page directory.
3501 *
3502 * @param pPool The pool.
3503 * @param pPage The page.
3504 * @param pShwPD The shadow page directory (mapping of the page).
3505 */
3506DECLINLINE(void) pgmPoolTrackDerefPD(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PD pShwPD)
3507{
3508 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
3509 {
3510 if ( pShwPD->a[i].n.u1Present
3511 && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)
3512 )
3513 {
3514 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PG_MASK);
3515 if (pSubPage)
3516 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3517 else
3518 AssertFatalMsgFailed(("%x\n", pShwPD->a[i].u & X86_PDE_PG_MASK));
3519 }
3520 }
3521}
3522
3523/**
3524 * Clear references to shadowed pages in a PAE (legacy or 64 bits) page directory.
3525 *
3526 * @param pPool The pool.
3527 * @param pPage The page.
3528 * @param pShwPD The shadow page directory (mapping of the page).
3529 */
3530DECLINLINE(void) pgmPoolTrackDerefPDPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPAE pShwPD)
3531{
3532 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
3533 {
3534 if ( pShwPD->a[i].n.u1Present
3535 && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)
3536 )
3537 {
3538 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PAE_PG_MASK);
3539 if (pSubPage)
3540 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3541 else
3542 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & X86_PDE_PAE_PG_MASK));
3543 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3544 }
3545 }
3546}
3547
3548/**
3549 * Clear references to shadowed pages in a PAE page directory pointer table.
3550 *
3551 * @param pPool The pool.
3552 * @param pPage The page.
3553 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
3554 */
3555DECLINLINE(void) pgmPoolTrackDerefPDPTPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
3556{
3557 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
3558 {
3559 if ( pShwPDPT->a[i].n.u1Present
3560 && !(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING)
3561 )
3562 {
3563 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK);
3564 if (pSubPage)
3565 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3566 else
3567 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK));
3568 }
3569 }
3570}
3571
3572
3573/**
3574 * Clear references to shadowed pages in a 64-bit page directory pointer table.
3575 *
3576 * @param pPool The pool.
3577 * @param pPage The page.
3578 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
3579 */
3580DECLINLINE(void) pgmPoolTrackDerefPDPT64Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
3581{
3582 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
3583 {
3584 Assert(!(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING));
3585 if (pShwPDPT->a[i].n.u1Present)
3586 {
3587 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK);
3588 if (pSubPage)
3589 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3590 else
3591 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK));
3592 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3593 }
3594 }
3595}
3596
3597
3598/**
3599 * Clear references to shadowed pages in a 64-bit level 4 page table.
3600 *
3601 * @param pPool The pool.
3602 * @param pPage The page.
3603 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
3604 */
3605DECLINLINE(void) pgmPoolTrackDerefPML464Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PML4 pShwPML4)
3606{
3607 for (unsigned i = 0; i < RT_ELEMENTS(pShwPML4->a); i++)
3608 {
3609 if (pShwPML4->a[i].n.u1Present)
3610 {
3611 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPML4->a[i].u & X86_PDPE_PG_MASK);
3612 if (pSubPage)
3613 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3614 else
3615 AssertFatalMsgFailed(("%RX64\n", pShwPML4->a[i].u & X86_PML4E_PG_MASK));
3616 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3617 }
3618 }
3619}
3620
3621
3622/**
3623 * Clear references to shadowed pages in an EPT page table.
3624 *
3625 * @param pPool The pool.
3626 * @param pPage The page.
3627 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
3628 */
3629DECLINLINE(void) pgmPoolTrackDerefPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPT pShwPT)
3630{
3631 RTGCPHYS GCPhys = pPage->GCPhys;
3632 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
3633 if (pShwPT->a[i].n.u1Present)
3634 {
3635 Log4(("pgmPoolTrackDerefPTEPT: i=%d pte=%RX64 GCPhys=%RX64\n",
3636 i, pShwPT->a[i].u & EPT_PTE_PG_MASK, pPage->GCPhys));
3637 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & EPT_PTE_PG_MASK, GCPhys);
3638 }
3639}
3640
3641
3642/**
3643 * Clear references to shadowed pages in an EPT page directory.
3644 *
3645 * @param pPool The pool.
3646 * @param pPage The page.
3647 * @param pShwPD The shadow page directory (mapping of the page).
3648 */
3649DECLINLINE(void) pgmPoolTrackDerefPDEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPD pShwPD)
3650{
3651 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
3652 {
3653 if (pShwPD->a[i].n.u1Present)
3654 {
3655 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & EPT_PDE_PG_MASK);
3656 if (pSubPage)
3657 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3658 else
3659 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & EPT_PDE_PG_MASK));
3660 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3661 }
3662 }
3663}
3664
3665
3666/**
3667 * Clear references to shadowed pages in an EPT page directory pointer table.
3668 *
3669 * @param pPool The pool.
3670 * @param pPage The page.
3671 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
3672 */
3673DECLINLINE(void) pgmPoolTrackDerefPDPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPDPT pShwPDPT)
3674{
3675 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
3676 {
3677 if (pShwPDPT->a[i].n.u1Present)
3678 {
3679 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK);
3680 if (pSubPage)
3681 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3682 else
3683 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK));
3684 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3685 }
3686 }
3687}
3688
3689
3690/**
3691 * Clears all references made by this page.
3692 *
3693 * This includes other shadow pages and GC physical addresses.
3694 *
3695 * @param pPool The pool.
3696 * @param pPage The page.
3697 */
3698static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3699{
3700 /*
3701 * Map the shadow page and take action according to the page kind.
3702 */
3703 void *pvShw = PGMPOOL_PAGE_2_LOCKED_PTR(pPool->CTX_SUFF(pVM), pPage);
3704 switch (pPage->enmKind)
3705 {
3706#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3707 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3708 {
3709 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3710 void *pvGst;
3711 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
3712 pgmPoolTrackDerefPT32Bit32Bit(pPool, pPage, (PX86PT)pvShw, (PCX86PT)pvGst);
3713 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3714 break;
3715 }
3716
3717 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3718 {
3719 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3720 void *pvGst;
3721 int rc = PGM_GCPHYS_2_PTR_EX(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
3722 pgmPoolTrackDerefPTPae32Bit(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PT)pvGst);
3723 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3724 break;
3725 }
3726
3727 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3728 {
3729 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3730 void *pvGst;
3731 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
3732 pgmPoolTrackDerefPTPaePae(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PTPAE)pvGst);
3733 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3734 break;
3735 }
3736
3737 case PGMPOOLKIND_32BIT_PT_FOR_PHYS: /* treat it like a 4 MB page */
3738 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3739 {
3740 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3741 pgmPoolTrackDerefPT32Bit4MB(pPool, pPage, (PX86PT)pvShw);
3742 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3743 break;
3744 }
3745
3746 case PGMPOOLKIND_PAE_PT_FOR_PHYS: /* treat it like a 2 MB page */
3747 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3748 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3749 {
3750 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3751 pgmPoolTrackDerefPTPaeBig(pPool, pPage, (PX86PTPAE)pvShw);
3752 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3753 break;
3754 }
3755
3756#else /* !PGMPOOL_WITH_GCPHYS_TRACKING */
3757 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3758 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3759 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3760 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3761 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3762 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3763 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3764 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3765 break;
3766#endif /* !PGMPOOL_WITH_GCPHYS_TRACKING */
3767
3768 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3769 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3770 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3771 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3772 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3773 case PGMPOOLKIND_PAE_PD_PHYS:
3774 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3775 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3776 pgmPoolTrackDerefPDPae(pPool, pPage, (PX86PDPAE)pvShw);
3777 break;
3778
3779 case PGMPOOLKIND_32BIT_PD_PHYS:
3780 case PGMPOOLKIND_32BIT_PD:
3781 pgmPoolTrackDerefPD(pPool, pPage, (PX86PD)pvShw);
3782 break;
3783
3784 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
3785 case PGMPOOLKIND_PAE_PDPT:
3786 case PGMPOOLKIND_PAE_PDPT_PHYS:
3787 pgmPoolTrackDerefPDPTPae(pPool, pPage, (PX86PDPT)pvShw);
3788 break;
3789
3790 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3791 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3792 pgmPoolTrackDerefPDPT64Bit(pPool, pPage, (PX86PDPT)pvShw);
3793 break;
3794
3795 case PGMPOOLKIND_64BIT_PML4:
3796 pgmPoolTrackDerefPML464Bit(pPool, pPage, (PX86PML4)pvShw);
3797 break;
3798
3799 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3800 pgmPoolTrackDerefPTEPT(pPool, pPage, (PEPTPT)pvShw);
3801 break;
3802
3803 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3804 pgmPoolTrackDerefPDEPT(pPool, pPage, (PEPTPD)pvShw);
3805 break;
3806
3807 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3808 pgmPoolTrackDerefPDPTEPT(pPool, pPage, (PEPTPDPT)pvShw);
3809 break;
3810
3811 default:
3812 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
3813 }
3814
3815 /* paranoia, clear the shadow page. Remove this laser (i.e. let Alloc and ClearAll do it). */
3816 STAM_PROFILE_START(&pPool->StatZeroPage, z);
3817 ASMMemZeroPage(pvShw);
3818 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
3819 pPage->fZeroed = true;
3820 PGMPOOL_UNLOCK_PTR(pPool->CTX_SUFF(pVM), pvShw);
3821}
3822#endif /* PGMPOOL_WITH_USER_TRACKING */
3823
3824/**
3825 * Flushes a pool page.
3826 *
3827 * This moves the page to the free list after removing all user references to it.
3828 *
3829 * @returns VBox status code.
3830 * @retval VINF_SUCCESS on success.
3831 * @param pPool The pool.
3832 * @param HCPhys The HC physical address of the shadow page.
3833 */
3834int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3835{
3836 PVM pVM = pPool->CTX_SUFF(pVM);
3837
3838 int rc = VINF_SUCCESS;
3839 STAM_PROFILE_START(&pPool->StatFlushPage, f);
3840 LogFlow(("pgmPoolFlushPage: pPage=%p:{.Key=%RHp, .idx=%d, .enmKind=%s, .GCPhys=%RGp}\n",
3841 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
3842
3843 /*
3844 * Quietly reject any attempts at flushing any of the special root pages.
3845 */
3846 if (pPage->idx < PGMPOOL_IDX_FIRST)
3847 {
3848 AssertFailed(); /* can no longer happen */
3849 Log(("pgmPoolFlushPage: special root page, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
3850 return VINF_SUCCESS;
3851 }
3852
3853 pgmLock(pVM);
3854
3855 /*
3856 * Quietly reject any attempts at flushing the currently active shadow CR3 mapping
3857 */
3858 if (pgmPoolIsPageLocked(&pVM->pgm.s, pPage))
3859 {
3860 AssertMsg( pPage->enmKind == PGMPOOLKIND_64BIT_PML4
3861 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT
3862 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT_FOR_32BIT
3863 || pPage->enmKind == PGMPOOLKIND_32BIT_PD
3864 || pPage->enmKind == PGMPOOLKIND_PAE_PD_FOR_PAE_PD
3865 || pPage->enmKind == PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD
3866 || pPage->enmKind == PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD
3867 || pPage->enmKind == PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD
3868 || pPage->enmKind == PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD,
3869 ("Can't free the shadow CR3! (%RHp vs %RHp kind=%d\n", PGMGetHyperCR3(VMMGetCpu(pVM)), pPage->Core.Key, pPage->enmKind));
3870 Log(("pgmPoolFlushPage: current active shadow CR3, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
3871 pgmUnlock(pVM);
3872 return VINF_SUCCESS;
3873 }
3874
3875#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3876 /* Start a subset so we won't run out of mapping space. */
3877 PVMCPU pVCpu = VMMGetCpu(pVM);
3878 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
3879#endif
3880
3881 /*
3882 * Mark the page as being in need of a ASMMemZeroPage().
3883 */
3884 pPage->fZeroed = false;
3885
3886#ifdef PGMPOOL_WITH_USER_TRACKING
3887 /*
3888 * Clear the page.
3889 */
3890 pgmPoolTrackClearPageUsers(pPool, pPage);
3891 STAM_PROFILE_START(&pPool->StatTrackDeref,a);
3892 pgmPoolTrackDeref(pPool, pPage);
3893 STAM_PROFILE_STOP(&pPool->StatTrackDeref,a);
3894#endif
3895
3896#ifdef PGMPOOL_WITH_CACHE
3897 /*
3898 * Flush it from the cache.
3899 */
3900 pgmPoolCacheFlushPage(pPool, pPage);
3901#endif /* PGMPOOL_WITH_CACHE */
3902
3903#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3904 /* Heavy stuff done. */
3905 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
3906#endif
3907
3908#ifdef PGMPOOL_WITH_MONITORING
3909 /*
3910 * Deregistering the monitoring.
3911 */
3912 if (pPage->fMonitored)
3913 rc = pgmPoolMonitorFlush(pPool, pPage);
3914#endif
3915
3916 /*
3917 * Free the page.
3918 */
3919 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
3920 pPage->iNext = pPool->iFreeHead;
3921 pPool->iFreeHead = pPage->idx;
3922 pPage->enmKind = PGMPOOLKIND_FREE;
3923 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
3924 pPage->GCPhys = NIL_RTGCPHYS;
3925 pPage->fReusedFlushPending = false;
3926
3927 pPool->cUsedPages--;
3928 pgmUnlock(pVM);
3929 STAM_PROFILE_STOP(&pPool->StatFlushPage, f);
3930 return rc;
3931}
3932
3933
3934/**
3935 * Frees a usage of a pool page.
3936 *
3937 * The caller is responsible to updating the user table so that it no longer
3938 * references the shadow page.
3939 *
3940 * @param pPool The pool.
3941 * @param HCPhys The HC physical address of the shadow page.
3942 * @param iUser The shadow page pool index of the user table.
3943 * @param iUserTable The index into the user table (shadowed).
3944 */
3945void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
3946{
3947 PVM pVM = pPool->CTX_SUFF(pVM);
3948
3949 STAM_PROFILE_START(&pPool->StatFree, a);
3950 LogFlow(("pgmPoolFreeByPage: pPage=%p:{.Key=%RHp, .idx=%d, enmKind=%s} iUser=%#x iUserTable=%#x\n",
3951 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), iUser, iUserTable));
3952 Assert(pPage->idx >= PGMPOOL_IDX_FIRST);
3953 pgmLock(pVM);
3954#ifdef PGMPOOL_WITH_USER_TRACKING
3955 pgmPoolTrackFreeUser(pPool, pPage, iUser, iUserTable);
3956#endif
3957#ifdef PGMPOOL_WITH_CACHE
3958 if (!pPage->fCached)
3959#endif
3960 pgmPoolFlushPage(pPool, pPage);
3961 pgmUnlock(pVM);
3962 STAM_PROFILE_STOP(&pPool->StatFree, a);
3963}
3964
3965
3966/**
3967 * Makes one or more free page free.
3968 *
3969 * @returns VBox status code.
3970 * @retval VINF_SUCCESS on success.
3971 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
3972 *
3973 * @param pPool The pool.
3974 * @param enmKind Page table kind
3975 * @param iUser The user of the page.
3976 */
3977static int pgmPoolMakeMoreFreePages(PPGMPOOL pPool, PGMPOOLKIND enmKind, uint16_t iUser)
3978{
3979 PVM pVM = pPool->CTX_SUFF(pVM);
3980
3981 LogFlow(("pgmPoolMakeMoreFreePages: iUser=%#x\n", iUser));
3982
3983 /*
3984 * If the pool isn't full grown yet, expand it.
3985 */
3986 if ( pPool->cCurPages < pPool->cMaxPages
3987#if defined(IN_RC)
3988 /* Hack alert: we can't deal with jumps to ring 3 when called from MapCR3 and allocating pages for PAE PDs. */
3989 && enmKind != PGMPOOLKIND_PAE_PD_FOR_PAE_PD
3990 && (enmKind < PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD || enmKind > PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD)
3991#endif
3992 )
3993 {
3994 STAM_PROFILE_ADV_SUSPEND(&pPool->StatAlloc, a);
3995#ifdef IN_RING3
3996 int rc = PGMR3PoolGrow(pVM);
3997#else
3998 int rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_POOL_GROW, 0);
3999#endif
4000 if (RT_FAILURE(rc))
4001 return rc;
4002 STAM_PROFILE_ADV_RESUME(&pPool->StatAlloc, a);
4003 if (pPool->iFreeHead != NIL_PGMPOOL_IDX)
4004 return VINF_SUCCESS;
4005 }
4006
4007#ifdef PGMPOOL_WITH_CACHE
4008 /*
4009 * Free one cached page.
4010 */
4011 return pgmPoolCacheFreeOne(pPool, iUser);
4012#else
4013 /*
4014 * Flush the pool.
4015 *
4016 * If we have tracking enabled, it should be possible to come up with
4017 * a cheap replacement strategy...
4018 */
4019 /* @todo This path no longer works (CR3 root pages will be flushed)!! */
4020 AssertCompileFailed();
4021 Assert(!CPUMIsGuestInLongMode(pVM));
4022 pgmPoolFlushAllInt(pPool);
4023 return VERR_PGM_POOL_FLUSHED;
4024#endif
4025}
4026
4027/**
4028 * Allocates a page from the pool.
4029 *
4030 * This page may actually be a cached page and not in need of any processing
4031 * on the callers part.
4032 *
4033 * @returns VBox status code.
4034 * @retval VINF_SUCCESS if a NEW page was allocated.
4035 * @retval VINF_PGM_CACHED_PAGE if a CACHED page was returned.
4036 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
4037 * @param pVM The VM handle.
4038 * @param GCPhys The GC physical address of the page we're gonna shadow.
4039 * For 4MB and 2MB PD entries, it's the first address the
4040 * shadow PT is covering.
4041 * @param enmKind The kind of mapping.
4042 * @param enmAccess Access type for the mapping (only relevant for big pages)
4043 * @param iUser The shadow page pool index of the user table.
4044 * @param iUserTable The index into the user table (shadowed).
4045 * @param ppPage Where to store the pointer to the page. NULL is stored here on failure.
4046 */
4047int pgmPoolAllocEx(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage)
4048{
4049 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4050 STAM_PROFILE_ADV_START(&pPool->StatAlloc, a);
4051 LogFlow(("pgmPoolAlloc: GCPhys=%RGp enmKind=%s iUser=%#x iUserTable=%#x\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable));
4052 *ppPage = NULL;
4053 /** @todo CSAM/PGMPrefetchPage messes up here during CSAMR3CheckGates
4054 * (TRPMR3SyncIDT) because of FF priority. Try fix that?
4055 * Assert(!(pVM->pgm.s.fGlobalSyncFlags & PGM_GLOBAL_SYNC_CLEAR_PGM_POOL)); */
4056
4057 pgmLock(pVM);
4058
4059#ifdef PGMPOOL_WITH_CACHE
4060 if (pPool->fCacheEnabled)
4061 {
4062 int rc2 = pgmPoolCacheAlloc(pPool, GCPhys, enmKind, enmAccess, iUser, iUserTable, ppPage);
4063 if (RT_SUCCESS(rc2))
4064 {
4065 pgmUnlock(pVM);
4066 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4067 LogFlow(("pgmPoolAlloc: cached returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d}\n", rc2, *ppPage, (*ppPage)->Core.Key, (*ppPage)->idx));
4068 return rc2;
4069 }
4070 }
4071#endif
4072
4073 /*
4074 * Allocate a new one.
4075 */
4076 int rc = VINF_SUCCESS;
4077 uint16_t iNew = pPool->iFreeHead;
4078 if (iNew == NIL_PGMPOOL_IDX)
4079 {
4080 rc = pgmPoolMakeMoreFreePages(pPool, enmKind, iUser);
4081 if (RT_FAILURE(rc))
4082 {
4083 pgmUnlock(pVM);
4084 Log(("pgmPoolAlloc: returns %Rrc (Free)\n", rc));
4085 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4086 return rc;
4087 }
4088 iNew = pPool->iFreeHead;
4089 AssertReleaseReturn(iNew != NIL_PGMPOOL_IDX, VERR_INTERNAL_ERROR);
4090 }
4091
4092 /* unlink the free head */
4093 PPGMPOOLPAGE pPage = &pPool->aPages[iNew];
4094 pPool->iFreeHead = pPage->iNext;
4095 pPage->iNext = NIL_PGMPOOL_IDX;
4096
4097 /*
4098 * Initialize it.
4099 */
4100 pPool->cUsedPages++; /* physical handler registration / pgmPoolTrackFlushGCPhysPTsSlow requirement. */
4101 pPage->enmKind = enmKind;
4102 pPage->enmAccess = enmAccess;
4103 pPage->GCPhys = GCPhys;
4104 pPage->fSeenNonGlobal = false; /* Set this to 'true' to disable this feature. */
4105 pPage->fMonitored = false;
4106 pPage->fCached = false;
4107 pPage->fReusedFlushPending = false;
4108#ifdef PGMPOOL_WITH_MONITORING
4109 pPage->cModifications = 0;
4110 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
4111 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
4112#else
4113 pPage->fCR3Mix = false;
4114#endif
4115#ifdef PGMPOOL_WITH_USER_TRACKING
4116 pPage->cPresent = 0;
4117 pPage->iFirstPresent = ~0;
4118
4119 /*
4120 * Insert into the tracking and cache. If this fails, free the page.
4121 */
4122 int rc3 = pgmPoolTrackInsert(pPool, pPage, GCPhys, iUser, iUserTable);
4123 if (RT_FAILURE(rc3))
4124 {
4125 pPool->cUsedPages--;
4126 pPage->enmKind = PGMPOOLKIND_FREE;
4127 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
4128 pPage->GCPhys = NIL_RTGCPHYS;
4129 pPage->iNext = pPool->iFreeHead;
4130 pPool->iFreeHead = pPage->idx;
4131 pgmUnlock(pVM);
4132 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4133 Log(("pgmPoolAlloc: returns %Rrc (Insert)\n", rc3));
4134 return rc3;
4135 }
4136#endif /* PGMPOOL_WITH_USER_TRACKING */
4137
4138 /*
4139 * Commit the allocation, clear the page and return.
4140 */
4141#ifdef VBOX_WITH_STATISTICS
4142 if (pPool->cUsedPages > pPool->cUsedPagesHigh)
4143 pPool->cUsedPagesHigh = pPool->cUsedPages;
4144#endif
4145
4146 if (!pPage->fZeroed)
4147 {
4148 STAM_PROFILE_START(&pPool->StatZeroPage, z);
4149 void *pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
4150 ASMMemZeroPage(pv);
4151 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
4152 }
4153
4154 *ppPage = pPage;
4155 pgmUnlock(pVM);
4156 LogFlow(("pgmPoolAlloc: returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d, .fCached=%RTbool, .fMonitored=%RTbool}\n",
4157 rc, pPage, pPage->Core.Key, pPage->idx, pPage->fCached, pPage->fMonitored));
4158 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4159 return rc;
4160}
4161
4162
4163/**
4164 * Frees a usage of a pool page.
4165 *
4166 * @param pVM The VM handle.
4167 * @param HCPhys The HC physical address of the shadow page.
4168 * @param iUser The shadow page pool index of the user table.
4169 * @param iUserTable The index into the user table (shadowed).
4170 */
4171void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable)
4172{
4173 LogFlow(("pgmPoolFree: HCPhys=%RHp iUser=%#x iUserTable=%#x\n", HCPhys, iUser, iUserTable));
4174 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4175 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, HCPhys), iUser, iUserTable);
4176}
4177
4178/**
4179 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
4180 *
4181 * @returns Pointer to the shadow page structure.
4182 * @param pPool The pool.
4183 * @param HCPhys The HC physical address of the shadow page.
4184 */
4185PPGMPOOLPAGE pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys)
4186{
4187 PVM pVM = pPool->CTX_SUFF(pVM);
4188
4189 /*
4190 * Look up the page.
4191 */
4192 pgmLock(pVM);
4193 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
4194 pgmUnlock(pVM);
4195
4196 AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0));
4197 return pPage;
4198}
4199
4200
4201#ifdef IN_RING3
4202/**
4203 * Flushes the entire cache.
4204 *
4205 * It will assert a global CR3 flush (FF) and assumes the caller is aware of this
4206 * and execute this CR3 flush.
4207 *
4208 * @param pPool The pool.
4209 */
4210void pgmR3PoolReset(PVM pVM)
4211{
4212 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4213
4214 Assert(PGMIsLockOwner(pVM));
4215 STAM_PROFILE_START(&pPool->StatFlushAllInt, a);
4216 LogFlow(("pgmPoolFlushAllInt:\n"));
4217
4218 /*
4219 * If there are no pages in the pool, there is nothing to do.
4220 */
4221 if (pPool->cCurPages <= PGMPOOL_IDX_FIRST)
4222 {
4223 STAM_PROFILE_STOP(&pPool->StatFlushAllInt, a);
4224 return;
4225 }
4226
4227 /*
4228 * Exit the shadow mode since we're going to clear everything,
4229 * including the root page.
4230 */
4231 for (unsigned i=0;i<pVM->cCPUs;i++)
4232 {
4233 PVMCPU pVCpu = &pVM->aCpus[i];
4234 pgmR3ExitShadowModeBeforePoolFlush(pVM, pVCpu);
4235 }
4236
4237 /*
4238 * Nuke the free list and reinsert all pages into it.
4239 */
4240 for (unsigned i = pPool->cCurPages - 1; i >= PGMPOOL_IDX_FIRST; i--)
4241 {
4242 PPGMPOOLPAGE pPage = &pPool->aPages[i];
4243
4244 Assert(pPage->Core.Key == MMPage2Phys(pVM, pPage->pvPageR3));
4245#ifdef PGMPOOL_WITH_MONITORING
4246 if (pPage->fMonitored)
4247 pgmPoolMonitorFlush(pPool, pPage);
4248 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
4249 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
4250 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
4251 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
4252 pPage->cModifications = 0;
4253#endif
4254 pPage->GCPhys = NIL_RTGCPHYS;
4255 pPage->enmKind = PGMPOOLKIND_FREE;
4256 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
4257 Assert(pPage->idx == i);
4258 pPage->iNext = i + 1;
4259 pPage->fZeroed = false; /* This could probably be optimized, but better safe than sorry. */
4260 pPage->fSeenNonGlobal = false;
4261 pPage->fMonitored = false;
4262 pPage->fCached = false;
4263 pPage->fReusedFlushPending = false;
4264#ifdef PGMPOOL_WITH_USER_TRACKING
4265 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
4266#else
4267 pPage->fCR3Mix = false;
4268#endif
4269#ifdef PGMPOOL_WITH_CACHE
4270 pPage->iAgeNext = NIL_PGMPOOL_IDX;
4271 pPage->iAgePrev = NIL_PGMPOOL_IDX;
4272#endif
4273 pPage->cLocked = 0;
4274 }
4275 pPool->aPages[pPool->cCurPages - 1].iNext = NIL_PGMPOOL_IDX;
4276 pPool->iFreeHead = PGMPOOL_IDX_FIRST;
4277 pPool->cUsedPages = 0;
4278
4279#ifdef PGMPOOL_WITH_USER_TRACKING
4280 /*
4281 * Zap and reinitialize the user records.
4282 */
4283 pPool->cPresent = 0;
4284 pPool->iUserFreeHead = 0;
4285 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
4286 const unsigned cMaxUsers = pPool->cMaxUsers;
4287 for (unsigned i = 0; i < cMaxUsers; i++)
4288 {
4289 paUsers[i].iNext = i + 1;
4290 paUsers[i].iUser = NIL_PGMPOOL_IDX;
4291 paUsers[i].iUserTable = 0xfffffffe;
4292 }
4293 paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
4294#endif
4295
4296#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
4297 /*
4298 * Clear all the GCPhys links and rebuild the phys ext free list.
4299 */
4300 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
4301 pRam;
4302 pRam = pRam->CTX_SUFF(pNext))
4303 {
4304 unsigned iPage = pRam->cb >> PAGE_SHIFT;
4305 while (iPage-- > 0)
4306 PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0);
4307 }
4308
4309 pPool->iPhysExtFreeHead = 0;
4310 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
4311 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
4312 for (unsigned i = 0; i < cMaxPhysExts; i++)
4313 {
4314 paPhysExts[i].iNext = i + 1;
4315 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
4316 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
4317 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
4318 }
4319 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
4320#endif
4321
4322#ifdef PGMPOOL_WITH_MONITORING
4323 /*
4324 * Just zap the modified list.
4325 */
4326 pPool->cModifiedPages = 0;
4327 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
4328#endif
4329
4330#ifdef PGMPOOL_WITH_CACHE
4331 /*
4332 * Clear the GCPhys hash and the age list.
4333 */
4334 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
4335 pPool->aiHash[i] = NIL_PGMPOOL_IDX;
4336 pPool->iAgeHead = NIL_PGMPOOL_IDX;
4337 pPool->iAgeTail = NIL_PGMPOOL_IDX;
4338#endif
4339
4340 /*
4341 * Reinsert active pages into the hash and ensure monitoring chains are correct.
4342 */
4343 for (unsigned i = PGMPOOL_IDX_FIRST_SPECIAL; i < PGMPOOL_IDX_FIRST; i++)
4344 {
4345 PPGMPOOLPAGE pPage = &pPool->aPages[i];
4346 pPage->iNext = NIL_PGMPOOL_IDX;
4347#ifdef PGMPOOL_WITH_MONITORING
4348 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
4349 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
4350 pPage->cModifications = 0;
4351 /* ASSUMES that we're not sharing with any of the other special pages (safe for now). */
4352 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
4353 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
4354 if (pPage->fMonitored)
4355 {
4356 int rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1),
4357 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage),
4358 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage),
4359 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pPage),
4360 pPool->pszAccessHandler);
4361 AssertFatalRCSuccess(rc);
4362# ifdef PGMPOOL_WITH_CACHE
4363 pgmPoolHashInsert(pPool, pPage);
4364# endif
4365 }
4366#endif
4367#ifdef PGMPOOL_WITH_USER_TRACKING
4368 Assert(pPage->iUserHead == NIL_PGMPOOL_USER_INDEX); /* for now */
4369#endif
4370#ifdef PGMPOOL_WITH_CACHE
4371 Assert(pPage->iAgeNext == NIL_PGMPOOL_IDX);
4372 Assert(pPage->iAgePrev == NIL_PGMPOOL_IDX);
4373#endif
4374 }
4375
4376 for (unsigned i=0;i<pVM->cCPUs;i++)
4377 {
4378 PVMCPU pVCpu = &pVM->aCpus[i];
4379 /*
4380 * Re-enter the shadowing mode and assert Sync CR3 FF.
4381 */
4382 pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu);
4383 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4384 }
4385
4386 STAM_PROFILE_STOP(&pPool->StatFlushAllInt, a);
4387}
4388#endif /* IN_RING3 */
4389
4390#ifdef LOG_ENABLED
4391static const char *pgmPoolPoolKindToStr(uint8_t enmKind)
4392{
4393 switch(enmKind)
4394 {
4395 case PGMPOOLKIND_INVALID:
4396 return "PGMPOOLKIND_INVALID";
4397 case PGMPOOLKIND_FREE:
4398 return "PGMPOOLKIND_FREE";
4399 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
4400 return "PGMPOOLKIND_32BIT_PT_FOR_PHYS";
4401 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
4402 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT";
4403 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
4404 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB";
4405 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
4406 return "PGMPOOLKIND_PAE_PT_FOR_PHYS";
4407 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
4408 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_PT";
4409 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
4410 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB";
4411 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
4412 return "PGMPOOLKIND_PAE_PT_FOR_PAE_PT";
4413 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
4414 return "PGMPOOLKIND_PAE_PT_FOR_PAE_2MB";
4415 case PGMPOOLKIND_32BIT_PD:
4416 return "PGMPOOLKIND_32BIT_PD";
4417 case PGMPOOLKIND_32BIT_PD_PHYS:
4418 return "PGMPOOLKIND_32BIT_PD_PHYS";
4419 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
4420 return "PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD";
4421 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
4422 return "PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD";
4423 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
4424 return "PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD";
4425 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
4426 return "PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD";
4427 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
4428 return "PGMPOOLKIND_PAE_PD_FOR_PAE_PD";
4429 case PGMPOOLKIND_PAE_PD_PHYS:
4430 return "PGMPOOLKIND_PAE_PD_PHYS";
4431 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
4432 return "PGMPOOLKIND_PAE_PDPT_FOR_32BIT";
4433 case PGMPOOLKIND_PAE_PDPT:
4434 return "PGMPOOLKIND_PAE_PDPT";
4435 case PGMPOOLKIND_PAE_PDPT_PHYS:
4436 return "PGMPOOLKIND_PAE_PDPT_PHYS";
4437 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
4438 return "PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT";
4439 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
4440 return "PGMPOOLKIND_64BIT_PDPT_FOR_PHYS";
4441 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
4442 return "PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD";
4443 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
4444 return "PGMPOOLKIND_64BIT_PD_FOR_PHYS";
4445 case PGMPOOLKIND_64BIT_PML4:
4446 return "PGMPOOLKIND_64BIT_PML4";
4447 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
4448 return "PGMPOOLKIND_EPT_PDPT_FOR_PHYS";
4449 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
4450 return "PGMPOOLKIND_EPT_PD_FOR_PHYS";
4451 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
4452 return "PGMPOOLKIND_EPT_PT_FOR_PHYS";
4453 case PGMPOOLKIND_ROOT_NESTED:
4454 return "PGMPOOLKIND_ROOT_NESTED";
4455 }
4456 return "Unknown kind!";
4457}
4458#endif /* LOG_ENABLED*/
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette