VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllPool.cpp@ 20135

Last change on this file since 20135 was 20135, checked in by vboxsync, 16 years ago

Prevent reuse of cached larged pages with different access attributes.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 161.9 KB
Line 
1/* $Id: PGMAllPool.cpp 20135 2009-05-29 07:44:12Z vboxsync $ */
2/** @file
3 * PGM Shadow Page Pool.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.215389.xyz. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM_POOL
27#include <VBox/pgm.h>
28#include <VBox/mm.h>
29#include <VBox/em.h>
30#include <VBox/cpum.h>
31#ifdef IN_RC
32# include <VBox/patm.h>
33#endif
34#include "PGMInternal.h"
35#include <VBox/vm.h>
36#include <VBox/disopcode.h>
37#include <VBox/hwacc_vmx.h>
38
39#include <VBox/log.h>
40#include <VBox/err.h>
41#include <iprt/asm.h>
42#include <iprt/string.h>
43
44
45/*******************************************************************************
46* Internal Functions *
47*******************************************************************************/
48__BEGIN_DECLS
49static void pgmPoolFlushAllInt(PPGMPOOL pPool);
50#ifdef PGMPOOL_WITH_USER_TRACKING
51DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind);
52DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind);
53static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
54#endif
55#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
56static void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint);
57#endif
58#ifdef PGMPOOL_WITH_CACHE
59static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable);
60#endif
61#ifdef PGMPOOL_WITH_MONITORING
62static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
63#endif
64#ifndef IN_RING3
65DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser);
66#endif
67#ifdef LOG_ENABLED
68static const char *pgmPoolPoolKindToStr(uint8_t enmKind);
69#endif
70
71void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs);
72void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt);
73int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage);
74PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt);
75void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt);
76void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt);
77
78__END_DECLS
79
80
81/**
82 * Checks if the specified page pool kind is for a 4MB or 2MB guest page.
83 *
84 * @returns true if it's the shadow of a 4MB or 2MB guest page, otherwise false.
85 * @param enmKind The page kind.
86 */
87DECLINLINE(bool) pgmPoolIsBigPage(PGMPOOLKIND enmKind)
88{
89 switch (enmKind)
90 {
91 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
92 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
93 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
94 return true;
95 default:
96 return false;
97 }
98}
99
100/** @def PGMPOOL_PAGE_2_LOCKED_PTR
101 * Maps a pool page pool into the current context and lock it (RC only).
102 *
103 * @returns VBox status code.
104 * @param pVM The VM handle.
105 * @param pPage The pool page.
106 *
107 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
108 * small page window employeed by that function. Be careful.
109 * @remark There is no need to assert on the result.
110 */
111#if defined(IN_RC)
112DECLINLINE(void *) PGMPOOL_PAGE_2_LOCKED_PTR(PVM pVM, PPGMPOOLPAGE pPage)
113{
114 void *pv = pgmPoolMapPageInlined(&pVM->pgm.s, pPage);
115
116 /* Make sure the dynamic mapping will not be reused. */
117 if (pv)
118 PGMDynLockHCPage(pVM, (uint8_t *)pv);
119
120 return pv;
121}
122#else
123# define PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage) PGMPOOL_PAGE_2_PTR(pVM, pPage)
124#endif
125
126/** @def PGMPOOL_UNLOCK_PTR
127 * Unlock a previously locked dynamic caching (RC only).
128 *
129 * @returns VBox status code.
130 * @param pVM The VM handle.
131 * @param pPage The pool page.
132 *
133 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
134 * small page window employeed by that function. Be careful.
135 * @remark There is no need to assert on the result.
136 */
137#if defined(IN_RC)
138DECLINLINE(void) PGMPOOL_UNLOCK_PTR(PVM pVM, void *pvPage)
139{
140 if (pvPage)
141 PGMDynUnlockHCPage(pVM, (uint8_t *)pvPage);
142}
143#else
144# define PGMPOOL_UNLOCK_PTR(pVM, pPage) do {} while (0)
145#endif
146
147
148#ifdef PGMPOOL_WITH_MONITORING
149/**
150 * Determin the size of a write instruction.
151 * @returns number of bytes written.
152 * @param pDis The disassembler state.
153 */
154static unsigned pgmPoolDisasWriteSize(PDISCPUSTATE pDis)
155{
156 /*
157 * This is very crude and possibly wrong for some opcodes,
158 * but since it's not really supposed to be called we can
159 * probably live with that.
160 */
161 return DISGetParamSize(pDis, &pDis->param1);
162}
163
164
165/**
166 * Flushes a chain of pages sharing the same access monitor.
167 *
168 * @returns VBox status code suitable for scheduling.
169 * @param pPool The pool.
170 * @param pPage A page in the chain.
171 */
172int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
173{
174 LogFlow(("pgmPoolMonitorChainFlush: Flush page %RGp type=%d\n", pPage->GCPhys, pPage->enmKind));
175
176 /*
177 * Find the list head.
178 */
179 uint16_t idx = pPage->idx;
180 if (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
181 {
182 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
183 {
184 idx = pPage->iMonitoredPrev;
185 Assert(idx != pPage->idx);
186 pPage = &pPool->aPages[idx];
187 }
188 }
189
190 /*
191 * Iterate the list flushing each shadow page.
192 */
193 int rc = VINF_SUCCESS;
194 for (;;)
195 {
196 idx = pPage->iMonitoredNext;
197 Assert(idx != pPage->idx);
198 if (pPage->idx >= PGMPOOL_IDX_FIRST)
199 {
200 int rc2 = pgmPoolFlushPage(pPool, pPage);
201 AssertRC(rc2);
202 }
203 /* next */
204 if (idx == NIL_PGMPOOL_IDX)
205 break;
206 pPage = &pPool->aPages[idx];
207 }
208 return rc;
209}
210
211
212/**
213 * Wrapper for getting the current context pointer to the entry being modified.
214 *
215 * @returns VBox status code suitable for scheduling.
216 * @param pVM VM Handle.
217 * @param pvDst Destination address
218 * @param pvSrc Source guest virtual address.
219 * @param GCPhysSrc The source guest physical address.
220 * @param cb Size of data to read
221 */
222DECLINLINE(int) pgmPoolPhysSimpleReadGCPhys(PVM pVM, void *pvDst, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvSrc, RTGCPHYS GCPhysSrc, size_t cb)
223{
224#if defined(IN_RING3)
225 memcpy(pvDst, (RTHCPTR)((uintptr_t)pvSrc & ~(RTHCUINTPTR)(cb - 1)), cb);
226 return VINF_SUCCESS;
227#else
228 /* @todo in RC we could attempt to use the virtual address, although this can cause many faults (PAE Windows XP guest). */
229 return PGMPhysSimpleReadGCPhys(pVM, pvDst, GCPhysSrc & ~(RTGCPHYS)(cb - 1), cb);
230#endif
231}
232
233/**
234 * Process shadow entries before they are changed by the guest.
235 *
236 * For PT entries we will clear them. For PD entries, we'll simply check
237 * for mapping conflicts and set the SyncCR3 FF if found.
238 *
239 * @param pVCpu VMCPU handle
240 * @param pPool The pool.
241 * @param pPage The head page.
242 * @param GCPhysFault The guest physical fault address.
243 * @param uAddress In R0 and GC this is the guest context fault address (flat).
244 * In R3 this is the host context 'fault' address.
245 * @param pCpu The disassembler state for figuring out the write size.
246 * This need not be specified if the caller knows we won't do cross entry accesses.
247 */
248void pgmPoolMonitorChainChanging(PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvAddress, PDISCPUSTATE pCpu)
249{
250 Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
251 const unsigned off = GCPhysFault & PAGE_OFFSET_MASK;
252 const unsigned cbWrite = (pCpu) ? pgmPoolDisasWriteSize(pCpu) : 0;
253 PVM pVM = pPool->CTX_SUFF(pVM);
254
255 LogFlow(("pgmPoolMonitorChainChanging: %RGv phys=%RGp kind=%s cbWrite=%d\n", (RTGCPTR)pvAddress, GCPhysFault, pgmPoolPoolKindToStr(pPage->enmKind), cbWrite));
256 for (;;)
257 {
258 union
259 {
260 void *pv;
261 PX86PT pPT;
262 PX86PTPAE pPTPae;
263 PX86PD pPD;
264 PX86PDPAE pPDPae;
265 PX86PDPT pPDPT;
266 PX86PML4 pPML4;
267 } uShw;
268
269 uShw.pv = NULL;
270 switch (pPage->enmKind)
271 {
272 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
273 {
274 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
275 const unsigned iShw = off / sizeof(X86PTE);
276 LogFlow(("PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT iShw=%x\n", iShw));
277 if (uShw.pPT->a[iShw].n.u1Present)
278 {
279# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
280 X86PTE GstPte;
281
282 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
283 AssertRC(rc);
284 Log4(("pgmPoolMonitorChainChanging 32_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
285 pgmPoolTracDerefGCPhysHint(pPool, pPage,
286 uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK,
287 GstPte.u & X86_PTE_PG_MASK);
288# endif
289 ASMAtomicWriteSize(&uShw.pPT->a[iShw], 0);
290 }
291 break;
292 }
293
294 /* page/2 sized */
295 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
296 {
297 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
298 if (!((off ^ pPage->GCPhys) & (PAGE_SIZE / 2)))
299 {
300 const unsigned iShw = (off / sizeof(X86PTE)) & (X86_PG_PAE_ENTRIES - 1);
301 LogFlow(("PGMPOOLKIND_PAE_PT_FOR_32BIT_PT iShw=%x\n", iShw));
302 if (uShw.pPTPae->a[iShw].n.u1Present)
303 {
304# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
305 X86PTE GstPte;
306 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
307 AssertRC(rc);
308
309 Log4(("pgmPoolMonitorChainChanging pae_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
310 pgmPoolTracDerefGCPhysHint(pPool, pPage,
311 uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK,
312 GstPte.u & X86_PTE_PG_MASK);
313# endif
314 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw], 0);
315 }
316 }
317 break;
318 }
319
320 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
321 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
322 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
323 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
324 {
325 unsigned iGst = off / sizeof(X86PDE);
326 unsigned iShwPdpt = iGst / 256;
327 unsigned iShw = (iGst % 256) * 2;
328 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
329
330 LogFlow(("pgmPoolMonitorChainChanging PAE for 32 bits: iGst=%x iShw=%x idx = %d page idx=%d\n", iGst, iShw, iShwPdpt, pPage->enmKind - PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD));
331 if (iShwPdpt == pPage->enmKind - (unsigned)PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD)
332 {
333 for (unsigned i = 0; i < 2; i++)
334 {
335# ifndef IN_RING0
336 if ((uShw.pPDPae->a[iShw + i].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
337 {
338 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
339 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
340 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw=%#x!\n", iShwPdpt, iShw+i));
341 break;
342 }
343 else
344# endif /* !IN_RING0 */
345 if (uShw.pPDPae->a[iShw+i].n.u1Present)
346 {
347 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw+i, uShw.pPDPae->a[iShw+i].u));
348 pgmPoolFree(pVM,
349 uShw.pPDPae->a[iShw+i].u & X86_PDE_PAE_PG_MASK,
350 pPage->idx,
351 iShw + i);
352 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw+i], 0);
353 }
354
355 /* paranoia / a bit assumptive. */
356 if ( pCpu
357 && (off & 3)
358 && (off & 3) + cbWrite > 4)
359 {
360 const unsigned iShw2 = iShw + 2 + i;
361 if (iShw2 < RT_ELEMENTS(uShw.pPDPae->a))
362 {
363# ifndef IN_RING0
364 if ((uShw.pPDPae->a[iShw2].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
365 {
366 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
367 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
368 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw2=%#x!\n", iShwPdpt, iShw2));
369 break;
370 }
371 else
372# endif /* !IN_RING0 */
373 if (uShw.pPDPae->a[iShw2].n.u1Present)
374 {
375 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
376 pgmPoolFree(pVM,
377 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
378 pPage->idx,
379 iShw2);
380 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
381 }
382 }
383 }
384 }
385 }
386 break;
387 }
388
389 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
390 {
391 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
392 const unsigned iShw = off / sizeof(X86PTEPAE);
393 if (uShw.pPTPae->a[iShw].n.u1Present)
394 {
395# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
396 X86PTEPAE GstPte;
397 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
398 AssertRC(rc);
399
400 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PAE_PG_MASK));
401 pgmPoolTracDerefGCPhysHint(pPool, pPage,
402 uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK,
403 GstPte.u & X86_PTE_PAE_PG_MASK);
404# endif
405 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw].u, 0);
406 }
407
408 /* paranoia / a bit assumptive. */
409 if ( pCpu
410 && (off & 7)
411 && (off & 7) + cbWrite > sizeof(X86PTEPAE))
412 {
413 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTEPAE);
414 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPTPae->a));
415
416 if (uShw.pPTPae->a[iShw2].n.u1Present)
417 {
418# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
419 X86PTEPAE GstPte;
420# ifdef IN_RING3
421 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, (RTHCPTR)((RTHCUINTPTR)pvAddress + sizeof(GstPte)), GCPhysFault + sizeof(GstPte), sizeof(GstPte));
422# else
423 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress + sizeof(GstPte), GCPhysFault + sizeof(GstPte), sizeof(GstPte));
424# endif
425 AssertRC(rc);
426 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", uShw.pPTPae->a[iShw2].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PAE_PG_MASK));
427 pgmPoolTracDerefGCPhysHint(pPool, pPage,
428 uShw.pPTPae->a[iShw2].u & X86_PTE_PAE_PG_MASK,
429 GstPte.u & X86_PTE_PAE_PG_MASK);
430# endif
431 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw2].u ,0);
432 }
433 }
434 break;
435 }
436
437 case PGMPOOLKIND_32BIT_PD:
438 {
439 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
440 const unsigned iShw = off / sizeof(X86PTE); // ASSUMING 32-bit guest paging!
441
442 LogFlow(("pgmPoolMonitorChainChanging: PGMPOOLKIND_32BIT_PD %x\n", iShw));
443# ifndef IN_RING0
444 if (uShw.pPD->a[iShw].u & PGM_PDFLAGS_MAPPING)
445 {
446 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
447 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
448 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
449 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
450 break;
451 }
452# endif /* !IN_RING0 */
453# ifndef IN_RING0
454 else
455# endif /* !IN_RING0 */
456 {
457 if (uShw.pPD->a[iShw].n.u1Present)
458 {
459 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
460 pgmPoolFree(pVM,
461 uShw.pPD->a[iShw].u & X86_PDE_PAE_PG_MASK,
462 pPage->idx,
463 iShw);
464 ASMAtomicWriteSize(&uShw.pPD->a[iShw].u, 0);
465 }
466 }
467 /* paranoia / a bit assumptive. */
468 if ( pCpu
469 && (off & 3)
470 && (off & 3) + cbWrite > sizeof(X86PTE))
471 {
472 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTE);
473 if ( iShw2 != iShw
474 && iShw2 < RT_ELEMENTS(uShw.pPD->a))
475 {
476# ifndef IN_RING0
477 if (uShw.pPD->a[iShw2].u & PGM_PDFLAGS_MAPPING)
478 {
479 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
480 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
481 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
482 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
483 break;
484 }
485# endif /* !IN_RING0 */
486# ifndef IN_RING0
487 else
488# endif /* !IN_RING0 */
489 {
490 if (uShw.pPD->a[iShw2].n.u1Present)
491 {
492 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPD->a[iShw2].u));
493 pgmPoolFree(pVM,
494 uShw.pPD->a[iShw2].u & X86_PDE_PAE_PG_MASK,
495 pPage->idx,
496 iShw2);
497 ASMAtomicWriteSize(&uShw.pPD->a[iShw2].u, 0);
498 }
499 }
500 }
501 }
502#if 0 /* useful when running PGMAssertCR3(), a bit too troublesome for general use (TLBs). */
503 if ( uShw.pPD->a[iShw].n.u1Present
504 && !VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
505 {
506 LogFlow(("pgmPoolMonitorChainChanging: iShw=%#x: %RX32 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
507# ifdef IN_RC /* TLB load - we're pushing things a bit... */
508 ASMProbeReadByte(pvAddress);
509# endif
510 pgmPoolFree(pVM, uShw.pPD->a[iShw].u & X86_PDE_PG_MASK, pPage->idx, iShw);
511 ASMAtomicWriteSize(&uShw.pPD->a[iShw].u, 0);
512 }
513#endif
514 break;
515 }
516
517 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
518 {
519 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
520 const unsigned iShw = off / sizeof(X86PDEPAE);
521#ifndef IN_RING0
522 if (uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING)
523 {
524 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
525 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
526 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
527 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
528 break;
529 }
530#endif /* !IN_RING0 */
531 /*
532 * Causes trouble when the guest uses a PDE to refer to the whole page table level
533 * structure. (Invalidate here; faults later on when it tries to change the page
534 * table entries -> recheck; probably only applies to the RC case.)
535 */
536# ifndef IN_RING0
537 else
538# endif /* !IN_RING0 */
539 {
540 if (uShw.pPDPae->a[iShw].n.u1Present)
541 {
542 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
543 pgmPoolFree(pVM,
544 uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK,
545 pPage->idx,
546 iShw);
547 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw].u, 0);
548 }
549 }
550 /* paranoia / a bit assumptive. */
551 if ( pCpu
552 && (off & 7)
553 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
554 {
555 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
556 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
557
558#ifndef IN_RING0
559 if ( iShw2 != iShw
560 && uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING)
561 {
562 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
563 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
564 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
565 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
566 break;
567 }
568#endif /* !IN_RING0 */
569# ifndef IN_RING0
570 else
571# endif /* !IN_RING0 */
572 if (uShw.pPDPae->a[iShw2].n.u1Present)
573 {
574 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
575 pgmPoolFree(pVM,
576 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
577 pPage->idx,
578 iShw2);
579 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
580 }
581 }
582 break;
583 }
584
585 case PGMPOOLKIND_PAE_PDPT:
586 {
587 /*
588 * Hopefully this doesn't happen very often:
589 * - touching unused parts of the page
590 * - messing with the bits of pd pointers without changing the physical address
591 */
592 /* PDPT roots are not page aligned; 32 byte only! */
593 const unsigned offPdpt = GCPhysFault - pPage->GCPhys;
594
595 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
596 const unsigned iShw = offPdpt / sizeof(X86PDPE);
597 if (iShw < X86_PG_PAE_PDPE_ENTRIES) /* don't use RT_ELEMENTS(uShw.pPDPT->a), because that's for long mode only */
598 {
599# ifndef IN_RING0
600 if (uShw.pPDPT->a[iShw].u & PGM_PLXFLAGS_MAPPING)
601 {
602 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
603 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
604 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
605 LogFlow(("pgmPoolMonitorChainChanging: Detected pdpt conflict at iShw=%#x!\n", iShw));
606 break;
607 }
608# endif /* !IN_RING0 */
609# ifndef IN_RING0
610 else
611# endif /* !IN_RING0 */
612 if (uShw.pPDPT->a[iShw].n.u1Present)
613 {
614 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
615 pgmPoolFree(pVM,
616 uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK,
617 pPage->idx,
618 iShw);
619 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw].u, 0);
620 }
621
622 /* paranoia / a bit assumptive. */
623 if ( pCpu
624 && (offPdpt & 7)
625 && (offPdpt & 7) + cbWrite > sizeof(X86PDPE))
626 {
627 const unsigned iShw2 = (offPdpt + cbWrite - 1) / sizeof(X86PDPE);
628 if ( iShw2 != iShw
629 && iShw2 < X86_PG_PAE_PDPE_ENTRIES)
630 {
631# ifndef IN_RING0
632 if (uShw.pPDPT->a[iShw2].u & PGM_PLXFLAGS_MAPPING)
633 {
634 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
635 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
636 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
637 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
638 break;
639 }
640# endif /* !IN_RING0 */
641# ifndef IN_RING0
642 else
643# endif /* !IN_RING0 */
644 if (uShw.pPDPT->a[iShw2].n.u1Present)
645 {
646 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
647 pgmPoolFree(pVM,
648 uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK,
649 pPage->idx,
650 iShw2);
651 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw2].u, 0);
652 }
653 }
654 }
655 }
656 break;
657 }
658
659#ifndef IN_RC
660 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
661 {
662 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
663 const unsigned iShw = off / sizeof(X86PDEPAE);
664 Assert(!(uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING));
665 if (uShw.pPDPae->a[iShw].n.u1Present)
666 {
667 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
668 pgmPoolFree(pVM,
669 uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK,
670 pPage->idx,
671 iShw);
672 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw].u, 0);
673 }
674 /* paranoia / a bit assumptive. */
675 if ( pCpu
676 && (off & 7)
677 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
678 {
679 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
680 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
681
682 Assert(!(uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING));
683 if (uShw.pPDPae->a[iShw2].n.u1Present)
684 {
685 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
686 pgmPoolFree(pVM,
687 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
688 pPage->idx,
689 iShw2);
690 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
691 }
692 }
693 break;
694 }
695
696 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
697 {
698 /*
699 * Hopefully this doesn't happen very often:
700 * - messing with the bits of pd pointers without changing the physical address
701 */
702 if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
703 {
704 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
705 const unsigned iShw = off / sizeof(X86PDPE);
706 if (uShw.pPDPT->a[iShw].n.u1Present)
707 {
708 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
709 pgmPoolFree(pVM, uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK, pPage->idx, iShw);
710 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw].u, 0);
711 }
712 /* paranoia / a bit assumptive. */
713 if ( pCpu
714 && (off & 7)
715 && (off & 7) + cbWrite > sizeof(X86PDPE))
716 {
717 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDPE);
718 if (uShw.pPDPT->a[iShw2].n.u1Present)
719 {
720 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
721 pgmPoolFree(pVM, uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK, pPage->idx, iShw2);
722 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw2].u, 0);
723 }
724 }
725 }
726 break;
727 }
728
729 case PGMPOOLKIND_64BIT_PML4:
730 {
731 /*
732 * Hopefully this doesn't happen very often:
733 * - messing with the bits of pd pointers without changing the physical address
734 */
735 if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
736 {
737 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
738 const unsigned iShw = off / sizeof(X86PDPE);
739 if (uShw.pPML4->a[iShw].n.u1Present)
740 {
741 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPML4->a[iShw].u));
742 pgmPoolFree(pVM, uShw.pPML4->a[iShw].u & X86_PML4E_PG_MASK, pPage->idx, iShw);
743 ASMAtomicWriteSize(&uShw.pPML4->a[iShw].u, 0);
744 }
745 /* paranoia / a bit assumptive. */
746 if ( pCpu
747 && (off & 7)
748 && (off & 7) + cbWrite > sizeof(X86PDPE))
749 {
750 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PML4E);
751 if (uShw.pPML4->a[iShw2].n.u1Present)
752 {
753 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPML4->a[iShw2].u));
754 pgmPoolFree(pVM, uShw.pPML4->a[iShw2].u & X86_PML4E_PG_MASK, pPage->idx, iShw2);
755 ASMAtomicWriteSize(&uShw.pPML4->a[iShw2].u, 0);
756 }
757 }
758 }
759 break;
760 }
761#endif /* IN_RING0 */
762
763 default:
764 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
765 }
766 PGMPOOL_UNLOCK_PTR(pVM, uShw.pv);
767
768 /* next */
769 if (pPage->iMonitoredNext == NIL_PGMPOOL_IDX)
770 return;
771 pPage = &pPool->aPages[pPage->iMonitoredNext];
772 }
773}
774
775# ifndef IN_RING3
776/**
777 * Checks if a access could be a fork operation in progress.
778 *
779 * Meaning, that the guest is setuping up the parent process for Copy-On-Write.
780 *
781 * @returns true if it's likly that we're forking, otherwise false.
782 * @param pPool The pool.
783 * @param pCpu The disassembled instruction.
784 * @param offFault The access offset.
785 */
786DECLINLINE(bool) pgmPoolMonitorIsForking(PPGMPOOL pPool, PDISCPUSTATE pCpu, unsigned offFault)
787{
788 /*
789 * i386 linux is using btr to clear X86_PTE_RW.
790 * The functions involved are (2.6.16 source inspection):
791 * clear_bit
792 * ptep_set_wrprotect
793 * copy_one_pte
794 * copy_pte_range
795 * copy_pmd_range
796 * copy_pud_range
797 * copy_page_range
798 * dup_mmap
799 * dup_mm
800 * copy_mm
801 * copy_process
802 * do_fork
803 */
804 if ( pCpu->pCurInstr->opcode == OP_BTR
805 && !(offFault & 4)
806 /** @todo Validate that the bit index is X86_PTE_RW. */
807 )
808 {
809 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,Fork));
810 return true;
811 }
812 return false;
813}
814
815
816/**
817 * Determine whether the page is likely to have been reused.
818 *
819 * @returns true if we consider the page as being reused for a different purpose.
820 * @returns false if we consider it to still be a paging page.
821 * @param pVM VM Handle.
822 * @param pRegFrame Trap register frame.
823 * @param pCpu The disassembly info for the faulting instruction.
824 * @param pvFault The fault address.
825 *
826 * @remark The REP prefix check is left to the caller because of STOSD/W.
827 */
828DECLINLINE(bool) pgmPoolMonitorIsReused(PVM pVM, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pCpu, RTGCPTR pvFault)
829{
830#ifndef IN_RC
831 /** @todo could make this general, faulting close to rsp should be safe reuse heuristic. */
832 if ( HWACCMHasPendingIrq(pVM)
833 && (pRegFrame->rsp - pvFault) < 32)
834 {
835 /* Fault caused by stack writes while trying to inject an interrupt event. */
836 Log(("pgmPoolMonitorIsReused: reused %RGv for interrupt stack (rsp=%RGv).\n", pvFault, pRegFrame->rsp));
837 return true;
838 }
839#else
840 NOREF(pVM); NOREF(pvFault);
841#endif
842
843 switch (pCpu->pCurInstr->opcode)
844 {
845 /* call implies the actual push of the return address faulted */
846 case OP_CALL:
847 Log4(("pgmPoolMonitorIsReused: CALL\n"));
848 return true;
849 case OP_PUSH:
850 Log4(("pgmPoolMonitorIsReused: PUSH\n"));
851 return true;
852 case OP_PUSHF:
853 Log4(("pgmPoolMonitorIsReused: PUSHF\n"));
854 return true;
855 case OP_PUSHA:
856 Log4(("pgmPoolMonitorIsReused: PUSHA\n"));
857 return true;
858 case OP_FXSAVE:
859 Log4(("pgmPoolMonitorIsReused: FXSAVE\n"));
860 return true;
861 case OP_MOVNTI: /* solaris - block_zero_no_xmm */
862 Log4(("pgmPoolMonitorIsReused: MOVNTI\n"));
863 return true;
864 case OP_MOVNTDQ: /* solaris - hwblkclr & hwblkpagecopy */
865 Log4(("pgmPoolMonitorIsReused: MOVNTDQ\n"));
866 return true;
867 case OP_MOVSWD:
868 case OP_STOSWD:
869 if ( pCpu->prefix == (PREFIX_REP|PREFIX_REX)
870 && pRegFrame->rcx >= 0x40
871 )
872 {
873 Assert(pCpu->mode == CPUMODE_64BIT);
874
875 Log(("pgmPoolMonitorIsReused: OP_STOSQ\n"));
876 return true;
877 }
878 return false;
879 }
880 if ( (pCpu->param1.flags & USE_REG_GEN32)
881 && (pCpu->param1.base.reg_gen == USE_REG_ESP))
882 {
883 Log4(("pgmPoolMonitorIsReused: ESP\n"));
884 return true;
885 }
886
887 return false;
888}
889
890
891/**
892 * Flushes the page being accessed.
893 *
894 * @returns VBox status code suitable for scheduling.
895 * @param pVM The VM handle.
896 * @param pVCpu The VMCPU handle.
897 * @param pPool The pool.
898 * @param pPage The pool page (head).
899 * @param pCpu The disassembly of the write instruction.
900 * @param pRegFrame The trap register frame.
901 * @param GCPhysFault The fault address as guest physical address.
902 * @param pvFault The fault address.
903 */
904static int pgmPoolAccessHandlerFlush(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu,
905 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
906{
907 /*
908 * First, do the flushing.
909 */
910 int rc = pgmPoolMonitorChainFlush(pPool, pPage);
911
912 /*
913 * Emulate the instruction (xp/w2k problem, requires pc/cr2/sp detection).
914 */
915 uint32_t cbWritten;
916 int rc2 = EMInterpretInstructionCPU(pVM, pVCpu, pCpu, pRegFrame, pvFault, &cbWritten);
917 if (RT_SUCCESS(rc2))
918 pRegFrame->rip += pCpu->opsize;
919 else if (rc2 == VERR_EM_INTERPRETER)
920 {
921#ifdef IN_RC
922 if (PATMIsPatchGCAddr(pVM, (RTRCPTR)pRegFrame->eip))
923 {
924 LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for patch code %04x:%RGv, ignoring.\n",
925 pRegFrame->cs, (RTGCPTR)pRegFrame->eip));
926 rc = VINF_SUCCESS;
927 STAM_COUNTER_INC(&pPool->StatMonitorRZIntrFailPatch2);
928 }
929 else
930#endif
931 {
932 rc = VINF_EM_RAW_EMULATE_INSTR;
933 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,EmulateInstr));
934 }
935 }
936 else
937 rc = rc2;
938
939 /* See use in pgmPoolAccessHandlerSimple(). */
940 PGM_INVL_VCPU_TLBS(pVCpu);
941
942 LogFlow(("pgmPoolAccessHandlerPT: returns %Rrc (flushed)\n", rc));
943 return rc;
944
945}
946
947
948/**
949 * Handles the STOSD write accesses.
950 *
951 * @returns VBox status code suitable for scheduling.
952 * @param pVM The VM handle.
953 * @param pPool The pool.
954 * @param pPage The pool page (head).
955 * @param pCpu The disassembly of the write instruction.
956 * @param pRegFrame The trap register frame.
957 * @param GCPhysFault The fault address as guest physical address.
958 * @param pvFault The fault address.
959 */
960DECLINLINE(int) pgmPoolAccessHandlerSTOSD(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu,
961 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
962{
963 Assert(pCpu->mode == CPUMODE_32BIT);
964
965 Log3(("pgmPoolAccessHandlerSTOSD\n"));
966
967 /*
968 * Increment the modification counter and insert it into the list
969 * of modified pages the first time.
970 */
971 if (!pPage->cModifications++)
972 pgmPoolMonitorModifiedInsert(pPool, pPage);
973
974 /*
975 * Execute REP STOSD.
976 *
977 * This ASSUMES that we're not invoked by Trap0e on in a out-of-sync
978 * write situation, meaning that it's safe to write here.
979 */
980 PVMCPU pVCpu = VMMGetCpu(pPool->CTX_SUFF(pVM));
981 RTGCUINTPTR pu32 = (RTGCUINTPTR)pvFault;
982 while (pRegFrame->ecx)
983 {
984#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
985 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
986 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, (RTGCPTR)pu32, NULL);
987 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
988#else
989 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, (RTGCPTR)pu32, NULL);
990#endif
991#ifdef IN_RC
992 *(uint32_t *)pu32 = pRegFrame->eax;
993#else
994 PGMPhysSimpleWriteGCPhys(pVM, GCPhysFault, &pRegFrame->eax, 4);
995#endif
996 pu32 += 4;
997 GCPhysFault += 4;
998 pRegFrame->edi += 4;
999 pRegFrame->ecx--;
1000 }
1001 pRegFrame->rip += pCpu->opsize;
1002
1003#ifdef IN_RC
1004 /* See use in pgmPoolAccessHandlerSimple(). */
1005 PGM_INVL_VCPU_TLBS(pVCpu);
1006#endif
1007
1008 LogFlow(("pgmPoolAccessHandlerSTOSD: returns\n"));
1009 return VINF_SUCCESS;
1010}
1011
1012
1013/**
1014 * Handles the simple write accesses.
1015 *
1016 * @returns VBox status code suitable for scheduling.
1017 * @param pVM The VM handle.
1018 * @param pVCpu The VMCPU handle.
1019 * @param pPool The pool.
1020 * @param pPage The pool page (head).
1021 * @param pCpu The disassembly of the write instruction.
1022 * @param pRegFrame The trap register frame.
1023 * @param GCPhysFault The fault address as guest physical address.
1024 * @param pvFault The fault address.
1025 */
1026DECLINLINE(int) pgmPoolAccessHandlerSimple(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu,
1027 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
1028{
1029 Log3(("pgmPoolAccessHandlerSimple\n"));
1030 /*
1031 * Increment the modification counter and insert it into the list
1032 * of modified pages the first time.
1033 */
1034 if (!pPage->cModifications++)
1035 pgmPoolMonitorModifiedInsert(pPool, pPage);
1036
1037 /*
1038 * Clear all the pages. ASSUMES that pvFault is readable.
1039 */
1040#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
1041 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
1042 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, pvFault, pCpu);
1043 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
1044#else
1045 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, pvFault, pCpu);
1046#endif
1047
1048 /*
1049 * Interpret the instruction.
1050 */
1051 uint32_t cb;
1052 int rc = EMInterpretInstructionCPU(pVM, pVCpu, pCpu, pRegFrame, pvFault, &cb);
1053 if (RT_SUCCESS(rc))
1054 pRegFrame->rip += pCpu->opsize;
1055 else if (rc == VERR_EM_INTERPRETER)
1056 {
1057 LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for %04x:%RGv - opcode=%d\n",
1058 pRegFrame->cs, (RTGCPTR)pRegFrame->rip, pCpu->pCurInstr->opcode));
1059 rc = VINF_EM_RAW_EMULATE_INSTR;
1060 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,EmulateInstr));
1061 }
1062
1063#ifdef IN_RC
1064 /*
1065 * Quick hack, with logging enabled we're getting stale
1066 * code TLBs but no data TLB for EIP and crash in EMInterpretDisasOne.
1067 * Flushing here is BAD and expensive, I think EMInterpretDisasOne will
1068 * have to be fixed to support this. But that'll have to wait till next week.
1069 *
1070 * An alternative is to keep track of the changed PTEs together with the
1071 * GCPhys from the guest PT. This may proove expensive though.
1072 *
1073 * At the moment, it's VITAL that it's done AFTER the instruction interpreting
1074 * because we need the stale TLBs in some cases (XP boot). This MUST be fixed properly!
1075 */
1076 PGM_INVL_VCPU_TLBS(pVCpu);
1077#endif
1078
1079 LogFlow(("pgmPoolAccessHandlerSimple: returns %Rrc cb=%d\n", rc, cb));
1080 return rc;
1081}
1082
1083/**
1084 * \#PF Handler callback for PT write accesses.
1085 *
1086 * @returns VBox status code (appropriate for GC return).
1087 * @param pVM VM Handle.
1088 * @param uErrorCode CPU Error code.
1089 * @param pRegFrame Trap register frame.
1090 * NULL on DMA and other non CPU access.
1091 * @param pvFault The fault address (cr2).
1092 * @param GCPhysFault The GC physical address corresponding to pvFault.
1093 * @param pvUser User argument.
1094 */
1095DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
1096{
1097 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), a);
1098 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1099 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
1100 PVMCPU pVCpu = VMMGetCpu(pVM);
1101
1102 LogFlow(("pgmPoolAccessHandler: pvFault=%RGv pPage=%p:{.idx=%d} GCPhysFault=%RGp\n", pvFault, pPage, pPage->idx, GCPhysFault));
1103
1104 /*
1105 * We should ALWAYS have the list head as user parameter. This
1106 * is because we use that page to record the changes.
1107 */
1108 Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1109
1110 /*
1111 * Disassemble the faulting instruction.
1112 */
1113 DISCPUSTATE Cpu;
1114 int rc = EMInterpretDisasOne(pVM, pVCpu, pRegFrame, &Cpu, NULL);
1115 AssertRCReturn(rc, rc);
1116
1117 pgmLock(pVM);
1118 if (PHYS_PAGE_ADDRESS(GCPhysFault) != PHYS_PAGE_ADDRESS(pPage->GCPhys))
1119 {
1120 /* Pool page changed while we were waiting for the lock; ignore. */
1121 Log(("CPU%d: pgmPoolAccessHandler pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhysFault), PHYS_PAGE_ADDRESS(pPage->GCPhys)));
1122 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,Handled), a);
1123 pgmUnlock(pVM);
1124 return VINF_SUCCESS;
1125 }
1126
1127 /*
1128 * Check if it's worth dealing with.
1129 */
1130 bool fReused = false;
1131 if ( ( pPage->cModifications < 48 /** @todo #define */ /** @todo need to check that it's not mapping EIP. */ /** @todo adjust this! */
1132 || pgmPoolIsPageLocked(&pVM->pgm.s, pPage)
1133 )
1134 && !(fReused = pgmPoolMonitorIsReused(pVM, pRegFrame, &Cpu, pvFault))
1135 && !pgmPoolMonitorIsForking(pPool, &Cpu, GCPhysFault & PAGE_OFFSET_MASK))
1136 {
1137 /*
1138 * Simple instructions, no REP prefix.
1139 */
1140 if (!(Cpu.prefix & (PREFIX_REP | PREFIX_REPNE)))
1141 {
1142 rc = pgmPoolAccessHandlerSimple(pVM, pVCpu, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault);
1143 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,Handled), a);
1144 pgmUnlock(pVM);
1145 return rc;
1146 }
1147
1148 /*
1149 * Windows is frequently doing small memset() operations (netio test 4k+).
1150 * We have to deal with these or we'll kill the cache and performance.
1151 */
1152 if ( Cpu.pCurInstr->opcode == OP_STOSWD
1153 && CPUMGetGuestCPL(pVCpu, pRegFrame) == 0
1154 && pRegFrame->ecx <= 0x20
1155 && pRegFrame->ecx * 4 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK)
1156 && !((uintptr_t)pvFault & 3)
1157 && (pRegFrame->eax == 0 || pRegFrame->eax == 0x80) /* the two values observed. */
1158 && Cpu.mode == CPUMODE_32BIT
1159 && Cpu.opmode == CPUMODE_32BIT
1160 && Cpu.addrmode == CPUMODE_32BIT
1161 && Cpu.prefix == PREFIX_REP
1162 && !pRegFrame->eflags.Bits.u1DF
1163 )
1164 {
1165 rc = pgmPoolAccessHandlerSTOSD(pVM, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault);
1166 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,RepStosd), a);
1167 pgmUnlock(pVM);
1168 return rc;
1169 }
1170
1171 /* REP prefix, don't bother. */
1172 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,RepPrefix));
1173 Log4(("pgmPoolAccessHandler: eax=%#x ecx=%#x edi=%#x esi=%#x rip=%RGv opcode=%d prefix=%#x\n",
1174 pRegFrame->eax, pRegFrame->ecx, pRegFrame->edi, pRegFrame->esi, (RTGCPTR)pRegFrame->rip, Cpu.pCurInstr->opcode, Cpu.prefix));
1175 }
1176
1177 /*
1178 * Not worth it, so flush it.
1179 *
1180 * If we considered it to be reused, don't go back to ring-3
1181 * to emulate failed instructions since we usually cannot
1182 * interpret then. This may be a bit risky, in which case
1183 * the reuse detection must be fixed.
1184 */
1185 rc = pgmPoolAccessHandlerFlush(pVM, pVCpu, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault);
1186 if (rc == VINF_EM_RAW_EMULATE_INSTR && fReused)
1187 rc = VINF_SUCCESS;
1188 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,FlushPage), a);
1189 pgmUnlock(pVM);
1190 return rc;
1191}
1192
1193# endif /* !IN_RING3 */
1194#endif /* PGMPOOL_WITH_MONITORING */
1195
1196#ifdef PGMPOOL_WITH_CACHE
1197
1198/**
1199 * Inserts a page into the GCPhys hash table.
1200 *
1201 * @param pPool The pool.
1202 * @param pPage The page.
1203 */
1204DECLINLINE(void) pgmPoolHashInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1205{
1206 Log3(("pgmPoolHashInsert: %RGp\n", pPage->GCPhys));
1207 Assert(pPage->GCPhys != NIL_RTGCPHYS); Assert(pPage->iNext == NIL_PGMPOOL_IDX);
1208 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1209 pPage->iNext = pPool->aiHash[iHash];
1210 pPool->aiHash[iHash] = pPage->idx;
1211}
1212
1213
1214/**
1215 * Removes a page from the GCPhys hash table.
1216 *
1217 * @param pPool The pool.
1218 * @param pPage The page.
1219 */
1220DECLINLINE(void) pgmPoolHashRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1221{
1222 Log3(("pgmPoolHashRemove: %RGp\n", pPage->GCPhys));
1223 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1224 if (pPool->aiHash[iHash] == pPage->idx)
1225 pPool->aiHash[iHash] = pPage->iNext;
1226 else
1227 {
1228 uint16_t iPrev = pPool->aiHash[iHash];
1229 for (;;)
1230 {
1231 const int16_t i = pPool->aPages[iPrev].iNext;
1232 if (i == pPage->idx)
1233 {
1234 pPool->aPages[iPrev].iNext = pPage->iNext;
1235 break;
1236 }
1237 if (i == NIL_PGMPOOL_IDX)
1238 {
1239 AssertReleaseMsgFailed(("GCPhys=%RGp idx=%#x\n", pPage->GCPhys, pPage->idx));
1240 break;
1241 }
1242 iPrev = i;
1243 }
1244 }
1245 pPage->iNext = NIL_PGMPOOL_IDX;
1246}
1247
1248
1249/**
1250 * Frees up one cache page.
1251 *
1252 * @returns VBox status code.
1253 * @retval VINF_SUCCESS on success.
1254 * @param pPool The pool.
1255 * @param iUser The user index.
1256 */
1257static int pgmPoolCacheFreeOne(PPGMPOOL pPool, uint16_t iUser)
1258{
1259#ifndef IN_RC
1260 const PVM pVM = pPool->CTX_SUFF(pVM);
1261#endif
1262 Assert(pPool->iAgeHead != pPool->iAgeTail); /* We shouldn't be here if there < 2 cached entries! */
1263 STAM_COUNTER_INC(&pPool->StatCacheFreeUpOne);
1264
1265 /*
1266 * Select one page from the tail of the age list.
1267 */
1268 PPGMPOOLPAGE pPage;
1269 for (unsigned iLoop = 0; ; iLoop++)
1270 {
1271 uint16_t iToFree = pPool->iAgeTail;
1272 if (iToFree == iUser)
1273 iToFree = pPool->aPages[iToFree].iAgePrev;
1274/* This is the alternative to the SyncCR3 pgmPoolCacheUsed calls.
1275 if (pPool->aPages[iToFree].iUserHead != NIL_PGMPOOL_USER_INDEX)
1276 {
1277 uint16_t i = pPool->aPages[iToFree].iAgePrev;
1278 for (unsigned j = 0; j < 10 && i != NIL_PGMPOOL_USER_INDEX; j++, i = pPool->aPages[i].iAgePrev)
1279 {
1280 if (pPool->aPages[iToFree].iUserHead == NIL_PGMPOOL_USER_INDEX)
1281 continue;
1282 iToFree = i;
1283 break;
1284 }
1285 }
1286*/
1287 Assert(iToFree != iUser);
1288 AssertRelease(iToFree != NIL_PGMPOOL_IDX);
1289 pPage = &pPool->aPages[iToFree];
1290
1291 /*
1292 * Reject any attempts at flushing the currently active shadow CR3 mapping.
1293 * Call pgmPoolCacheUsed to move the page to the head of the age list.
1294 */
1295 if (!pgmPoolIsPageLocked(&pPool->CTX_SUFF(pVM)->pgm.s, pPage))
1296 break;
1297 LogFlow(("pgmPoolCacheFreeOne: refuse CR3 mapping\n"));
1298 pgmPoolCacheUsed(pPool, pPage);
1299 AssertLogRelReturn(iLoop < 8192, VERR_INTERNAL_ERROR);
1300 }
1301
1302 /*
1303 * Found a usable page, flush it and return.
1304 */
1305 int rc = pgmPoolFlushPage(pPool, pPage);
1306 /* This flush was initiated by us and not the guest, so explicitly flush the TLB. */
1307 if (rc == VINF_SUCCESS)
1308 PGM_INVL_ALL_VCPU_TLBS(pVM);
1309 return rc;
1310}
1311
1312
1313/**
1314 * Checks if a kind mismatch is really a page being reused
1315 * or if it's just normal remappings.
1316 *
1317 * @returns true if reused and the cached page (enmKind1) should be flushed
1318 * @returns false if not reused.
1319 * @param enmKind1 The kind of the cached page.
1320 * @param enmKind2 The kind of the requested page.
1321 */
1322static bool pgmPoolCacheReusedByKind(PGMPOOLKIND enmKind1, PGMPOOLKIND enmKind2)
1323{
1324 switch (enmKind1)
1325 {
1326 /*
1327 * Never reuse them. There is no remapping in non-paging mode.
1328 */
1329 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1330 case PGMPOOLKIND_32BIT_PD_PHYS:
1331 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1332 case PGMPOOLKIND_PAE_PD_PHYS:
1333 case PGMPOOLKIND_PAE_PDPT_PHYS:
1334 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1335 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1336 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1337 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1338 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1339 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: /* never reuse them for other types */
1340 return false;
1341
1342 /*
1343 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
1344 */
1345 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1346 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1347 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1348 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1349 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1350 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1351 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1352 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1353 case PGMPOOLKIND_32BIT_PD:
1354 case PGMPOOLKIND_PAE_PDPT:
1355 switch (enmKind2)
1356 {
1357 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1358 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1359 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1360 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1361 case PGMPOOLKIND_64BIT_PML4:
1362 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1363 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1364 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1365 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1366 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1367 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1368 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1369 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1370 return true;
1371 default:
1372 return false;
1373 }
1374
1375 /*
1376 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
1377 */
1378 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1379 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1380 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1381 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1382 case PGMPOOLKIND_64BIT_PML4:
1383 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1384 switch (enmKind2)
1385 {
1386 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1387 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1388 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1389 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1390 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1391 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1392 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1393 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1394 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1395 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1396 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1397 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1398 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1399 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1400 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1401 return true;
1402 default:
1403 return false;
1404 }
1405
1406 /*
1407 * These cannot be flushed, and it's common to reuse the PDs as PTs.
1408 */
1409 case PGMPOOLKIND_ROOT_NESTED:
1410 return false;
1411
1412 default:
1413 AssertFatalMsgFailed(("enmKind1=%d\n", enmKind1));
1414 }
1415}
1416
1417
1418/**
1419 * Attempts to satisfy a pgmPoolAlloc request from the cache.
1420 *
1421 * @returns VBox status code.
1422 * @retval VINF_PGM_CACHED_PAGE on success.
1423 * @retval VERR_FILE_NOT_FOUND if not found.
1424 * @param pPool The pool.
1425 * @param GCPhys The GC physical address of the page we're gonna shadow.
1426 * @param enmKind The kind of mapping.
1427 * @param iUser The shadow page pool index of the user table.
1428 * @param iUserTable The index into the user table (shadowed).
1429 * @param ppPage Where to store the pointer to the page.
1430 */
1431static int pgmPoolCacheAlloc(PPGMPOOL pPool, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage)
1432{
1433#ifndef IN_RC
1434 const PVM pVM = pPool->CTX_SUFF(pVM);
1435#endif
1436 /*
1437 * Look up the GCPhys in the hash.
1438 */
1439 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
1440 Log3(("pgmPoolCacheAlloc: %RGp kind %s iUser=%x iUserTable=%x SLOT=%d\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable, i));
1441 if (i != NIL_PGMPOOL_IDX)
1442 {
1443 do
1444 {
1445 PPGMPOOLPAGE pPage = &pPool->aPages[i];
1446 Log4(("pgmPoolCacheAlloc: slot %d found page %RGp\n", i, pPage->GCPhys));
1447 if (pPage->GCPhys == GCPhys)
1448 {
1449 if ( (PGMPOOLKIND)pPage->enmKind == enmKind
1450 && (PGMPOOLACCESS)pPage->enmAccess == enmAccess)
1451 {
1452 /* Put it at the start of the use list to make sure pgmPoolTrackAddUser
1453 * doesn't flush it in case there are no more free use records.
1454 */
1455 pgmPoolCacheUsed(pPool, pPage);
1456
1457 int rc = pgmPoolTrackAddUser(pPool, pPage, iUser, iUserTable);
1458 if (RT_SUCCESS(rc))
1459 {
1460 Assert((PGMPOOLKIND)pPage->enmKind == enmKind);
1461 *ppPage = pPage;
1462 STAM_COUNTER_INC(&pPool->StatCacheHits);
1463 return VINF_PGM_CACHED_PAGE;
1464 }
1465 return rc;
1466 }
1467
1468 if ((PGMPOOLKIND)pPage->enmKind != enmKind)
1469 {
1470 /*
1471 * The kind is different. In some cases we should now flush the page
1472 * as it has been reused, but in most cases this is normal remapping
1473 * of PDs as PT or big pages using the GCPhys field in a slightly
1474 * different way than the other kinds.
1475 */
1476 if (pgmPoolCacheReusedByKind((PGMPOOLKIND)pPage->enmKind, enmKind))
1477 {
1478 STAM_COUNTER_INC(&pPool->StatCacheKindMismatches);
1479 pgmPoolFlushPage(pPool, pPage);
1480 PGM_INVL_VCPU_TLBS(VMMGetCpu(pVM)); /* see PT handler. */
1481 break;
1482 }
1483 }
1484 }
1485
1486 /* next */
1487 i = pPage->iNext;
1488 } while (i != NIL_PGMPOOL_IDX);
1489 }
1490
1491 Log3(("pgmPoolCacheAlloc: Missed GCPhys=%RGp enmKind=%s\n", GCPhys, pgmPoolPoolKindToStr(enmKind)));
1492 STAM_COUNTER_INC(&pPool->StatCacheMisses);
1493 return VERR_FILE_NOT_FOUND;
1494}
1495
1496
1497/**
1498 * Inserts a page into the cache.
1499 *
1500 * @param pPool The pool.
1501 * @param pPage The cached page.
1502 * @param fCanBeCached Set if the page is fit for caching from the caller's point of view.
1503 */
1504static void pgmPoolCacheInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fCanBeCached)
1505{
1506 /*
1507 * Insert into the GCPhys hash if the page is fit for that.
1508 */
1509 Assert(!pPage->fCached);
1510 if (fCanBeCached)
1511 {
1512 pPage->fCached = true;
1513 pgmPoolHashInsert(pPool, pPage);
1514 Log3(("pgmPoolCacheInsert: Caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
1515 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
1516 STAM_COUNTER_INC(&pPool->StatCacheCacheable);
1517 }
1518 else
1519 {
1520 Log3(("pgmPoolCacheInsert: Not caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
1521 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
1522 STAM_COUNTER_INC(&pPool->StatCacheUncacheable);
1523 }
1524
1525 /*
1526 * Insert at the head of the age list.
1527 */
1528 pPage->iAgePrev = NIL_PGMPOOL_IDX;
1529 pPage->iAgeNext = pPool->iAgeHead;
1530 if (pPool->iAgeHead != NIL_PGMPOOL_IDX)
1531 pPool->aPages[pPool->iAgeHead].iAgePrev = pPage->idx;
1532 else
1533 pPool->iAgeTail = pPage->idx;
1534 pPool->iAgeHead = pPage->idx;
1535}
1536
1537
1538/**
1539 * Flushes a cached page.
1540 *
1541 * @param pPool The pool.
1542 * @param pPage The cached page.
1543 */
1544static void pgmPoolCacheFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1545{
1546 Log3(("pgmPoolCacheFlushPage: %RGp\n", pPage->GCPhys));
1547
1548 /*
1549 * Remove the page from the hash.
1550 */
1551 if (pPage->fCached)
1552 {
1553 pPage->fCached = false;
1554 pgmPoolHashRemove(pPool, pPage);
1555 }
1556 else
1557 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
1558
1559 /*
1560 * Remove it from the age list.
1561 */
1562 if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
1563 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
1564 else
1565 pPool->iAgeTail = pPage->iAgePrev;
1566 if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
1567 pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
1568 else
1569 pPool->iAgeHead = pPage->iAgeNext;
1570 pPage->iAgeNext = NIL_PGMPOOL_IDX;
1571 pPage->iAgePrev = NIL_PGMPOOL_IDX;
1572}
1573
1574#endif /* PGMPOOL_WITH_CACHE */
1575#ifdef PGMPOOL_WITH_MONITORING
1576
1577/**
1578 * Looks for pages sharing the monitor.
1579 *
1580 * @returns Pointer to the head page.
1581 * @returns NULL if not found.
1582 * @param pPool The Pool
1583 * @param pNewPage The page which is going to be monitored.
1584 */
1585static PPGMPOOLPAGE pgmPoolMonitorGetPageByGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pNewPage)
1586{
1587#ifdef PGMPOOL_WITH_CACHE
1588 /*
1589 * Look up the GCPhys in the hash.
1590 */
1591 RTGCPHYS GCPhys = pNewPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
1592 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
1593 if (i == NIL_PGMPOOL_IDX)
1594 return NULL;
1595 do
1596 {
1597 PPGMPOOLPAGE pPage = &pPool->aPages[i];
1598 if ( pPage->GCPhys - GCPhys < PAGE_SIZE
1599 && pPage != pNewPage)
1600 {
1601 switch (pPage->enmKind)
1602 {
1603 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1604 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1605 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1606 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1607 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1608 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1609 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1610 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1611 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1612 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1613 case PGMPOOLKIND_64BIT_PML4:
1614 case PGMPOOLKIND_32BIT_PD:
1615 case PGMPOOLKIND_PAE_PDPT:
1616 {
1617 /* find the head */
1618 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
1619 {
1620 Assert(pPage->iMonitoredPrev != pPage->idx);
1621 pPage = &pPool->aPages[pPage->iMonitoredPrev];
1622 }
1623 return pPage;
1624 }
1625
1626 /* ignore, no monitoring. */
1627 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1628 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1629 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1630 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1631 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1632 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1633 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1634 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1635 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1636 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1637 case PGMPOOLKIND_ROOT_NESTED:
1638 case PGMPOOLKIND_PAE_PD_PHYS:
1639 case PGMPOOLKIND_PAE_PDPT_PHYS:
1640 case PGMPOOLKIND_32BIT_PD_PHYS:
1641 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
1642 break;
1643 default:
1644 AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx));
1645 }
1646 }
1647
1648 /* next */
1649 i = pPage->iNext;
1650 } while (i != NIL_PGMPOOL_IDX);
1651#endif
1652 return NULL;
1653}
1654
1655
1656/**
1657 * Enabled write monitoring of a guest page.
1658 *
1659 * @returns VBox status code.
1660 * @retval VINF_SUCCESS on success.
1661 * @param pPool The pool.
1662 * @param pPage The cached page.
1663 */
1664static int pgmPoolMonitorInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1665{
1666 LogFlow(("pgmPoolMonitorInsert %RGp\n", pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1)));
1667
1668 /*
1669 * Filter out the relevant kinds.
1670 */
1671 switch (pPage->enmKind)
1672 {
1673 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1674 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1675 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1676 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1677 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1678 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1679 case PGMPOOLKIND_64BIT_PML4:
1680 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1681 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1682 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1683 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1684 case PGMPOOLKIND_32BIT_PD:
1685 case PGMPOOLKIND_PAE_PDPT:
1686 break;
1687
1688 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1689 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1690 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1691 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1692 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1693 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1694 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1695 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1696 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1697 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1698 case PGMPOOLKIND_ROOT_NESTED:
1699 /* Nothing to monitor here. */
1700 return VINF_SUCCESS;
1701
1702 case PGMPOOLKIND_32BIT_PD_PHYS:
1703 case PGMPOOLKIND_PAE_PDPT_PHYS:
1704 case PGMPOOLKIND_PAE_PD_PHYS:
1705 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
1706 /* Nothing to monitor here. */
1707 return VINF_SUCCESS;
1708#ifdef PGMPOOL_WITH_MIXED_PT_CR3
1709 break;
1710#else
1711 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1712#endif
1713 default:
1714 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
1715 }
1716
1717 /*
1718 * Install handler.
1719 */
1720 int rc;
1721 PPGMPOOLPAGE pPageHead = pgmPoolMonitorGetPageByGCPhys(pPool, pPage);
1722 if (pPageHead)
1723 {
1724 Assert(pPageHead != pPage); Assert(pPageHead->iMonitoredNext != pPage->idx);
1725 Assert(pPageHead->iMonitoredPrev != pPage->idx);
1726 pPage->iMonitoredPrev = pPageHead->idx;
1727 pPage->iMonitoredNext = pPageHead->iMonitoredNext;
1728 if (pPageHead->iMonitoredNext != NIL_PGMPOOL_IDX)
1729 pPool->aPages[pPageHead->iMonitoredNext].iMonitoredPrev = pPage->idx;
1730 pPageHead->iMonitoredNext = pPage->idx;
1731 rc = VINF_SUCCESS;
1732 }
1733 else
1734 {
1735 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX); Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1736 PVM pVM = pPool->CTX_SUFF(pVM);
1737 const RTGCPHYS GCPhysPage = pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
1738 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
1739 GCPhysPage, GCPhysPage + (PAGE_SIZE - 1),
1740 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage),
1741 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage),
1742 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pPage),
1743 pPool->pszAccessHandler);
1744 /** @todo we should probably deal with out-of-memory conditions here, but for now increasing
1745 * the heap size should suffice. */
1746 AssertFatalMsgRC(rc, ("PGMHandlerPhysicalRegisterEx %RGp failed with %Rrc\n", GCPhysPage, rc));
1747 Assert(!(pVM->pgm.s.fGlobalSyncFlags & PGM_GLOBAL_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_ISSET(VMMGetCpu(pVM), VMCPU_FF_PGM_SYNC_CR3));
1748 }
1749 pPage->fMonitored = true;
1750 return rc;
1751}
1752
1753
1754/**
1755 * Disables write monitoring of a guest page.
1756 *
1757 * @returns VBox status code.
1758 * @retval VINF_SUCCESS on success.
1759 * @param pPool The pool.
1760 * @param pPage The cached page.
1761 */
1762static int pgmPoolMonitorFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1763{
1764 /*
1765 * Filter out the relevant kinds.
1766 */
1767 switch (pPage->enmKind)
1768 {
1769 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1770 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1771 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1772 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1773 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1774 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1775 case PGMPOOLKIND_64BIT_PML4:
1776 case PGMPOOLKIND_32BIT_PD:
1777 case PGMPOOLKIND_PAE_PDPT:
1778 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1779 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1780 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1781 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1782 break;
1783
1784 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1785 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1786 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1787 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1788 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1789 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1790 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1791 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1792 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1793 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1794 case PGMPOOLKIND_ROOT_NESTED:
1795 case PGMPOOLKIND_PAE_PD_PHYS:
1796 case PGMPOOLKIND_PAE_PDPT_PHYS:
1797 case PGMPOOLKIND_32BIT_PD_PHYS:
1798 /* Nothing to monitor here. */
1799 return VINF_SUCCESS;
1800
1801#ifdef PGMPOOL_WITH_MIXED_PT_CR3
1802 break;
1803#endif
1804 default:
1805 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
1806 }
1807
1808 /*
1809 * Remove the page from the monitored list or uninstall it if last.
1810 */
1811 const PVM pVM = pPool->CTX_SUFF(pVM);
1812 int rc;
1813 if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX
1814 || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
1815 {
1816 if (pPage->iMonitoredPrev == NIL_PGMPOOL_IDX)
1817 {
1818 PPGMPOOLPAGE pNewHead = &pPool->aPages[pPage->iMonitoredNext];
1819 pNewHead->iMonitoredPrev = NIL_PGMPOOL_IDX;
1820 rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1),
1821 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pNewHead),
1822 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pNewHead),
1823 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pNewHead),
1824 pPool->pszAccessHandler);
1825 AssertFatalRCSuccess(rc);
1826 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
1827 }
1828 else
1829 {
1830 pPool->aPages[pPage->iMonitoredPrev].iMonitoredNext = pPage->iMonitoredNext;
1831 if (pPage->iMonitoredNext != NIL_PGMPOOL_IDX)
1832 {
1833 pPool->aPages[pPage->iMonitoredNext].iMonitoredPrev = pPage->iMonitoredPrev;
1834 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
1835 }
1836 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
1837 rc = VINF_SUCCESS;
1838 }
1839 }
1840 else
1841 {
1842 rc = PGMHandlerPhysicalDeregister(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1));
1843 AssertFatalRC(rc);
1844 AssertMsg(!(pVM->pgm.s.fGlobalSyncFlags & PGM_GLOBAL_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_ISSET(VMMGetCpu(pVM), VMCPU_FF_PGM_SYNC_CR3),
1845 ("%#x %#x\n", pVM->pgm.s.fGlobalSyncFlags, pVM->fGlobalForcedActions));
1846 }
1847 pPage->fMonitored = false;
1848
1849 /*
1850 * Remove it from the list of modified pages (if in it).
1851 */
1852 pgmPoolMonitorModifiedRemove(pPool, pPage);
1853
1854 return rc;
1855}
1856
1857
1858/**
1859 * Inserts the page into the list of modified pages.
1860 *
1861 * @param pPool The pool.
1862 * @param pPage The page.
1863 */
1864void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1865{
1866 Log3(("pgmPoolMonitorModifiedInsert: idx=%d\n", pPage->idx));
1867 AssertMsg( pPage->iModifiedNext == NIL_PGMPOOL_IDX
1868 && pPage->iModifiedPrev == NIL_PGMPOOL_IDX
1869 && pPool->iModifiedHead != pPage->idx,
1870 ("Next=%d Prev=%d idx=%d cModifications=%d Head=%d cModifiedPages=%d\n",
1871 pPage->iModifiedNext, pPage->iModifiedPrev, pPage->idx, pPage->cModifications,
1872 pPool->iModifiedHead, pPool->cModifiedPages));
1873
1874 pPage->iModifiedNext = pPool->iModifiedHead;
1875 if (pPool->iModifiedHead != NIL_PGMPOOL_IDX)
1876 pPool->aPages[pPool->iModifiedHead].iModifiedPrev = pPage->idx;
1877 pPool->iModifiedHead = pPage->idx;
1878 pPool->cModifiedPages++;
1879#ifdef VBOX_WITH_STATISTICS
1880 if (pPool->cModifiedPages > pPool->cModifiedPagesHigh)
1881 pPool->cModifiedPagesHigh = pPool->cModifiedPages;
1882#endif
1883}
1884
1885
1886/**
1887 * Removes the page from the list of modified pages and resets the
1888 * moficiation counter.
1889 *
1890 * @param pPool The pool.
1891 * @param pPage The page which is believed to be in the list of modified pages.
1892 */
1893static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1894{
1895 Log3(("pgmPoolMonitorModifiedRemove: idx=%d cModifications=%d\n", pPage->idx, pPage->cModifications));
1896 if (pPool->iModifiedHead == pPage->idx)
1897 {
1898 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
1899 pPool->iModifiedHead = pPage->iModifiedNext;
1900 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
1901 {
1902 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = NIL_PGMPOOL_IDX;
1903 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
1904 }
1905 pPool->cModifiedPages--;
1906 }
1907 else if (pPage->iModifiedPrev != NIL_PGMPOOL_IDX)
1908 {
1909 pPool->aPages[pPage->iModifiedPrev].iModifiedNext = pPage->iModifiedNext;
1910 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
1911 {
1912 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = pPage->iModifiedPrev;
1913 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
1914 }
1915 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
1916 pPool->cModifiedPages--;
1917 }
1918 else
1919 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
1920 pPage->cModifications = 0;
1921}
1922
1923
1924/**
1925 * Zaps the list of modified pages, resetting their modification counters in the process.
1926 *
1927 * @param pVM The VM handle.
1928 */
1929void pgmPoolMonitorModifiedClearAll(PVM pVM)
1930{
1931 pgmLock(pVM);
1932 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1933 LogFlow(("pgmPoolMonitorModifiedClearAll: cModifiedPages=%d\n", pPool->cModifiedPages));
1934
1935 unsigned cPages = 0; NOREF(cPages);
1936 uint16_t idx = pPool->iModifiedHead;
1937 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
1938 while (idx != NIL_PGMPOOL_IDX)
1939 {
1940 PPGMPOOLPAGE pPage = &pPool->aPages[idx];
1941 idx = pPage->iModifiedNext;
1942 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
1943 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
1944 pPage->cModifications = 0;
1945 Assert(++cPages);
1946 }
1947 AssertMsg(cPages == pPool->cModifiedPages, ("%d != %d\n", cPages, pPool->cModifiedPages));
1948 pPool->cModifiedPages = 0;
1949 pgmUnlock(pVM);
1950}
1951
1952
1953#ifdef IN_RING3
1954/**
1955 * Callback to clear all shadow pages and clear all modification counters.
1956 *
1957 * @returns VBox status code.
1958 * @param pVM The VM handle.
1959 * @param pvUser Unused parameter
1960 * @remark Should only be used when monitoring is available, thus placed in
1961 * the PGMPOOL_WITH_MONITORING #ifdef.
1962 */
1963DECLCALLBACK(int) pgmPoolClearAll(PVM pVM, void *pvUser)
1964{
1965 NOREF(pvUser);
1966 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1967 STAM_PROFILE_START(&pPool->StatClearAll, c);
1968 LogFlow(("pgmPoolClearAll: cUsedPages=%d\n", pPool->cUsedPages));
1969
1970 pgmLock(pVM);
1971
1972 /*
1973 * Iterate all the pages until we've encountered all that in use.
1974 * This is simple but not quite optimal solution.
1975 */
1976 unsigned cModifiedPages = 0; NOREF(cModifiedPages);
1977 unsigned cLeft = pPool->cUsedPages;
1978 unsigned iPage = pPool->cCurPages;
1979 while (--iPage >= PGMPOOL_IDX_FIRST)
1980 {
1981 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
1982 if (pPage->GCPhys != NIL_RTGCPHYS)
1983 {
1984 switch (pPage->enmKind)
1985 {
1986 /*
1987 * We only care about shadow page tables.
1988 */
1989 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1990 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1991 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1992 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1993 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1994 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1995 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1996 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1997 {
1998#ifdef PGMPOOL_WITH_USER_TRACKING
1999 if (pPage->cPresent)
2000#endif
2001 {
2002 void *pvShw = PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
2003 STAM_PROFILE_START(&pPool->StatZeroPage, z);
2004 ASMMemZeroPage(pvShw);
2005 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
2006#ifdef PGMPOOL_WITH_USER_TRACKING
2007 pPage->cPresent = 0;
2008 pPage->iFirstPresent = ~0;
2009#endif
2010 }
2011 }
2012 /* fall thru */
2013
2014 default:
2015 Assert(!pPage->cModifications || ++cModifiedPages);
2016 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
2017 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
2018 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2019 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2020 pPage->cModifications = 0;
2021 break;
2022
2023 }
2024 if (!--cLeft)
2025 break;
2026 }
2027 }
2028
2029 /* swipe the special pages too. */
2030 for (iPage = PGMPOOL_IDX_FIRST_SPECIAL; iPage < PGMPOOL_IDX_FIRST; iPage++)
2031 {
2032 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
2033 if (pPage->GCPhys != NIL_RTGCPHYS)
2034 {
2035 Assert(!pPage->cModifications || ++cModifiedPages);
2036 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
2037 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
2038 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2039 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2040 pPage->cModifications = 0;
2041 }
2042 }
2043
2044#ifndef DEBUG_michael
2045 AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages));
2046#endif
2047 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
2048 pPool->cModifiedPages = 0;
2049
2050#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2051 /*
2052 * Clear all the GCPhys links and rebuild the phys ext free list.
2053 */
2054 for (PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
2055 pRam;
2056 pRam = pRam->CTX_SUFF(pNext))
2057 {
2058 unsigned iPage = pRam->cb >> PAGE_SHIFT;
2059 while (iPage-- > 0)
2060 PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0);
2061 }
2062
2063 pPool->iPhysExtFreeHead = 0;
2064 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
2065 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
2066 for (unsigned i = 0; i < cMaxPhysExts; i++)
2067 {
2068 paPhysExts[i].iNext = i + 1;
2069 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
2070 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
2071 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
2072 }
2073 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
2074#endif
2075
2076 pPool->cPresent = 0;
2077 pgmUnlock(pVM);
2078 PGM_INVL_ALL_VCPU_TLBS(pVM);
2079 STAM_PROFILE_STOP(&pPool->StatClearAll, c);
2080 return VINF_SUCCESS;
2081}
2082#endif /* IN_RING3 */
2083
2084
2085/**
2086 * Handle SyncCR3 pool tasks
2087 *
2088 * @returns VBox status code.
2089 * @retval VINF_SUCCESS if successfully added.
2090 * @retval VINF_PGM_SYNC_CR3 is it needs to be deferred to ring 3 (GC only)
2091 * @param pVM The VM handle.
2092 * @remark Should only be used when monitoring is available, thus placed in
2093 * the PGMPOOL_WITH_MONITORING #ifdef.
2094 */
2095int pgmPoolSyncCR3(PVM pVM)
2096{
2097 LogFlow(("pgmPoolSyncCR3\n"));
2098 /*
2099 * When monitoring shadowed pages, we reset the modification counters on CR3 sync.
2100 * Occasionally we will have to clear all the shadow page tables because we wanted
2101 * to monitor a page which was mapped by too many shadowed page tables. This operation
2102 * sometimes refered to as a 'lightweight flush'.
2103 */
2104# ifdef IN_RING3 /* Don't flush in ring-0 or raw mode, it's taking too long. */
2105 if (ASMBitTestAndClear(&pVM->pgm.s.fGlobalSyncFlags, PGM_GLOBAL_SYNC_CLEAR_PGM_POOL_BIT))
2106 {
2107 VMMR3AtomicExecuteHandler(pVM, pgmPoolClearAll, NULL);
2108# else /* !IN_RING3 */
2109 if (pVM->pgm.s.fGlobalSyncFlags & PGM_GLOBAL_SYNC_CLEAR_PGM_POOL)
2110 {
2111 LogFlow(("SyncCR3: PGM_GLOBAL_SYNC_CLEAR_PGM_POOL is set -> VINF_PGM_SYNC_CR3\n"));
2112 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
2113 return VINF_PGM_SYNC_CR3;
2114# endif /* !IN_RING3 */
2115 }
2116 else
2117 pgmPoolMonitorModifiedClearAll(pVM);
2118
2119 return VINF_SUCCESS;
2120}
2121
2122#endif /* PGMPOOL_WITH_MONITORING */
2123#ifdef PGMPOOL_WITH_USER_TRACKING
2124
2125/**
2126 * Frees up at least one user entry.
2127 *
2128 * @returns VBox status code.
2129 * @retval VINF_SUCCESS if successfully added.
2130 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2131 * @param pPool The pool.
2132 * @param iUser The user index.
2133 */
2134static int pgmPoolTrackFreeOneUser(PPGMPOOL pPool, uint16_t iUser)
2135{
2136 STAM_COUNTER_INC(&pPool->StatTrackFreeUpOneUser);
2137#ifdef PGMPOOL_WITH_CACHE
2138 /*
2139 * Just free cached pages in a braindead fashion.
2140 */
2141 /** @todo walk the age list backwards and free the first with usage. */
2142 int rc = VINF_SUCCESS;
2143 do
2144 {
2145 int rc2 = pgmPoolCacheFreeOne(pPool, iUser);
2146 if (RT_FAILURE(rc2) && rc == VINF_SUCCESS)
2147 rc = rc2;
2148 } while (pPool->iUserFreeHead == NIL_PGMPOOL_USER_INDEX);
2149 return rc;
2150#else
2151 /*
2152 * Lazy approach.
2153 */
2154 /* @todo This path no longer works (CR3 root pages will be flushed)!! */
2155 AssertCompileFailed();
2156 Assert(!CPUMIsGuestInLongMode(pVM));
2157 pgmPoolFlushAllInt(pPool);
2158 return VERR_PGM_POOL_FLUSHED;
2159#endif
2160}
2161
2162
2163/**
2164 * Inserts a page into the cache.
2165 *
2166 * This will create user node for the page, insert it into the GCPhys
2167 * hash, and insert it into the age list.
2168 *
2169 * @returns VBox status code.
2170 * @retval VINF_SUCCESS if successfully added.
2171 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2172 * @param pPool The pool.
2173 * @param pPage The cached page.
2174 * @param GCPhys The GC physical address of the page we're gonna shadow.
2175 * @param iUser The user index.
2176 * @param iUserTable The user table index.
2177 */
2178DECLINLINE(int) pgmPoolTrackInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhys, uint16_t iUser, uint32_t iUserTable)
2179{
2180 int rc = VINF_SUCCESS;
2181 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2182
2183 LogFlow(("pgmPoolTrackInsert GCPhys=%RGp iUser %x iUserTable %x\n", GCPhys, iUser, iUserTable));
2184
2185#ifdef VBOX_STRICT
2186 /*
2187 * Check that the entry doesn't already exists.
2188 */
2189 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2190 {
2191 uint16_t i = pPage->iUserHead;
2192 do
2193 {
2194 Assert(i < pPool->cMaxUsers);
2195 AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2196 i = paUsers[i].iNext;
2197 } while (i != NIL_PGMPOOL_USER_INDEX);
2198 }
2199#endif
2200
2201 /*
2202 * Find free a user node.
2203 */
2204 uint16_t i = pPool->iUserFreeHead;
2205 if (i == NIL_PGMPOOL_USER_INDEX)
2206 {
2207 int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2208 if (RT_FAILURE(rc))
2209 return rc;
2210 i = pPool->iUserFreeHead;
2211 }
2212
2213 /*
2214 * Unlink the user node from the free list,
2215 * initialize and insert it into the user list.
2216 */
2217 pPool->iUserFreeHead = paUsers[i].iNext;
2218 paUsers[i].iNext = NIL_PGMPOOL_USER_INDEX;
2219 paUsers[i].iUser = iUser;
2220 paUsers[i].iUserTable = iUserTable;
2221 pPage->iUserHead = i;
2222
2223 /*
2224 * Insert into cache and enable monitoring of the guest page if enabled.
2225 *
2226 * Until we implement caching of all levels, including the CR3 one, we'll
2227 * have to make sure we don't try monitor & cache any recursive reuse of
2228 * a monitored CR3 page. Because all windows versions are doing this we'll
2229 * have to be able to do combined access monitoring, CR3 + PT and
2230 * PD + PT (guest PAE).
2231 *
2232 * Update:
2233 * We're now cooperating with the CR3 monitor if an uncachable page is found.
2234 */
2235#if defined(PGMPOOL_WITH_MONITORING) || defined(PGMPOOL_WITH_CACHE)
2236# ifdef PGMPOOL_WITH_MIXED_PT_CR3
2237 const bool fCanBeMonitored = true;
2238# else
2239 bool fCanBeMonitored = pPool->CTX_SUFF(pVM)->pgm.s.GCPhysGstCR3Monitored == NIL_RTGCPHYS
2240 || (GCPhys & X86_PTE_PAE_PG_MASK) != (pPool->CTX_SUFF(pVM)->pgm.s.GCPhysGstCR3Monitored & X86_PTE_PAE_PG_MASK)
2241 || pgmPoolIsBigPage((PGMPOOLKIND)pPage->enmKind);
2242# endif
2243# ifdef PGMPOOL_WITH_CACHE
2244 pgmPoolCacheInsert(pPool, pPage, fCanBeMonitored); /* This can be expanded. */
2245# endif
2246 if (fCanBeMonitored)
2247 {
2248# ifdef PGMPOOL_WITH_MONITORING
2249 rc = pgmPoolMonitorInsert(pPool, pPage);
2250 AssertRC(rc);
2251 }
2252# endif
2253#endif /* PGMPOOL_WITH_MONITORING */
2254 return rc;
2255}
2256
2257
2258# ifdef PGMPOOL_WITH_CACHE /* (only used when the cache is enabled.) */
2259/**
2260 * Adds a user reference to a page.
2261 *
2262 * This will move the page to the head of the
2263 *
2264 * @returns VBox status code.
2265 * @retval VINF_SUCCESS if successfully added.
2266 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2267 * @param pPool The pool.
2268 * @param pPage The cached page.
2269 * @param iUser The user index.
2270 * @param iUserTable The user table.
2271 */
2272static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2273{
2274 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2275
2276 Log3(("pgmPoolTrackAddUser GCPhys = %RGp iUser %x iUserTable %x\n", pPage->GCPhys, iUser, iUserTable));
2277
2278# ifdef VBOX_STRICT
2279 /*
2280 * Check that the entry doesn't already exists. We only allow multiple users of top-level paging structures (SHW_POOL_ROOT_IDX).
2281 */
2282 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2283 {
2284 uint16_t i = pPage->iUserHead;
2285 do
2286 {
2287 Assert(i < pPool->cMaxUsers);
2288 AssertMsg(iUser != PGMPOOL_IDX_PD || iUser != PGMPOOL_IDX_PDPT || iUser != PGMPOOL_IDX_NESTED_ROOT || iUser != PGMPOOL_IDX_AMD64_CR3 ||
2289 paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2290 i = paUsers[i].iNext;
2291 } while (i != NIL_PGMPOOL_USER_INDEX);
2292 }
2293# endif
2294
2295 /*
2296 * Allocate a user node.
2297 */
2298 uint16_t i = pPool->iUserFreeHead;
2299 if (i == NIL_PGMPOOL_USER_INDEX)
2300 {
2301 int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2302 if (RT_FAILURE(rc))
2303 return rc;
2304 i = pPool->iUserFreeHead;
2305 }
2306 pPool->iUserFreeHead = paUsers[i].iNext;
2307
2308 /*
2309 * Initialize the user node and insert it.
2310 */
2311 paUsers[i].iNext = pPage->iUserHead;
2312 paUsers[i].iUser = iUser;
2313 paUsers[i].iUserTable = iUserTable;
2314 pPage->iUserHead = i;
2315
2316# ifdef PGMPOOL_WITH_CACHE
2317 /*
2318 * Tell the cache to update its replacement stats for this page.
2319 */
2320 pgmPoolCacheUsed(pPool, pPage);
2321# endif
2322 return VINF_SUCCESS;
2323}
2324# endif /* PGMPOOL_WITH_CACHE */
2325
2326
2327/**
2328 * Frees a user record associated with a page.
2329 *
2330 * This does not clear the entry in the user table, it simply replaces the
2331 * user record to the chain of free records.
2332 *
2333 * @param pPool The pool.
2334 * @param HCPhys The HC physical address of the shadow page.
2335 * @param iUser The shadow page pool index of the user table.
2336 * @param iUserTable The index into the user table (shadowed).
2337 */
2338static void pgmPoolTrackFreeUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2339{
2340 /*
2341 * Unlink and free the specified user entry.
2342 */
2343 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2344
2345 Log3(("pgmPoolTrackFreeUser %RGp %x %x\n", pPage->GCPhys, iUser, iUserTable));
2346 /* Special: For PAE and 32-bit paging, there is usually no more than one user. */
2347 uint16_t i = pPage->iUserHead;
2348 if ( i != NIL_PGMPOOL_USER_INDEX
2349 && paUsers[i].iUser == iUser
2350 && paUsers[i].iUserTable == iUserTable)
2351 {
2352 pPage->iUserHead = paUsers[i].iNext;
2353
2354 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2355 paUsers[i].iNext = pPool->iUserFreeHead;
2356 pPool->iUserFreeHead = i;
2357 return;
2358 }
2359
2360 /* General: Linear search. */
2361 uint16_t iPrev = NIL_PGMPOOL_USER_INDEX;
2362 while (i != NIL_PGMPOOL_USER_INDEX)
2363 {
2364 if ( paUsers[i].iUser == iUser
2365 && paUsers[i].iUserTable == iUserTable)
2366 {
2367 if (iPrev != NIL_PGMPOOL_USER_INDEX)
2368 paUsers[iPrev].iNext = paUsers[i].iNext;
2369 else
2370 pPage->iUserHead = paUsers[i].iNext;
2371
2372 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2373 paUsers[i].iNext = pPool->iUserFreeHead;
2374 pPool->iUserFreeHead = i;
2375 return;
2376 }
2377 iPrev = i;
2378 i = paUsers[i].iNext;
2379 }
2380
2381 /* Fatal: didn't find it */
2382 AssertFatalMsgFailed(("Didn't find the user entry! iUser=%#x iUserTable=%#x GCPhys=%RGp\n",
2383 iUser, iUserTable, pPage->GCPhys));
2384}
2385
2386
2387/**
2388 * Gets the entry size of a shadow table.
2389 *
2390 * @param enmKind The kind of page.
2391 *
2392 * @returns The size of the entry in bytes. That is, 4 or 8.
2393 * @returns If the kind is not for a table, an assertion is raised and 0 is
2394 * returned.
2395 */
2396DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind)
2397{
2398 switch (enmKind)
2399 {
2400 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2401 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2402 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2403 case PGMPOOLKIND_32BIT_PD:
2404 case PGMPOOLKIND_32BIT_PD_PHYS:
2405 return 4;
2406
2407 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2408 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2409 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2410 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2411 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2412 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2413 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2414 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2415 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2416 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2417 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2418 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2419 case PGMPOOLKIND_64BIT_PML4:
2420 case PGMPOOLKIND_PAE_PDPT:
2421 case PGMPOOLKIND_ROOT_NESTED:
2422 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2423 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2424 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2425 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2426 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2427 case PGMPOOLKIND_PAE_PD_PHYS:
2428 case PGMPOOLKIND_PAE_PDPT_PHYS:
2429 return 8;
2430
2431 default:
2432 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
2433 }
2434}
2435
2436
2437/**
2438 * Gets the entry size of a guest table.
2439 *
2440 * @param enmKind The kind of page.
2441 *
2442 * @returns The size of the entry in bytes. That is, 0, 4 or 8.
2443 * @returns If the kind is not for a table, an assertion is raised and 0 is
2444 * returned.
2445 */
2446DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind)
2447{
2448 switch (enmKind)
2449 {
2450 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2451 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2452 case PGMPOOLKIND_32BIT_PD:
2453 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2454 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2455 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2456 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2457 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2458 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2459 return 4;
2460
2461 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2462 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2463 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2464 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2465 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2466 case PGMPOOLKIND_64BIT_PML4:
2467 case PGMPOOLKIND_PAE_PDPT:
2468 return 8;
2469
2470 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2471 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2472 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2473 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2474 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2475 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2476 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2477 case PGMPOOLKIND_ROOT_NESTED:
2478 case PGMPOOLKIND_PAE_PD_PHYS:
2479 case PGMPOOLKIND_PAE_PDPT_PHYS:
2480 case PGMPOOLKIND_32BIT_PD_PHYS:
2481 /** @todo can we return 0? (nobody is calling this...) */
2482 AssertFailed();
2483 return 0;
2484
2485 default:
2486 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
2487 }
2488}
2489
2490#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2491
2492/**
2493 * Scans one shadow page table for mappings of a physical page.
2494 *
2495 * @param pVM The VM handle.
2496 * @param pPhysPage The guest page in question.
2497 * @param iShw The shadow page table.
2498 * @param cRefs The number of references made in that PT.
2499 */
2500static void pgmPoolTrackFlushGCPhysPTInt(PVM pVM, PCPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs)
2501{
2502 LogFlow(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%R[pgmpage] iShw=%d cRefs=%d\n", pPhysPage, iShw, cRefs));
2503 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2504
2505 /*
2506 * Assert sanity.
2507 */
2508 Assert(cRefs == 1);
2509 AssertFatalMsg(iShw < pPool->cCurPages && iShw != NIL_PGMPOOL_IDX, ("iShw=%d\n", iShw));
2510 PPGMPOOLPAGE pPage = &pPool->aPages[iShw];
2511
2512 /*
2513 * Then, clear the actual mappings to the page in the shadow PT.
2514 */
2515 switch (pPage->enmKind)
2516 {
2517 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2518 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2519 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2520 {
2521 const uint32_t u32 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2522 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2523 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2524 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
2525 {
2526 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX32 cRefs=%#x\n", i, pPT->a[i], cRefs));
2527 pPT->a[i].u = 0;
2528 cRefs--;
2529 if (!cRefs)
2530 return;
2531 }
2532#ifdef LOG_ENABLED
2533 RTLogPrintf("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent);
2534 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
2535 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
2536 {
2537 RTLogPrintf("i=%d cRefs=%d\n", i, cRefs--);
2538 pPT->a[i].u = 0;
2539 }
2540#endif
2541 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
2542 break;
2543 }
2544
2545 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2546 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2547 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2548 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2549 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2550 {
2551 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2552 PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2553 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2554 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
2555 {
2556 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64 cRefs=%#x\n", i, pPT->a[i], cRefs));
2557 pPT->a[i].u = 0;
2558 cRefs--;
2559 if (!cRefs)
2560 return;
2561 }
2562#ifdef LOG_ENABLED
2563 RTLogPrintf("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent);
2564 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
2565 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
2566 {
2567 RTLogPrintf("i=%d cRefs=%d\n", i, cRefs--);
2568 pPT->a[i].u = 0;
2569 }
2570#endif
2571 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d u64=%RX64\n", cRefs, pPage->iFirstPresent, pPage->cPresent, u64));
2572 break;
2573 }
2574
2575 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2576 {
2577 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2578 PEPTPT pPT = (PEPTPT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2579 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2580 if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64)
2581 {
2582 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64 cRefs=%#x\n", i, pPT->a[i], cRefs));
2583 pPT->a[i].u = 0;
2584 cRefs--;
2585 if (!cRefs)
2586 return;
2587 }
2588#ifdef LOG_ENABLED
2589 RTLogPrintf("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent);
2590 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
2591 if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64)
2592 {
2593 RTLogPrintf("i=%d cRefs=%d\n", i, cRefs--);
2594 pPT->a[i].u = 0;
2595 }
2596#endif
2597 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
2598 break;
2599 }
2600
2601 default:
2602 AssertFatalMsgFailed(("enmKind=%d iShw=%d\n", pPage->enmKind, iShw));
2603 }
2604}
2605
2606
2607/**
2608 * Scans one shadow page table for mappings of a physical page.
2609 *
2610 * @param pVM The VM handle.
2611 * @param pPhysPage The guest page in question.
2612 * @param iShw The shadow page table.
2613 * @param cRefs The number of references made in that PT.
2614 */
2615void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs)
2616{
2617 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
2618 LogFlow(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%R[pgmpage] iShw=%d cRefs=%d\n", pPhysPage, iShw, cRefs));
2619 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPT, f);
2620 pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, iShw, cRefs);
2621 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
2622 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPT, f);
2623}
2624
2625
2626/**
2627 * Flushes a list of shadow page tables mapping the same physical page.
2628 *
2629 * @param pVM The VM handle.
2630 * @param pPhysPage The guest page in question.
2631 * @param iPhysExt The physical cross reference extent list to flush.
2632 */
2633void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt)
2634{
2635 Assert(PGMIsLockOwner(pVM));
2636 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2637 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTs, f);
2638 LogFlow(("pgmPoolTrackFlushGCPhysPTs: pPhysPage=%R[pgmpage] iPhysExt\n", pPhysPage, iPhysExt));
2639
2640 const uint16_t iPhysExtStart = iPhysExt;
2641 PPGMPOOLPHYSEXT pPhysExt;
2642 do
2643 {
2644 Assert(iPhysExt < pPool->cMaxPhysExts);
2645 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
2646 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
2647 if (pPhysExt->aidx[i] != NIL_PGMPOOL_IDX)
2648 {
2649 pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, pPhysExt->aidx[i], 1);
2650 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
2651 }
2652
2653 /* next */
2654 iPhysExt = pPhysExt->iNext;
2655 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
2656
2657 /* insert the list into the free list and clear the ram range entry. */
2658 pPhysExt->iNext = pPool->iPhysExtFreeHead;
2659 pPool->iPhysExtFreeHead = iPhysExtStart;
2660 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
2661
2662 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTs, f);
2663}
2664
2665#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
2666
2667/**
2668 * Flushes all shadow page table mappings of the given guest page.
2669 *
2670 * This is typically called when the host page backing the guest one has been
2671 * replaced or when the page protection was changed due to an access handler.
2672 *
2673 * @returns VBox status code.
2674 * @retval VINF_SUCCESS if all references has been successfully cleared.
2675 * @retval VINF_PGM_SYNC_CR3 if we're better off with a CR3 sync and a page
2676 * pool cleaning. FF and sync flags are set.
2677 *
2678 * @param pVM The VM handle.
2679 * @param pPhysPage The guest page in question.
2680 * @param pfFlushTLBs This is set to @a true if the shadow TLBs should be
2681 * flushed, it is NOT touched if this isn't necessary.
2682 * The caller MUST initialized this to @a false.
2683 */
2684int pgmPoolTrackFlushGCPhys(PVM pVM, PPGMPAGE pPhysPage, bool *pfFlushTLBs)
2685{
2686 pgmLock(pVM);
2687 int rc = VINF_SUCCESS;
2688#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2689 const uint16_t u16 = PGM_PAGE_GET_TRACKING(pPhysPage);
2690 if (u16)
2691 {
2692 /*
2693 * The zero page is currently screwing up the tracking and we'll
2694 * have to flush the whole shebang. Unless VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2695 * is defined, zero pages won't normally be mapped. Some kind of solution
2696 * will be needed for this problem of course, but it will have to wait...
2697 */
2698 if (PGM_PAGE_IS_ZERO(pPhysPage))
2699 rc = VINF_PGM_GCPHYS_ALIASED;
2700 else
2701 {
2702# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2703 /* Start a subset here because pgmPoolTrackFlushGCPhysPTsSlow and
2704 pgmPoolTrackFlushGCPhysPTs will/may kill the pool otherwise. */
2705 PVMCPU pVCpu = VMMGetCpu(pVM);
2706 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
2707# endif
2708
2709 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
2710 pgmPoolTrackFlushGCPhysPT(pVM,
2711 pPhysPage,
2712 PGMPOOL_TD_GET_IDX(u16),
2713 PGMPOOL_TD_GET_CREFS(u16));
2714 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
2715 pgmPoolTrackFlushGCPhysPTs(pVM, pPhysPage, PGMPOOL_TD_GET_IDX(u16));
2716 else
2717 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage);
2718 *pfFlushTLBs = true;
2719
2720# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2721 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
2722# endif
2723 }
2724 }
2725
2726#elif defined(PGMPOOL_WITH_CACHE)
2727 if (PGM_PAGE_IS_ZERO(pPhysPage))
2728 rc = VINF_PGM_GCPHYS_ALIASED;
2729 else
2730 {
2731# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2732 /* Start a subset here because pgmPoolTrackFlushGCPhysPTsSlow kill the pool otherwise. */
2733 PVMCPU pVCpu = VMMGetCpu(pVM);
2734 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
2735# endif
2736 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage);
2737 if (rc == VINF_SUCCESS)
2738 *pfFlushTLBs = true;
2739 }
2740
2741# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2742 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
2743# endif
2744
2745#else
2746 rc = VINF_PGM_GCPHYS_ALIASED;
2747#endif
2748
2749 if (rc == VINF_PGM_GCPHYS_ALIASED)
2750 {
2751 pVM->pgm.s.fGlobalSyncFlags |= PGM_GLOBAL_SYNC_CLEAR_PGM_POOL;
2752 for (unsigned i=0;i<pVM->cCPUs;i++)
2753 {
2754 PVMCPU pVCpu = &pVM->aCpus[i];
2755 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2756 }
2757 rc = VINF_PGM_SYNC_CR3;
2758 }
2759 pgmUnlock(pVM);
2760 return rc;
2761}
2762
2763
2764/**
2765 * Scans all shadow page tables for mappings of a physical page.
2766 *
2767 * This may be slow, but it's most likely more efficient than cleaning
2768 * out the entire page pool / cache.
2769 *
2770 * @returns VBox status code.
2771 * @retval VINF_SUCCESS if all references has been successfully cleared.
2772 * @retval VINF_PGM_GCPHYS_ALIASED if we're better off with a CR3 sync and
2773 * a page pool cleaning.
2774 *
2775 * @param pVM The VM handle.
2776 * @param pPhysPage The guest page in question.
2777 */
2778int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage)
2779{
2780 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2781 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTsSlow, s);
2782 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: cUsedPages=%d cPresent=%d pPhysPage=%R[pgmpage]\n",
2783 pPool->cUsedPages, pPool->cPresent, pPhysPage));
2784
2785#if 1
2786 /*
2787 * There is a limit to what makes sense.
2788 */
2789 if (pPool->cPresent > 1024)
2790 {
2791 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent));
2792 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
2793 return VINF_PGM_GCPHYS_ALIASED;
2794 }
2795#endif
2796
2797 /*
2798 * Iterate all the pages until we've encountered all that in use.
2799 * This is simple but not quite optimal solution.
2800 */
2801 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2802 const uint32_t u32 = u64;
2803 unsigned cLeft = pPool->cUsedPages;
2804 unsigned iPage = pPool->cCurPages;
2805 while (--iPage >= PGMPOOL_IDX_FIRST)
2806 {
2807 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
2808 if (pPage->GCPhys != NIL_RTGCPHYS)
2809 {
2810 switch (pPage->enmKind)
2811 {
2812 /*
2813 * We only care about shadow page tables.
2814 */
2815 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2816 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2817 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2818 {
2819 unsigned cPresent = pPage->cPresent;
2820 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2821 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2822 if (pPT->a[i].n.u1Present)
2823 {
2824 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
2825 {
2826 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX32\n", iPage, i, pPT->a[i]));
2827 pPT->a[i].u = 0;
2828 }
2829 if (!--cPresent)
2830 break;
2831 }
2832 break;
2833 }
2834
2835 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2836 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2837 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2838 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2839 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2840 {
2841 unsigned cPresent = pPage->cPresent;
2842 PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2843 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2844 if (pPT->a[i].n.u1Present)
2845 {
2846 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
2847 {
2848 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i]));
2849 pPT->a[i].u = 0;
2850 }
2851 if (!--cPresent)
2852 break;
2853 }
2854 break;
2855 }
2856 }
2857 if (!--cLeft)
2858 break;
2859 }
2860 }
2861
2862 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
2863 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
2864 return VINF_SUCCESS;
2865}
2866
2867
2868/**
2869 * Clears the user entry in a user table.
2870 *
2871 * This is used to remove all references to a page when flushing it.
2872 */
2873static void pgmPoolTrackClearPageUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PCPGMPOOLUSER pUser)
2874{
2875 Assert(pUser->iUser != NIL_PGMPOOL_IDX);
2876 Assert(pUser->iUser < pPool->cCurPages);
2877 uint32_t iUserTable = pUser->iUserTable;
2878
2879 /*
2880 * Map the user page.
2881 */
2882 PPGMPOOLPAGE pUserPage = &pPool->aPages[pUser->iUser];
2883 union
2884 {
2885 uint64_t *pau64;
2886 uint32_t *pau32;
2887 } u;
2888 u.pau64 = (uint64_t *)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pUserPage);
2889
2890 LogFlow(("pgmPoolTrackClearPageUser: clear %x in %s (%RGp) (flushing %s)\n", iUserTable, pgmPoolPoolKindToStr(pUserPage->enmKind), pUserPage->Core.Key, pgmPoolPoolKindToStr(pPage->enmKind)));
2891
2892 /* Safety precaution in case we change the paging for other modes too in the future. */
2893 Assert(!pgmPoolIsPageLocked(&pPool->CTX_SUFF(pVM)->pgm.s, pPage));
2894
2895#ifdef VBOX_STRICT
2896 /*
2897 * Some sanity checks.
2898 */
2899 switch (pUserPage->enmKind)
2900 {
2901 case PGMPOOLKIND_32BIT_PD:
2902 case PGMPOOLKIND_32BIT_PD_PHYS:
2903 Assert(iUserTable < X86_PG_ENTRIES);
2904 break;
2905 case PGMPOOLKIND_PAE_PDPT:
2906 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2907 case PGMPOOLKIND_PAE_PDPT_PHYS:
2908 Assert(iUserTable < 4);
2909 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
2910 break;
2911 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2912 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2913 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2914 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2915 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2916 case PGMPOOLKIND_PAE_PD_PHYS:
2917 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2918 break;
2919 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2920 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2921 Assert(!(u.pau64[iUserTable] & PGM_PDFLAGS_MAPPING));
2922 break;
2923 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2924 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2925 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
2926 break;
2927 case PGMPOOLKIND_64BIT_PML4:
2928 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
2929 /* GCPhys >> PAGE_SHIFT is the index here */
2930 break;
2931 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2932 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2933 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2934 break;
2935
2936 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2937 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2938 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2939 break;
2940
2941 case PGMPOOLKIND_ROOT_NESTED:
2942 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2943 break;
2944
2945 default:
2946 AssertMsgFailed(("enmKind=%d\n", pUserPage->enmKind));
2947 break;
2948 }
2949#endif /* VBOX_STRICT */
2950
2951 /*
2952 * Clear the entry in the user page.
2953 */
2954 switch (pUserPage->enmKind)
2955 {
2956 /* 32-bit entries */
2957 case PGMPOOLKIND_32BIT_PD:
2958 case PGMPOOLKIND_32BIT_PD_PHYS:
2959 u.pau32[iUserTable] = 0;
2960 break;
2961
2962 /* 64-bit entries */
2963 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2964 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2965 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2966 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2967 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2968#if defined(IN_RC)
2969 /* In 32 bits PAE mode we *must* invalidate the TLB when changing a PDPT entry; the CPU fetches them only during cr3 load, so any
2970 * non-present PDPT will continue to cause page faults.
2971 */
2972 ASMReloadCR3();
2973#endif
2974 /* no break */
2975 case PGMPOOLKIND_PAE_PD_PHYS:
2976 case PGMPOOLKIND_PAE_PDPT_PHYS:
2977 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2978 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2979 case PGMPOOLKIND_64BIT_PML4:
2980 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2981 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2982 case PGMPOOLKIND_PAE_PDPT:
2983 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2984 case PGMPOOLKIND_ROOT_NESTED:
2985 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2986 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2987 u.pau64[iUserTable] = 0;
2988 break;
2989
2990 default:
2991 AssertFatalMsgFailed(("enmKind=%d iUser=%#x iUserTable=%#x\n", pUserPage->enmKind, pUser->iUser, pUser->iUserTable));
2992 }
2993}
2994
2995
2996/**
2997 * Clears all users of a page.
2998 */
2999static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3000{
3001 /*
3002 * Free all the user records.
3003 */
3004 LogFlow(("pgmPoolTrackClearPageUsers %RGp\n", pPage->GCPhys));
3005
3006 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
3007 uint16_t i = pPage->iUserHead;
3008 while (i != NIL_PGMPOOL_USER_INDEX)
3009 {
3010 /* Clear enter in user table. */
3011 pgmPoolTrackClearPageUser(pPool, pPage, &paUsers[i]);
3012
3013 /* Free it. */
3014 const uint16_t iNext = paUsers[i].iNext;
3015 paUsers[i].iUser = NIL_PGMPOOL_IDX;
3016 paUsers[i].iNext = pPool->iUserFreeHead;
3017 pPool->iUserFreeHead = i;
3018
3019 /* Next. */
3020 i = iNext;
3021 }
3022 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
3023}
3024
3025#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3026
3027/**
3028 * Allocates a new physical cross reference extent.
3029 *
3030 * @returns Pointer to the allocated extent on success. NULL if we're out of them.
3031 * @param pVM The VM handle.
3032 * @param piPhysExt Where to store the phys ext index.
3033 */
3034PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt)
3035{
3036 Assert(PGMIsLockOwner(pVM));
3037 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3038 uint16_t iPhysExt = pPool->iPhysExtFreeHead;
3039 if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX)
3040 {
3041 STAM_COUNTER_INC(&pPool->StamTrackPhysExtAllocFailures);
3042 return NULL;
3043 }
3044 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3045 pPool->iPhysExtFreeHead = pPhysExt->iNext;
3046 pPhysExt->iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
3047 *piPhysExt = iPhysExt;
3048 return pPhysExt;
3049}
3050
3051
3052/**
3053 * Frees a physical cross reference extent.
3054 *
3055 * @param pVM The VM handle.
3056 * @param iPhysExt The extent to free.
3057 */
3058void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt)
3059{
3060 Assert(PGMIsLockOwner(pVM));
3061 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3062 Assert(iPhysExt < pPool->cMaxPhysExts);
3063 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3064 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3065 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3066 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3067 pPool->iPhysExtFreeHead = iPhysExt;
3068}
3069
3070
3071/**
3072 * Frees a physical cross reference extent.
3073 *
3074 * @param pVM The VM handle.
3075 * @param iPhysExt The extent to free.
3076 */
3077void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt)
3078{
3079 Assert(PGMIsLockOwner(pVM));
3080 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3081
3082 const uint16_t iPhysExtStart = iPhysExt;
3083 PPGMPOOLPHYSEXT pPhysExt;
3084 do
3085 {
3086 Assert(iPhysExt < pPool->cMaxPhysExts);
3087 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3088 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3089 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3090
3091 /* next */
3092 iPhysExt = pPhysExt->iNext;
3093 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3094
3095 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3096 pPool->iPhysExtFreeHead = iPhysExtStart;
3097}
3098
3099
3100/**
3101 * Insert a reference into a list of physical cross reference extents.
3102 *
3103 * @returns The new tracking data for PGMPAGE.
3104 *
3105 * @param pVM The VM handle.
3106 * @param iPhysExt The physical extent index of the list head.
3107 * @param iShwPT The shadow page table index.
3108 *
3109 */
3110static uint16_t pgmPoolTrackPhysExtInsert(PVM pVM, uint16_t iPhysExt, uint16_t iShwPT)
3111{
3112 Assert(PGMIsLockOwner(pVM));
3113 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3114 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3115
3116 /* special common case. */
3117 if (paPhysExts[iPhysExt].aidx[2] == NIL_PGMPOOL_IDX)
3118 {
3119 paPhysExts[iPhysExt].aidx[2] = iShwPT;
3120 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany);
3121 LogFlow(("pgmPoolTrackPhysExtAddref: %d:{,,%d}\n", iPhysExt, iShwPT));
3122 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3123 }
3124
3125 /* general treatment. */
3126 const uint16_t iPhysExtStart = iPhysExt;
3127 unsigned cMax = 15;
3128 for (;;)
3129 {
3130 Assert(iPhysExt < pPool->cMaxPhysExts);
3131 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3132 if (paPhysExts[iPhysExt].aidx[i] == NIL_PGMPOOL_IDX)
3133 {
3134 paPhysExts[iPhysExt].aidx[i] = iShwPT;
3135 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany);
3136 LogFlow(("pgmPoolTrackPhysExtAddref: %d:{%d} i=%d cMax=%d\n", iPhysExt, iShwPT, i, cMax));
3137 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtStart);
3138 }
3139 if (!--cMax)
3140 {
3141 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows);
3142 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
3143 LogFlow(("pgmPoolTrackPhysExtAddref: overflow (1) iShwPT=%d\n", iShwPT));
3144 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3145 }
3146 }
3147
3148 /* add another extent to the list. */
3149 PPGMPOOLPHYSEXT pNew = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
3150 if (!pNew)
3151 {
3152 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows);
3153 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
3154 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3155 }
3156 pNew->iNext = iPhysExtStart;
3157 pNew->aidx[0] = iShwPT;
3158 LogFlow(("pgmPoolTrackPhysExtAddref: added new extent %d:{%d}->%d\n", iPhysExt, iShwPT, iPhysExtStart));
3159 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3160}
3161
3162
3163/**
3164 * Add a reference to guest physical page where extents are in use.
3165 *
3166 * @returns The new tracking data for PGMPAGE.
3167 *
3168 * @param pVM The VM handle.
3169 * @param u16 The ram range flags (top 16-bits).
3170 * @param iShwPT The shadow page table index.
3171 */
3172uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT)
3173{
3174 pgmLock(pVM);
3175 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
3176 {
3177 /*
3178 * Convert to extent list.
3179 */
3180 Assert(PGMPOOL_TD_GET_CREFS(u16) == 1);
3181 uint16_t iPhysExt;
3182 PPGMPOOLPHYSEXT pPhysExt = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
3183 if (pPhysExt)
3184 {
3185 LogFlow(("pgmPoolTrackPhysExtAddref: new extent: %d:{%d, %d}\n", iPhysExt, PGMPOOL_TD_GET_IDX(u16), iShwPT));
3186 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliased);
3187 pPhysExt->aidx[0] = PGMPOOL_TD_GET_IDX(u16);
3188 pPhysExt->aidx[1] = iShwPT;
3189 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3190 }
3191 else
3192 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3193 }
3194 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
3195 {
3196 /*
3197 * Insert into the extent list.
3198 */
3199 u16 = pgmPoolTrackPhysExtInsert(pVM, PGMPOOL_TD_GET_IDX(u16), iShwPT);
3200 }
3201 else
3202 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedLots);
3203 pgmUnlock(pVM);
3204 return u16;
3205}
3206
3207
3208/**
3209 * Clear references to guest physical memory.
3210 *
3211 * @param pPool The pool.
3212 * @param pPage The page.
3213 * @param pPhysPage Pointer to the aPages entry in the ram range.
3214 */
3215void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMPAGE pPhysPage)
3216{
3217 const unsigned cRefs = PGM_PAGE_GET_TD_CREFS(pPhysPage);
3218 AssertFatalMsg(cRefs == PGMPOOL_TD_CREFS_PHYSEXT, ("cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
3219
3220 uint16_t iPhysExt = PGM_PAGE_GET_TD_IDX(pPhysPage);
3221 if (iPhysExt != PGMPOOL_TD_IDX_OVERFLOWED)
3222 {
3223 PVM pVM = pPool->CTX_SUFF(pVM);
3224 pgmLock(pVM);
3225
3226 uint16_t iPhysExtPrev = NIL_PGMPOOL_PHYSEXT_INDEX;
3227 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3228 do
3229 {
3230 Assert(iPhysExt < pPool->cMaxPhysExts);
3231
3232 /*
3233 * Look for the shadow page and check if it's all freed.
3234 */
3235 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3236 {
3237 if (paPhysExts[iPhysExt].aidx[i] == pPage->idx)
3238 {
3239 paPhysExts[iPhysExt].aidx[i] = NIL_PGMPOOL_IDX;
3240
3241 for (i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3242 if (paPhysExts[iPhysExt].aidx[i] != NIL_PGMPOOL_IDX)
3243 {
3244 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
3245 pgmUnlock(pVM);
3246 return;
3247 }
3248
3249 /* we can free the node. */
3250 const uint16_t iPhysExtNext = paPhysExts[iPhysExt].iNext;
3251 if ( iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX
3252 && iPhysExtNext == NIL_PGMPOOL_PHYSEXT_INDEX)
3253 {
3254 /* lonely node */
3255 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3256 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d lonely\n", pPhysPage, pPage->idx));
3257 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
3258 }
3259 else if (iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX)
3260 {
3261 /* head */
3262 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d head\n", pPhysPage, pPage->idx));
3263 PGM_PAGE_SET_TRACKING(pPhysPage, PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtNext));
3264 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3265 }
3266 else
3267 {
3268 /* in list */
3269 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
3270 paPhysExts[iPhysExtPrev].iNext = iPhysExtNext;
3271 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3272 }
3273 iPhysExt = iPhysExtNext;
3274 pgmUnlock(pVM);
3275 return;
3276 }
3277 }
3278
3279 /* next */
3280 iPhysExtPrev = iPhysExt;
3281 iPhysExt = paPhysExts[iPhysExt].iNext;
3282 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3283
3284 pgmUnlock(pVM);
3285 AssertFatalMsgFailed(("not-found! cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
3286 }
3287 else /* nothing to do */
3288 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage]\n", pPhysPage));
3289}
3290
3291
3292/**
3293 * Clear references to guest physical memory.
3294 *
3295 * This is the same as pgmPoolTracDerefGCPhys except that the guest physical address
3296 * is assumed to be correct, so the linear search can be skipped and we can assert
3297 * at an earlier point.
3298 *
3299 * @param pPool The pool.
3300 * @param pPage The page.
3301 * @param HCPhys The host physical address corresponding to the guest page.
3302 * @param GCPhys The guest physical address corresponding to HCPhys.
3303 */
3304static void pgmPoolTracDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhys)
3305{
3306 /*
3307 * Walk range list.
3308 */
3309 PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3310 while (pRam)
3311 {
3312 RTGCPHYS off = GCPhys - pRam->GCPhys;
3313 if (off < pRam->cb)
3314 {
3315 /* does it match? */
3316 const unsigned iPage = off >> PAGE_SHIFT;
3317 Assert(PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]));
3318#ifdef LOG_ENABLED
3319RTHCPHYS HCPhysPage = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]);
3320Log2(("pgmPoolTracDerefGCPhys %RHp vs %RHp\n", HCPhysPage, HCPhys));
3321#endif
3322 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3323 {
3324 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3325 return;
3326 }
3327 break;
3328 }
3329 pRam = pRam->CTX_SUFF(pNext);
3330 }
3331 AssertFatalMsgFailed(("HCPhys=%RHp GCPhys=%RGp\n", HCPhys, GCPhys));
3332}
3333
3334
3335/**
3336 * Clear references to guest physical memory.
3337 *
3338 * @param pPool The pool.
3339 * @param pPage The page.
3340 * @param HCPhys The host physical address corresponding to the guest page.
3341 * @param GCPhysHint The guest physical address which may corresponding to HCPhys.
3342 */
3343static void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint)
3344{
3345 Log4(("pgmPoolTracDerefGCPhysHint %RHp %RGp\n", HCPhys, GCPhysHint));
3346
3347 /*
3348 * Walk range list.
3349 */
3350 PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3351 while (pRam)
3352 {
3353 RTGCPHYS off = GCPhysHint - pRam->GCPhys;
3354 if (off < pRam->cb)
3355 {
3356 /* does it match? */
3357 const unsigned iPage = off >> PAGE_SHIFT;
3358 Assert(PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]));
3359 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3360 {
3361 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3362 return;
3363 }
3364 break;
3365 }
3366 pRam = pRam->CTX_SUFF(pNext);
3367 }
3368
3369 /*
3370 * Damn, the hint didn't work. We'll have to do an expensive linear search.
3371 */
3372 STAM_COUNTER_INC(&pPool->StatTrackLinearRamSearches);
3373 pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3374 while (pRam)
3375 {
3376 unsigned iPage = pRam->cb >> PAGE_SHIFT;
3377 while (iPage-- > 0)
3378 {
3379 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3380 {
3381 Log4(("pgmPoolTracDerefGCPhysHint: Linear HCPhys=%RHp GCPhysHint=%RGp GCPhysReal=%RGp\n",
3382 HCPhys, GCPhysHint, pRam->GCPhys + (iPage << PAGE_SHIFT)));
3383 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3384 return;
3385 }
3386 }
3387 pRam = pRam->CTX_SUFF(pNext);
3388 }
3389
3390 AssertFatalMsgFailed(("HCPhys=%RHp GCPhysHint=%RGp\n", HCPhys, GCPhysHint));
3391}
3392
3393
3394/**
3395 * Clear references to guest physical memory in a 32-bit / 32-bit page table.
3396 *
3397 * @param pPool The pool.
3398 * @param pPage The page.
3399 * @param pShwPT The shadow page table (mapping of the page).
3400 * @param pGstPT The guest page table.
3401 */
3402DECLINLINE(void) pgmPoolTrackDerefPT32Bit32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT, PCX86PT pGstPT)
3403{
3404 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
3405 if (pShwPT->a[i].n.u1Present)
3406 {
3407 Log4(("pgmPoolTrackDerefPT32Bit32Bit: i=%d pte=%RX32 hint=%RX32\n",
3408 i, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
3409 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK);
3410 if (!--pPage->cPresent)
3411 break;
3412 }
3413}
3414
3415
3416/**
3417 * Clear references to guest physical memory in a PAE / 32-bit page table.
3418 *
3419 * @param pPool The pool.
3420 * @param pPage The page.
3421 * @param pShwPT The shadow page table (mapping of the page).
3422 * @param pGstPT The guest page table (just a half one).
3423 */
3424DECLINLINE(void) pgmPoolTrackDerefPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PT pGstPT)
3425{
3426 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++)
3427 if (pShwPT->a[i].n.u1Present)
3428 {
3429 Log4(("pgmPoolTrackDerefPTPae32Bit: i=%d pte=%RX64 hint=%RX32\n",
3430 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
3431 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK);
3432 }
3433}
3434
3435
3436/**
3437 * Clear references to guest physical memory in a PAE / PAE page table.
3438 *
3439 * @param pPool The pool.
3440 * @param pPage The page.
3441 * @param pShwPT The shadow page table (mapping of the page).
3442 * @param pGstPT The guest page table.
3443 */
3444DECLINLINE(void) pgmPoolTrackDerefPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PTPAE pGstPT)
3445{
3446 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++)
3447 if (pShwPT->a[i].n.u1Present)
3448 {
3449 Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX32 hint=%RX32\n",
3450 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK));
3451 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK);
3452 }
3453}
3454
3455
3456/**
3457 * Clear references to guest physical memory in a 32-bit / 4MB page table.
3458 *
3459 * @param pPool The pool.
3460 * @param pPage The page.
3461 * @param pShwPT The shadow page table (mapping of the page).
3462 */
3463DECLINLINE(void) pgmPoolTrackDerefPT32Bit4MB(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT)
3464{
3465 RTGCPHYS GCPhys = pPage->GCPhys;
3466 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
3467 if (pShwPT->a[i].n.u1Present)
3468 {
3469 Log4(("pgmPoolTrackDerefPT32Bit4MB: i=%d pte=%RX32 GCPhys=%RGp\n",
3470 i, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys));
3471 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys);
3472 }
3473}
3474
3475
3476/**
3477 * Clear references to guest physical memory in a PAE / 2/4MB page table.
3478 *
3479 * @param pPool The pool.
3480 * @param pPage The page.
3481 * @param pShwPT The shadow page table (mapping of the page).
3482 */
3483DECLINLINE(void) pgmPoolTrackDerefPTPaeBig(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT)
3484{
3485 RTGCPHYS GCPhys = pPage->GCPhys;
3486 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
3487 if (pShwPT->a[i].n.u1Present)
3488 {
3489 Log4(("pgmPoolTrackDerefPTPaeBig: i=%d pte=%RX64 hint=%RGp\n",
3490 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys));
3491 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys);
3492 }
3493}
3494
3495#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
3496
3497
3498/**
3499 * Clear references to shadowed pages in a 32 bits page directory.
3500 *
3501 * @param pPool The pool.
3502 * @param pPage The page.
3503 * @param pShwPD The shadow page directory (mapping of the page).
3504 */
3505DECLINLINE(void) pgmPoolTrackDerefPD(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PD pShwPD)
3506{
3507 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
3508 {
3509 if ( pShwPD->a[i].n.u1Present
3510 && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)
3511 )
3512 {
3513 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PG_MASK);
3514 if (pSubPage)
3515 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3516 else
3517 AssertFatalMsgFailed(("%x\n", pShwPD->a[i].u & X86_PDE_PG_MASK));
3518 }
3519 }
3520}
3521
3522/**
3523 * Clear references to shadowed pages in a PAE (legacy or 64 bits) page directory.
3524 *
3525 * @param pPool The pool.
3526 * @param pPage The page.
3527 * @param pShwPD The shadow page directory (mapping of the page).
3528 */
3529DECLINLINE(void) pgmPoolTrackDerefPDPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPAE pShwPD)
3530{
3531 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
3532 {
3533 if ( pShwPD->a[i].n.u1Present
3534 && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)
3535 )
3536 {
3537 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PAE_PG_MASK);
3538 if (pSubPage)
3539 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3540 else
3541 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & X86_PDE_PAE_PG_MASK));
3542 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3543 }
3544 }
3545}
3546
3547/**
3548 * Clear references to shadowed pages in a PAE page directory pointer table.
3549 *
3550 * @param pPool The pool.
3551 * @param pPage The page.
3552 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
3553 */
3554DECLINLINE(void) pgmPoolTrackDerefPDPTPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
3555{
3556 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
3557 {
3558 if ( pShwPDPT->a[i].n.u1Present
3559 && !(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING)
3560 )
3561 {
3562 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK);
3563 if (pSubPage)
3564 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3565 else
3566 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK));
3567 }
3568 }
3569}
3570
3571
3572/**
3573 * Clear references to shadowed pages in a 64-bit page directory pointer table.
3574 *
3575 * @param pPool The pool.
3576 * @param pPage The page.
3577 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
3578 */
3579DECLINLINE(void) pgmPoolTrackDerefPDPT64Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
3580{
3581 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
3582 {
3583 Assert(!(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING));
3584 if (pShwPDPT->a[i].n.u1Present)
3585 {
3586 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK);
3587 if (pSubPage)
3588 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3589 else
3590 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK));
3591 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3592 }
3593 }
3594}
3595
3596
3597/**
3598 * Clear references to shadowed pages in a 64-bit level 4 page table.
3599 *
3600 * @param pPool The pool.
3601 * @param pPage The page.
3602 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
3603 */
3604DECLINLINE(void) pgmPoolTrackDerefPML464Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PML4 pShwPML4)
3605{
3606 for (unsigned i = 0; i < RT_ELEMENTS(pShwPML4->a); i++)
3607 {
3608 if (pShwPML4->a[i].n.u1Present)
3609 {
3610 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPML4->a[i].u & X86_PDPE_PG_MASK);
3611 if (pSubPage)
3612 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3613 else
3614 AssertFatalMsgFailed(("%RX64\n", pShwPML4->a[i].u & X86_PML4E_PG_MASK));
3615 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3616 }
3617 }
3618}
3619
3620
3621/**
3622 * Clear references to shadowed pages in an EPT page table.
3623 *
3624 * @param pPool The pool.
3625 * @param pPage The page.
3626 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
3627 */
3628DECLINLINE(void) pgmPoolTrackDerefPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPT pShwPT)
3629{
3630 RTGCPHYS GCPhys = pPage->GCPhys;
3631 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
3632 if (pShwPT->a[i].n.u1Present)
3633 {
3634 Log4(("pgmPoolTrackDerefPTEPT: i=%d pte=%RX64 GCPhys=%RX64\n",
3635 i, pShwPT->a[i].u & EPT_PTE_PG_MASK, pPage->GCPhys));
3636 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & EPT_PTE_PG_MASK, GCPhys);
3637 }
3638}
3639
3640
3641/**
3642 * Clear references to shadowed pages in an EPT page directory.
3643 *
3644 * @param pPool The pool.
3645 * @param pPage The page.
3646 * @param pShwPD The shadow page directory (mapping of the page).
3647 */
3648DECLINLINE(void) pgmPoolTrackDerefPDEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPD pShwPD)
3649{
3650 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
3651 {
3652 if (pShwPD->a[i].n.u1Present)
3653 {
3654 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & EPT_PDE_PG_MASK);
3655 if (pSubPage)
3656 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3657 else
3658 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & EPT_PDE_PG_MASK));
3659 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3660 }
3661 }
3662}
3663
3664
3665/**
3666 * Clear references to shadowed pages in an EPT page directory pointer table.
3667 *
3668 * @param pPool The pool.
3669 * @param pPage The page.
3670 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
3671 */
3672DECLINLINE(void) pgmPoolTrackDerefPDPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPDPT pShwPDPT)
3673{
3674 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
3675 {
3676 if (pShwPDPT->a[i].n.u1Present)
3677 {
3678 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK);
3679 if (pSubPage)
3680 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3681 else
3682 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK));
3683 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3684 }
3685 }
3686}
3687
3688
3689/**
3690 * Clears all references made by this page.
3691 *
3692 * This includes other shadow pages and GC physical addresses.
3693 *
3694 * @param pPool The pool.
3695 * @param pPage The page.
3696 */
3697static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3698{
3699 /*
3700 * Map the shadow page and take action according to the page kind.
3701 */
3702 void *pvShw = PGMPOOL_PAGE_2_LOCKED_PTR(pPool->CTX_SUFF(pVM), pPage);
3703 switch (pPage->enmKind)
3704 {
3705#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3706 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3707 {
3708 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3709 void *pvGst;
3710 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
3711 pgmPoolTrackDerefPT32Bit32Bit(pPool, pPage, (PX86PT)pvShw, (PCX86PT)pvGst);
3712 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3713 break;
3714 }
3715
3716 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3717 {
3718 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3719 void *pvGst;
3720 int rc = PGM_GCPHYS_2_PTR_EX(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
3721 pgmPoolTrackDerefPTPae32Bit(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PT)pvGst);
3722 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3723 break;
3724 }
3725
3726 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3727 {
3728 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3729 void *pvGst;
3730 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
3731 pgmPoolTrackDerefPTPaePae(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PTPAE)pvGst);
3732 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3733 break;
3734 }
3735
3736 case PGMPOOLKIND_32BIT_PT_FOR_PHYS: /* treat it like a 4 MB page */
3737 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3738 {
3739 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3740 pgmPoolTrackDerefPT32Bit4MB(pPool, pPage, (PX86PT)pvShw);
3741 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3742 break;
3743 }
3744
3745 case PGMPOOLKIND_PAE_PT_FOR_PHYS: /* treat it like a 2 MB page */
3746 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3747 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3748 {
3749 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3750 pgmPoolTrackDerefPTPaeBig(pPool, pPage, (PX86PTPAE)pvShw);
3751 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3752 break;
3753 }
3754
3755#else /* !PGMPOOL_WITH_GCPHYS_TRACKING */
3756 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3757 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3758 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3759 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3760 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3761 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3762 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3763 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3764 break;
3765#endif /* !PGMPOOL_WITH_GCPHYS_TRACKING */
3766
3767 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3768 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3769 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3770 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3771 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3772 case PGMPOOLKIND_PAE_PD_PHYS:
3773 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3774 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3775 pgmPoolTrackDerefPDPae(pPool, pPage, (PX86PDPAE)pvShw);
3776 break;
3777
3778 case PGMPOOLKIND_32BIT_PD_PHYS:
3779 case PGMPOOLKIND_32BIT_PD:
3780 pgmPoolTrackDerefPD(pPool, pPage, (PX86PD)pvShw);
3781 break;
3782
3783 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
3784 case PGMPOOLKIND_PAE_PDPT:
3785 case PGMPOOLKIND_PAE_PDPT_PHYS:
3786 pgmPoolTrackDerefPDPTPae(pPool, pPage, (PX86PDPT)pvShw);
3787 break;
3788
3789 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3790 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3791 pgmPoolTrackDerefPDPT64Bit(pPool, pPage, (PX86PDPT)pvShw);
3792 break;
3793
3794 case PGMPOOLKIND_64BIT_PML4:
3795 pgmPoolTrackDerefPML464Bit(pPool, pPage, (PX86PML4)pvShw);
3796 break;
3797
3798 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3799 pgmPoolTrackDerefPTEPT(pPool, pPage, (PEPTPT)pvShw);
3800 break;
3801
3802 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3803 pgmPoolTrackDerefPDEPT(pPool, pPage, (PEPTPD)pvShw);
3804 break;
3805
3806 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3807 pgmPoolTrackDerefPDPTEPT(pPool, pPage, (PEPTPDPT)pvShw);
3808 break;
3809
3810 default:
3811 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
3812 }
3813
3814 /* paranoia, clear the shadow page. Remove this laser (i.e. let Alloc and ClearAll do it). */
3815 STAM_PROFILE_START(&pPool->StatZeroPage, z);
3816 ASMMemZeroPage(pvShw);
3817 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
3818 pPage->fZeroed = true;
3819 PGMPOOL_UNLOCK_PTR(pPool->CTX_SUFF(pVM), pvShw);
3820}
3821#endif /* PGMPOOL_WITH_USER_TRACKING */
3822
3823/**
3824 * Flushes a pool page.
3825 *
3826 * This moves the page to the free list after removing all user references to it.
3827 *
3828 * @returns VBox status code.
3829 * @retval VINF_SUCCESS on success.
3830 * @param pPool The pool.
3831 * @param HCPhys The HC physical address of the shadow page.
3832 */
3833int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3834{
3835 PVM pVM = pPool->CTX_SUFF(pVM);
3836
3837 int rc = VINF_SUCCESS;
3838 STAM_PROFILE_START(&pPool->StatFlushPage, f);
3839 LogFlow(("pgmPoolFlushPage: pPage=%p:{.Key=%RHp, .idx=%d, .enmKind=%s, .GCPhys=%RGp}\n",
3840 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
3841
3842 /*
3843 * Quietly reject any attempts at flushing any of the special root pages.
3844 */
3845 if (pPage->idx < PGMPOOL_IDX_FIRST)
3846 {
3847 AssertFailed(); /* can no longer happen */
3848 Log(("pgmPoolFlushPage: special root page, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
3849 return VINF_SUCCESS;
3850 }
3851
3852 pgmLock(pVM);
3853
3854 /*
3855 * Quietly reject any attempts at flushing the currently active shadow CR3 mapping
3856 */
3857 if (pgmPoolIsPageLocked(&pVM->pgm.s, pPage))
3858 {
3859 AssertMsg( pPage->enmKind == PGMPOOLKIND_64BIT_PML4
3860 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT
3861 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT_FOR_32BIT
3862 || pPage->enmKind == PGMPOOLKIND_32BIT_PD
3863 || pPage->enmKind == PGMPOOLKIND_PAE_PD_FOR_PAE_PD
3864 || pPage->enmKind == PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD
3865 || pPage->enmKind == PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD
3866 || pPage->enmKind == PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD
3867 || pPage->enmKind == PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD,
3868 ("Can't free the shadow CR3! (%RHp vs %RHp kind=%d\n", PGMGetHyperCR3(VMMGetCpu(pVM)), pPage->Core.Key, pPage->enmKind));
3869 Log(("pgmPoolFlushPage: current active shadow CR3, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
3870 pgmUnlock(pVM);
3871 return VINF_SUCCESS;
3872 }
3873
3874#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3875 /* Start a subset so we won't run out of mapping space. */
3876 PVMCPU pVCpu = VMMGetCpu(pVM);
3877 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
3878#endif
3879
3880 /*
3881 * Mark the page as being in need of a ASMMemZeroPage().
3882 */
3883 pPage->fZeroed = false;
3884
3885#ifdef PGMPOOL_WITH_USER_TRACKING
3886 /*
3887 * Clear the page.
3888 */
3889 pgmPoolTrackClearPageUsers(pPool, pPage);
3890 STAM_PROFILE_START(&pPool->StatTrackDeref,a);
3891 pgmPoolTrackDeref(pPool, pPage);
3892 STAM_PROFILE_STOP(&pPool->StatTrackDeref,a);
3893#endif
3894
3895#ifdef PGMPOOL_WITH_CACHE
3896 /*
3897 * Flush it from the cache.
3898 */
3899 pgmPoolCacheFlushPage(pPool, pPage);
3900#endif /* PGMPOOL_WITH_CACHE */
3901
3902#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3903 /* Heavy stuff done. */
3904 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
3905#endif
3906
3907#ifdef PGMPOOL_WITH_MONITORING
3908 /*
3909 * Deregistering the monitoring.
3910 */
3911 if (pPage->fMonitored)
3912 rc = pgmPoolMonitorFlush(pPool, pPage);
3913#endif
3914
3915 /*
3916 * Free the page.
3917 */
3918 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
3919 pPage->iNext = pPool->iFreeHead;
3920 pPool->iFreeHead = pPage->idx;
3921 pPage->enmKind = PGMPOOLKIND_FREE;
3922 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
3923 pPage->GCPhys = NIL_RTGCPHYS;
3924 pPage->fReusedFlushPending = false;
3925
3926 pPool->cUsedPages--;
3927 pgmUnlock(pVM);
3928 STAM_PROFILE_STOP(&pPool->StatFlushPage, f);
3929 return rc;
3930}
3931
3932
3933/**
3934 * Frees a usage of a pool page.
3935 *
3936 * The caller is responsible to updating the user table so that it no longer
3937 * references the shadow page.
3938 *
3939 * @param pPool The pool.
3940 * @param HCPhys The HC physical address of the shadow page.
3941 * @param iUser The shadow page pool index of the user table.
3942 * @param iUserTable The index into the user table (shadowed).
3943 */
3944void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
3945{
3946 PVM pVM = pPool->CTX_SUFF(pVM);
3947
3948 STAM_PROFILE_START(&pPool->StatFree, a);
3949 LogFlow(("pgmPoolFreeByPage: pPage=%p:{.Key=%RHp, .idx=%d, enmKind=%s} iUser=%#x iUserTable=%#x\n",
3950 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), iUser, iUserTable));
3951 Assert(pPage->idx >= PGMPOOL_IDX_FIRST);
3952 pgmLock(pVM);
3953#ifdef PGMPOOL_WITH_USER_TRACKING
3954 pgmPoolTrackFreeUser(pPool, pPage, iUser, iUserTable);
3955#endif
3956#ifdef PGMPOOL_WITH_CACHE
3957 if (!pPage->fCached)
3958#endif
3959 pgmPoolFlushPage(pPool, pPage);
3960 pgmUnlock(pVM);
3961 STAM_PROFILE_STOP(&pPool->StatFree, a);
3962}
3963
3964
3965/**
3966 * Makes one or more free page free.
3967 *
3968 * @returns VBox status code.
3969 * @retval VINF_SUCCESS on success.
3970 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
3971 *
3972 * @param pPool The pool.
3973 * @param enmKind Page table kind
3974 * @param iUser The user of the page.
3975 */
3976static int pgmPoolMakeMoreFreePages(PPGMPOOL pPool, PGMPOOLKIND enmKind, uint16_t iUser)
3977{
3978 PVM pVM = pPool->CTX_SUFF(pVM);
3979
3980 LogFlow(("pgmPoolMakeMoreFreePages: iUser=%#x\n", iUser));
3981
3982 /*
3983 * If the pool isn't full grown yet, expand it.
3984 */
3985 if ( pPool->cCurPages < pPool->cMaxPages
3986#if defined(IN_RC)
3987 /* Hack alert: we can't deal with jumps to ring 3 when called from MapCR3 and allocating pages for PAE PDs. */
3988 && enmKind != PGMPOOLKIND_PAE_PD_FOR_PAE_PD
3989 && (enmKind < PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD || enmKind > PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD)
3990#endif
3991 )
3992 {
3993 STAM_PROFILE_ADV_SUSPEND(&pPool->StatAlloc, a);
3994#ifdef IN_RING3
3995 int rc = PGMR3PoolGrow(pVM);
3996#else
3997 int rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_POOL_GROW, 0);
3998#endif
3999 if (RT_FAILURE(rc))
4000 return rc;
4001 STAM_PROFILE_ADV_RESUME(&pPool->StatAlloc, a);
4002 if (pPool->iFreeHead != NIL_PGMPOOL_IDX)
4003 return VINF_SUCCESS;
4004 }
4005
4006#ifdef PGMPOOL_WITH_CACHE
4007 /*
4008 * Free one cached page.
4009 */
4010 return pgmPoolCacheFreeOne(pPool, iUser);
4011#else
4012 /*
4013 * Flush the pool.
4014 *
4015 * If we have tracking enabled, it should be possible to come up with
4016 * a cheap replacement strategy...
4017 */
4018 /* @todo This path no longer works (CR3 root pages will be flushed)!! */
4019 AssertCompileFailed();
4020 Assert(!CPUMIsGuestInLongMode(pVM));
4021 pgmPoolFlushAllInt(pPool);
4022 return VERR_PGM_POOL_FLUSHED;
4023#endif
4024}
4025
4026/**
4027 * Allocates a page from the pool.
4028 *
4029 * This page may actually be a cached page and not in need of any processing
4030 * on the callers part.
4031 *
4032 * @returns VBox status code.
4033 * @retval VINF_SUCCESS if a NEW page was allocated.
4034 * @retval VINF_PGM_CACHED_PAGE if a CACHED page was returned.
4035 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
4036 * @param pVM The VM handle.
4037 * @param GCPhys The GC physical address of the page we're gonna shadow.
4038 * For 4MB and 2MB PD entries, it's the first address the
4039 * shadow PT is covering.
4040 * @param enmKind The kind of mapping.
4041 * @param enmAccess Access type for the mapping (only relevant for big pages)
4042 * @param iUser The shadow page pool index of the user table.
4043 * @param iUserTable The index into the user table (shadowed).
4044 * @param ppPage Where to store the pointer to the page. NULL is stored here on failure.
4045 */
4046int pgmPoolAllocEx(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage)
4047{
4048 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4049 STAM_PROFILE_ADV_START(&pPool->StatAlloc, a);
4050 LogFlow(("pgmPoolAlloc: GCPhys=%RGp enmKind=%s iUser=%#x iUserTable=%#x\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable));
4051 *ppPage = NULL;
4052 /** @todo CSAM/PGMPrefetchPage messes up here during CSAMR3CheckGates
4053 * (TRPMR3SyncIDT) because of FF priority. Try fix that?
4054 * Assert(!(pVM->pgm.s.fGlobalSyncFlags & PGM_GLOBAL_SYNC_CLEAR_PGM_POOL)); */
4055
4056 pgmLock(pVM);
4057
4058#ifdef PGMPOOL_WITH_CACHE
4059 if (pPool->fCacheEnabled)
4060 {
4061 int rc2 = pgmPoolCacheAlloc(pPool, GCPhys, enmKind, enmAccess, iUser, iUserTable, ppPage);
4062 if (RT_SUCCESS(rc2))
4063 {
4064 pgmUnlock(pVM);
4065 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4066 LogFlow(("pgmPoolAlloc: cached returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d}\n", rc2, *ppPage, (*ppPage)->Core.Key, (*ppPage)->idx));
4067 return rc2;
4068 }
4069 }
4070#endif
4071
4072 /*
4073 * Allocate a new one.
4074 */
4075 int rc = VINF_SUCCESS;
4076 uint16_t iNew = pPool->iFreeHead;
4077 if (iNew == NIL_PGMPOOL_IDX)
4078 {
4079 rc = pgmPoolMakeMoreFreePages(pPool, enmKind, iUser);
4080 if (RT_FAILURE(rc))
4081 {
4082 pgmUnlock(pVM);
4083 Log(("pgmPoolAlloc: returns %Rrc (Free)\n", rc));
4084 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4085 return rc;
4086 }
4087 iNew = pPool->iFreeHead;
4088 AssertReleaseReturn(iNew != NIL_PGMPOOL_IDX, VERR_INTERNAL_ERROR);
4089 }
4090
4091 /* unlink the free head */
4092 PPGMPOOLPAGE pPage = &pPool->aPages[iNew];
4093 pPool->iFreeHead = pPage->iNext;
4094 pPage->iNext = NIL_PGMPOOL_IDX;
4095
4096 /*
4097 * Initialize it.
4098 */
4099 pPool->cUsedPages++; /* physical handler registration / pgmPoolTrackFlushGCPhysPTsSlow requirement. */
4100 pPage->enmKind = enmKind;
4101 pPage->enmAccess = enmAccess;
4102 pPage->GCPhys = GCPhys;
4103 pPage->fSeenNonGlobal = false; /* Set this to 'true' to disable this feature. */
4104 pPage->fMonitored = false;
4105 pPage->fCached = false;
4106 pPage->fReusedFlushPending = false;
4107#ifdef PGMPOOL_WITH_MONITORING
4108 pPage->cModifications = 0;
4109 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
4110 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
4111#else
4112 pPage->fCR3Mix = false;
4113#endif
4114#ifdef PGMPOOL_WITH_USER_TRACKING
4115 pPage->cPresent = 0;
4116 pPage->iFirstPresent = ~0;
4117
4118 /*
4119 * Insert into the tracking and cache. If this fails, free the page.
4120 */
4121 int rc3 = pgmPoolTrackInsert(pPool, pPage, GCPhys, iUser, iUserTable);
4122 if (RT_FAILURE(rc3))
4123 {
4124 pPool->cUsedPages--;
4125 pPage->enmKind = PGMPOOLKIND_FREE;
4126 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
4127 pPage->GCPhys = NIL_RTGCPHYS;
4128 pPage->iNext = pPool->iFreeHead;
4129 pPool->iFreeHead = pPage->idx;
4130 pgmUnlock(pVM);
4131 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4132 Log(("pgmPoolAlloc: returns %Rrc (Insert)\n", rc3));
4133 return rc3;
4134 }
4135#endif /* PGMPOOL_WITH_USER_TRACKING */
4136
4137 /*
4138 * Commit the allocation, clear the page and return.
4139 */
4140#ifdef VBOX_WITH_STATISTICS
4141 if (pPool->cUsedPages > pPool->cUsedPagesHigh)
4142 pPool->cUsedPagesHigh = pPool->cUsedPages;
4143#endif
4144
4145 if (!pPage->fZeroed)
4146 {
4147 STAM_PROFILE_START(&pPool->StatZeroPage, z);
4148 void *pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
4149 ASMMemZeroPage(pv);
4150 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
4151 }
4152
4153 *ppPage = pPage;
4154 pgmUnlock(pVM);
4155 LogFlow(("pgmPoolAlloc: returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d, .fCached=%RTbool, .fMonitored=%RTbool}\n",
4156 rc, pPage, pPage->Core.Key, pPage->idx, pPage->fCached, pPage->fMonitored));
4157 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4158 return rc;
4159}
4160
4161
4162/**
4163 * Frees a usage of a pool page.
4164 *
4165 * @param pVM The VM handle.
4166 * @param HCPhys The HC physical address of the shadow page.
4167 * @param iUser The shadow page pool index of the user table.
4168 * @param iUserTable The index into the user table (shadowed).
4169 */
4170void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable)
4171{
4172 LogFlow(("pgmPoolFree: HCPhys=%RHp iUser=%#x iUserTable=%#x\n", HCPhys, iUser, iUserTable));
4173 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4174 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, HCPhys), iUser, iUserTable);
4175}
4176
4177/**
4178 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
4179 *
4180 * @returns Pointer to the shadow page structure.
4181 * @param pPool The pool.
4182 * @param HCPhys The HC physical address of the shadow page.
4183 */
4184PPGMPOOLPAGE pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys)
4185{
4186 PVM pVM = pPool->CTX_SUFF(pVM);
4187
4188 /*
4189 * Look up the page.
4190 */
4191 pgmLock(pVM);
4192 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
4193 pgmUnlock(pVM);
4194
4195 AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0));
4196 return pPage;
4197}
4198
4199
4200#ifdef IN_RING3
4201/**
4202 * Flushes the entire cache.
4203 *
4204 * It will assert a global CR3 flush (FF) and assumes the caller is aware of this
4205 * and execute this CR3 flush.
4206 *
4207 * @param pPool The pool.
4208 */
4209void pgmR3PoolReset(PVM pVM)
4210{
4211 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4212
4213 Assert(PGMIsLockOwner(pVM));
4214 STAM_PROFILE_START(&pPool->StatFlushAllInt, a);
4215 LogFlow(("pgmPoolFlushAllInt:\n"));
4216
4217 /*
4218 * If there are no pages in the pool, there is nothing to do.
4219 */
4220 if (pPool->cCurPages <= PGMPOOL_IDX_FIRST)
4221 {
4222 STAM_PROFILE_STOP(&pPool->StatFlushAllInt, a);
4223 return;
4224 }
4225
4226 /*
4227 * Exit the shadow mode since we're going to clear everything,
4228 * including the root page.
4229 */
4230 for (unsigned i=0;i<pVM->cCPUs;i++)
4231 {
4232 PVMCPU pVCpu = &pVM->aCpus[i];
4233 pgmR3ExitShadowModeBeforePoolFlush(pVM, pVCpu);
4234 }
4235
4236 /*
4237 * Nuke the free list and reinsert all pages into it.
4238 */
4239 for (unsigned i = pPool->cCurPages - 1; i >= PGMPOOL_IDX_FIRST; i--)
4240 {
4241 PPGMPOOLPAGE pPage = &pPool->aPages[i];
4242
4243 Assert(pPage->Core.Key == MMPage2Phys(pVM, pPage->pvPageR3));
4244#ifdef PGMPOOL_WITH_MONITORING
4245 if (pPage->fMonitored)
4246 pgmPoolMonitorFlush(pPool, pPage);
4247 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
4248 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
4249 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
4250 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
4251 pPage->cModifications = 0;
4252#endif
4253 pPage->GCPhys = NIL_RTGCPHYS;
4254 pPage->enmKind = PGMPOOLKIND_FREE;
4255 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
4256 Assert(pPage->idx == i);
4257 pPage->iNext = i + 1;
4258 pPage->fZeroed = false; /* This could probably be optimized, but better safe than sorry. */
4259 pPage->fSeenNonGlobal = false;
4260 pPage->fMonitored = false;
4261 pPage->fCached = false;
4262 pPage->fReusedFlushPending = false;
4263#ifdef PGMPOOL_WITH_USER_TRACKING
4264 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
4265#else
4266 pPage->fCR3Mix = false;
4267#endif
4268#ifdef PGMPOOL_WITH_CACHE
4269 pPage->iAgeNext = NIL_PGMPOOL_IDX;
4270 pPage->iAgePrev = NIL_PGMPOOL_IDX;
4271#endif
4272 pPage->cLocked = 0;
4273 }
4274 pPool->aPages[pPool->cCurPages - 1].iNext = NIL_PGMPOOL_IDX;
4275 pPool->iFreeHead = PGMPOOL_IDX_FIRST;
4276 pPool->cUsedPages = 0;
4277
4278#ifdef PGMPOOL_WITH_USER_TRACKING
4279 /*
4280 * Zap and reinitialize the user records.
4281 */
4282 pPool->cPresent = 0;
4283 pPool->iUserFreeHead = 0;
4284 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
4285 const unsigned cMaxUsers = pPool->cMaxUsers;
4286 for (unsigned i = 0; i < cMaxUsers; i++)
4287 {
4288 paUsers[i].iNext = i + 1;
4289 paUsers[i].iUser = NIL_PGMPOOL_IDX;
4290 paUsers[i].iUserTable = 0xfffffffe;
4291 }
4292 paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
4293#endif
4294
4295#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
4296 /*
4297 * Clear all the GCPhys links and rebuild the phys ext free list.
4298 */
4299 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
4300 pRam;
4301 pRam = pRam->CTX_SUFF(pNext))
4302 {
4303 unsigned iPage = pRam->cb >> PAGE_SHIFT;
4304 while (iPage-- > 0)
4305 PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0);
4306 }
4307
4308 pPool->iPhysExtFreeHead = 0;
4309 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
4310 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
4311 for (unsigned i = 0; i < cMaxPhysExts; i++)
4312 {
4313 paPhysExts[i].iNext = i + 1;
4314 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
4315 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
4316 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
4317 }
4318 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
4319#endif
4320
4321#ifdef PGMPOOL_WITH_MONITORING
4322 /*
4323 * Just zap the modified list.
4324 */
4325 pPool->cModifiedPages = 0;
4326 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
4327#endif
4328
4329#ifdef PGMPOOL_WITH_CACHE
4330 /*
4331 * Clear the GCPhys hash and the age list.
4332 */
4333 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
4334 pPool->aiHash[i] = NIL_PGMPOOL_IDX;
4335 pPool->iAgeHead = NIL_PGMPOOL_IDX;
4336 pPool->iAgeTail = NIL_PGMPOOL_IDX;
4337#endif
4338
4339 /*
4340 * Reinsert active pages into the hash and ensure monitoring chains are correct.
4341 */
4342 for (unsigned i = PGMPOOL_IDX_FIRST_SPECIAL; i < PGMPOOL_IDX_FIRST; i++)
4343 {
4344 PPGMPOOLPAGE pPage = &pPool->aPages[i];
4345 pPage->iNext = NIL_PGMPOOL_IDX;
4346#ifdef PGMPOOL_WITH_MONITORING
4347 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
4348 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
4349 pPage->cModifications = 0;
4350 /* ASSUMES that we're not sharing with any of the other special pages (safe for now). */
4351 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
4352 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
4353 if (pPage->fMonitored)
4354 {
4355 int rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1),
4356 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage),
4357 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage),
4358 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pPage),
4359 pPool->pszAccessHandler);
4360 AssertFatalRCSuccess(rc);
4361# ifdef PGMPOOL_WITH_CACHE
4362 pgmPoolHashInsert(pPool, pPage);
4363# endif
4364 }
4365#endif
4366#ifdef PGMPOOL_WITH_USER_TRACKING
4367 Assert(pPage->iUserHead == NIL_PGMPOOL_USER_INDEX); /* for now */
4368#endif
4369#ifdef PGMPOOL_WITH_CACHE
4370 Assert(pPage->iAgeNext == NIL_PGMPOOL_IDX);
4371 Assert(pPage->iAgePrev == NIL_PGMPOOL_IDX);
4372#endif
4373 }
4374
4375 for (unsigned i=0;i<pVM->cCPUs;i++)
4376 {
4377 PVMCPU pVCpu = &pVM->aCpus[i];
4378 /*
4379 * Re-enter the shadowing mode and assert Sync CR3 FF.
4380 */
4381 pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu);
4382 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4383 }
4384
4385 STAM_PROFILE_STOP(&pPool->StatFlushAllInt, a);
4386}
4387#endif /* IN_RING3 */
4388
4389#ifdef LOG_ENABLED
4390static const char *pgmPoolPoolKindToStr(uint8_t enmKind)
4391{
4392 switch(enmKind)
4393 {
4394 case PGMPOOLKIND_INVALID:
4395 return "PGMPOOLKIND_INVALID";
4396 case PGMPOOLKIND_FREE:
4397 return "PGMPOOLKIND_FREE";
4398 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
4399 return "PGMPOOLKIND_32BIT_PT_FOR_PHYS";
4400 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
4401 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT";
4402 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
4403 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB";
4404 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
4405 return "PGMPOOLKIND_PAE_PT_FOR_PHYS";
4406 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
4407 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_PT";
4408 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
4409 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB";
4410 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
4411 return "PGMPOOLKIND_PAE_PT_FOR_PAE_PT";
4412 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
4413 return "PGMPOOLKIND_PAE_PT_FOR_PAE_2MB";
4414 case PGMPOOLKIND_32BIT_PD:
4415 return "PGMPOOLKIND_32BIT_PD";
4416 case PGMPOOLKIND_32BIT_PD_PHYS:
4417 return "PGMPOOLKIND_32BIT_PD_PHYS";
4418 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
4419 return "PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD";
4420 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
4421 return "PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD";
4422 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
4423 return "PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD";
4424 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
4425 return "PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD";
4426 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
4427 return "PGMPOOLKIND_PAE_PD_FOR_PAE_PD";
4428 case PGMPOOLKIND_PAE_PD_PHYS:
4429 return "PGMPOOLKIND_PAE_PD_PHYS";
4430 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
4431 return "PGMPOOLKIND_PAE_PDPT_FOR_32BIT";
4432 case PGMPOOLKIND_PAE_PDPT:
4433 return "PGMPOOLKIND_PAE_PDPT";
4434 case PGMPOOLKIND_PAE_PDPT_PHYS:
4435 return "PGMPOOLKIND_PAE_PDPT_PHYS";
4436 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
4437 return "PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT";
4438 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
4439 return "PGMPOOLKIND_64BIT_PDPT_FOR_PHYS";
4440 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
4441 return "PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD";
4442 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
4443 return "PGMPOOLKIND_64BIT_PD_FOR_PHYS";
4444 case PGMPOOLKIND_64BIT_PML4:
4445 return "PGMPOOLKIND_64BIT_PML4";
4446 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
4447 return "PGMPOOLKIND_EPT_PDPT_FOR_PHYS";
4448 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
4449 return "PGMPOOLKIND_EPT_PD_FOR_PHYS";
4450 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
4451 return "PGMPOOLKIND_EPT_PT_FOR_PHYS";
4452 case PGMPOOLKIND_ROOT_NESTED:
4453 return "PGMPOOLKIND_ROOT_NESTED";
4454 }
4455 return "Unknown kind!";
4456}
4457#endif /* LOG_ENABLED*/
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette