VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllPool.cpp@ 19872

Last change on this file since 19872 was 19872, checked in by vboxsync, 16 years ago

Cleaned up

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 160.8 KB
Line 
1/* $Id: PGMAllPool.cpp 19872 2009-05-20 15:05:53Z vboxsync $ */
2/** @file
3 * PGM Shadow Page Pool.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.215389.xyz. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM_POOL
27#include <VBox/pgm.h>
28#include <VBox/mm.h>
29#include <VBox/em.h>
30#include <VBox/cpum.h>
31#ifdef IN_RC
32# include <VBox/patm.h>
33#endif
34#include "PGMInternal.h"
35#include <VBox/vm.h>
36#include <VBox/disopcode.h>
37#include <VBox/hwacc_vmx.h>
38
39#include <VBox/log.h>
40#include <VBox/err.h>
41#include <iprt/asm.h>
42#include <iprt/string.h>
43
44
45/*******************************************************************************
46* Internal Functions *
47*******************************************************************************/
48__BEGIN_DECLS
49static void pgmPoolFlushAllInt(PPGMPOOL pPool);
50#ifdef PGMPOOL_WITH_USER_TRACKING
51DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind);
52DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind);
53static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
54#endif
55#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
56static void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint);
57#endif
58#ifdef PGMPOOL_WITH_CACHE
59static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable);
60#endif
61#ifdef PGMPOOL_WITH_MONITORING
62static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
63#endif
64#ifndef IN_RING3
65DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser);
66#endif
67#ifdef LOG_ENABLED
68static const char *pgmPoolPoolKindToStr(uint8_t enmKind);
69#endif
70
71void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs);
72void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt);
73int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage);
74PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt);
75void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt);
76void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt);
77
78__END_DECLS
79
80
81/**
82 * Checks if the specified page pool kind is for a 4MB or 2MB guest page.
83 *
84 * @returns true if it's the shadow of a 4MB or 2MB guest page, otherwise false.
85 * @param enmKind The page kind.
86 */
87DECLINLINE(bool) pgmPoolIsBigPage(PGMPOOLKIND enmKind)
88{
89 switch (enmKind)
90 {
91 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
92 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
93 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
94 return true;
95 default:
96 return false;
97 }
98}
99
100/** @def PGMPOOL_PAGE_2_LOCKED_PTR
101 * Maps a pool page pool into the current context and lock it (RC only).
102 *
103 * @returns VBox status code.
104 * @param pVM The VM handle.
105 * @param pPage The pool page.
106 *
107 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
108 * small page window employeed by that function. Be careful.
109 * @remark There is no need to assert on the result.
110 */
111#if defined(IN_RC)
112DECLINLINE(void *) PGMPOOL_PAGE_2_LOCKED_PTR(PVM pVM, PPGMPOOLPAGE pPage)
113{
114 void *pv = pgmPoolMapPageInlined(&pVM->pgm.s, pPage);
115
116 /* Make sure the dynamic mapping will not be reused. */
117 if (pv)
118 PGMDynLockHCPage(pVM, (uint8_t *)pv);
119
120 return pv;
121}
122#else
123# define PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage) PGMPOOL_PAGE_2_PTR(pVM, pPage)
124#endif
125
126/** @def PGMPOOL_UNLOCK_PTR
127 * Unlock a previously locked dynamic caching (RC only).
128 *
129 * @returns VBox status code.
130 * @param pVM The VM handle.
131 * @param pPage The pool page.
132 *
133 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
134 * small page window employeed by that function. Be careful.
135 * @remark There is no need to assert on the result.
136 */
137#if defined(IN_RC)
138DECLINLINE(void) PGMPOOL_UNLOCK_PTR(PVM pVM, void *pvPage)
139{
140 if (pvPage)
141 PGMDynUnlockHCPage(pVM, (uint8_t *)pvPage);
142}
143#else
144# define PGMPOOL_UNLOCK_PTR(pVM, pPage) do {} while (0)
145#endif
146
147
148#ifdef PGMPOOL_WITH_MONITORING
149/**
150 * Determin the size of a write instruction.
151 * @returns number of bytes written.
152 * @param pDis The disassembler state.
153 */
154static unsigned pgmPoolDisasWriteSize(PDISCPUSTATE pDis)
155{
156 /*
157 * This is very crude and possibly wrong for some opcodes,
158 * but since it's not really supposed to be called we can
159 * probably live with that.
160 */
161 return DISGetParamSize(pDis, &pDis->param1);
162}
163
164
165/**
166 * Flushes a chain of pages sharing the same access monitor.
167 *
168 * @returns VBox status code suitable for scheduling.
169 * @param pPool The pool.
170 * @param pPage A page in the chain.
171 */
172int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
173{
174 LogFlow(("pgmPoolMonitorChainFlush: Flush page %RGp type=%d\n", pPage->GCPhys, pPage->enmKind));
175
176 /*
177 * Find the list head.
178 */
179 uint16_t idx = pPage->idx;
180 if (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
181 {
182 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
183 {
184 idx = pPage->iMonitoredPrev;
185 Assert(idx != pPage->idx);
186 pPage = &pPool->aPages[idx];
187 }
188 }
189
190 /*
191 * Iterate the list flushing each shadow page.
192 */
193 int rc = VINF_SUCCESS;
194 for (;;)
195 {
196 idx = pPage->iMonitoredNext;
197 Assert(idx != pPage->idx);
198 if (pPage->idx >= PGMPOOL_IDX_FIRST)
199 {
200 int rc2 = pgmPoolFlushPage(pPool, pPage);
201 AssertRC(rc2);
202 }
203 /* next */
204 if (idx == NIL_PGMPOOL_IDX)
205 break;
206 pPage = &pPool->aPages[idx];
207 }
208 return rc;
209}
210
211
212/**
213 * Wrapper for getting the current context pointer to the entry being modified.
214 *
215 * @returns VBox status code suitable for scheduling.
216 * @param pVM VM Handle.
217 * @param pvDst Destination address
218 * @param pvSrc Source guest virtual address.
219 * @param GCPhysSrc The source guest physical address.
220 * @param cb Size of data to read
221 */
222DECLINLINE(int) pgmPoolPhysSimpleReadGCPhys(PVM pVM, void *pvDst, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvSrc, RTGCPHYS GCPhysSrc, size_t cb)
223{
224#if defined(IN_RING3)
225 memcpy(pvDst, (RTHCPTR)((uintptr_t)pvSrc & ~(RTHCUINTPTR)(cb - 1)), cb);
226 return VINF_SUCCESS;
227#else
228 /* @todo in RC we could attempt to use the virtual address, although this can cause many faults (PAE Windows XP guest). */
229 return PGMPhysSimpleReadGCPhys(pVM, pvDst, GCPhysSrc & ~(RTGCPHYS)(cb - 1), cb);
230#endif
231}
232
233/**
234 * Process shadow entries before they are changed by the guest.
235 *
236 * For PT entries we will clear them. For PD entries, we'll simply check
237 * for mapping conflicts and set the SyncCR3 FF if found.
238 *
239 * @param pVCpu VMCPU handle
240 * @param pPool The pool.
241 * @param pPage The head page.
242 * @param GCPhysFault The guest physical fault address.
243 * @param uAddress In R0 and GC this is the guest context fault address (flat).
244 * In R3 this is the host context 'fault' address.
245 * @param pCpu The disassembler state for figuring out the write size.
246 * This need not be specified if the caller knows we won't do cross entry accesses.
247 */
248void pgmPoolMonitorChainChanging(PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvAddress, PDISCPUSTATE pCpu)
249{
250 Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
251 const unsigned off = GCPhysFault & PAGE_OFFSET_MASK;
252 const unsigned cbWrite = (pCpu) ? pgmPoolDisasWriteSize(pCpu) : 0;
253 PVM pVM = pPool->CTX_SUFF(pVM);
254
255 LogFlow(("pgmPoolMonitorChainChanging: %RGv phys=%RGp kind=%s cbWrite=%d\n", (RTGCPTR)pvAddress, GCPhysFault, pgmPoolPoolKindToStr(pPage->enmKind), cbWrite));
256 for (;;)
257 {
258 union
259 {
260 void *pv;
261 PX86PT pPT;
262 PX86PTPAE pPTPae;
263 PX86PD pPD;
264 PX86PDPAE pPDPae;
265 PX86PDPT pPDPT;
266 PX86PML4 pPML4;
267 } uShw;
268
269 uShw.pv = NULL;
270 switch (pPage->enmKind)
271 {
272 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
273 {
274 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
275 const unsigned iShw = off / sizeof(X86PTE);
276 LogFlow(("PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT iShw=%x\n", iShw));
277 if (uShw.pPT->a[iShw].n.u1Present)
278 {
279# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
280 X86PTE GstPte;
281
282 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
283 AssertRC(rc);
284 Log4(("pgmPoolMonitorChainChanging 32_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
285 pgmPoolTracDerefGCPhysHint(pPool, pPage,
286 uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK,
287 GstPte.u & X86_PTE_PG_MASK);
288# endif
289 ASMAtomicWriteSize(&uShw.pPT->a[iShw], 0);
290 }
291 break;
292 }
293
294 /* page/2 sized */
295 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
296 {
297 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
298 if (!((off ^ pPage->GCPhys) & (PAGE_SIZE / 2)))
299 {
300 const unsigned iShw = (off / sizeof(X86PTE)) & (X86_PG_PAE_ENTRIES - 1);
301 LogFlow(("PGMPOOLKIND_PAE_PT_FOR_32BIT_PT iShw=%x\n", iShw));
302 if (uShw.pPTPae->a[iShw].n.u1Present)
303 {
304# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
305 X86PTE GstPte;
306 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
307 AssertRC(rc);
308
309 Log4(("pgmPoolMonitorChainChanging pae_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
310 pgmPoolTracDerefGCPhysHint(pPool, pPage,
311 uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK,
312 GstPte.u & X86_PTE_PG_MASK);
313# endif
314 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw], 0);
315 }
316 }
317 break;
318 }
319
320 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
321 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
322 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
323 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
324 {
325 unsigned iGst = off / sizeof(X86PDE);
326 unsigned iShwPdpt = iGst / 256;
327 unsigned iShw = (iGst % 256) * 2;
328 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
329
330 LogFlow(("pgmPoolMonitorChainChanging PAE for 32 bits: iGst=%x iShw=%x idx = %d page idx=%d\n", iGst, iShw, iShwPdpt, pPage->enmKind - PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD));
331 if (iShwPdpt == pPage->enmKind - (unsigned)PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD)
332 {
333 for (unsigned i = 0; i < 2; i++)
334 {
335# ifndef IN_RING0
336 if ((uShw.pPDPae->a[iShw + i].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
337 {
338 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
339 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
340 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw=%#x!\n", iShwPdpt, iShw+i));
341 break;
342 }
343 else
344# endif /* !IN_RING0 */
345 if (uShw.pPDPae->a[iShw+i].n.u1Present)
346 {
347 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw+i, uShw.pPDPae->a[iShw+i].u));
348 pgmPoolFree(pVM,
349 uShw.pPDPae->a[iShw+i].u & X86_PDE_PAE_PG_MASK,
350 pPage->idx,
351 iShw + i);
352 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw+i], 0);
353 }
354
355 /* paranoia / a bit assumptive. */
356 if ( pCpu
357 && (off & 3)
358 && (off & 3) + cbWrite > 4)
359 {
360 const unsigned iShw2 = iShw + 2 + i;
361 if (iShw2 < RT_ELEMENTS(uShw.pPDPae->a))
362 {
363# ifndef IN_RING0
364 if ((uShw.pPDPae->a[iShw2].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
365 {
366 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
367 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
368 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw2=%#x!\n", iShwPdpt, iShw2));
369 break;
370 }
371 else
372# endif /* !IN_RING0 */
373 if (uShw.pPDPae->a[iShw2].n.u1Present)
374 {
375 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
376 pgmPoolFree(pVM,
377 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
378 pPage->idx,
379 iShw2);
380 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
381 }
382 }
383 }
384 }
385 }
386 break;
387 }
388
389 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
390 {
391 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
392 const unsigned iShw = off / sizeof(X86PTEPAE);
393 if (uShw.pPTPae->a[iShw].n.u1Present)
394 {
395# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
396 X86PTEPAE GstPte;
397 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
398 AssertRC(rc);
399
400 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PAE_PG_MASK));
401 pgmPoolTracDerefGCPhysHint(pPool, pPage,
402 uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK,
403 GstPte.u & X86_PTE_PAE_PG_MASK);
404# endif
405 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw].u, 0);
406 }
407
408 /* paranoia / a bit assumptive. */
409 if ( pCpu
410 && (off & 7)
411 && (off & 7) + cbWrite > sizeof(X86PTEPAE))
412 {
413 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTEPAE);
414 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPTPae->a));
415
416 if (uShw.pPTPae->a[iShw2].n.u1Present)
417 {
418# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
419 X86PTEPAE GstPte;
420# ifdef IN_RING3
421 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, (RTHCPTR)((RTHCUINTPTR)pvAddress + sizeof(GstPte)), GCPhysFault + sizeof(GstPte), sizeof(GstPte));
422# else
423 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress + sizeof(GstPte), GCPhysFault + sizeof(GstPte), sizeof(GstPte));
424# endif
425 AssertRC(rc);
426 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", uShw.pPTPae->a[iShw2].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PAE_PG_MASK));
427 pgmPoolTracDerefGCPhysHint(pPool, pPage,
428 uShw.pPTPae->a[iShw2].u & X86_PTE_PAE_PG_MASK,
429 GstPte.u & X86_PTE_PAE_PG_MASK);
430# endif
431 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw2].u ,0);
432 }
433 }
434 break;
435 }
436
437 case PGMPOOLKIND_32BIT_PD:
438 {
439 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
440 const unsigned iShw = off / sizeof(X86PTE); // ASSUMING 32-bit guest paging!
441
442 LogFlow(("pgmPoolMonitorChainChanging: PGMPOOLKIND_32BIT_PD %x\n", iShw));
443# ifndef IN_RING0
444 if (uShw.pPD->a[iShw].u & PGM_PDFLAGS_MAPPING)
445 {
446 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
447 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
448 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
449 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
450 break;
451 }
452# endif /* !IN_RING0 */
453# ifndef IN_RING0
454 else
455# endif /* !IN_RING0 */
456 {
457 if (uShw.pPD->a[iShw].n.u1Present)
458 {
459 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
460 pgmPoolFree(pVM,
461 uShw.pPD->a[iShw].u & X86_PDE_PAE_PG_MASK,
462 pPage->idx,
463 iShw);
464 ASMAtomicWriteSize(&uShw.pPD->a[iShw].u, 0);
465 }
466 }
467 /* paranoia / a bit assumptive. */
468 if ( pCpu
469 && (off & 3)
470 && (off & 3) + cbWrite > sizeof(X86PTE))
471 {
472 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTE);
473 if ( iShw2 != iShw
474 && iShw2 < RT_ELEMENTS(uShw.pPD->a))
475 {
476# ifndef IN_RING0
477 if (uShw.pPD->a[iShw2].u & PGM_PDFLAGS_MAPPING)
478 {
479 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
480 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
481 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
482 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
483 break;
484 }
485# endif /* !IN_RING0 */
486# ifndef IN_RING0
487 else
488# endif /* !IN_RING0 */
489 {
490 if (uShw.pPD->a[iShw2].n.u1Present)
491 {
492 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPD->a[iShw2].u));
493 pgmPoolFree(pVM,
494 uShw.pPD->a[iShw2].u & X86_PDE_PAE_PG_MASK,
495 pPage->idx,
496 iShw2);
497 ASMAtomicWriteSize(&uShw.pPD->a[iShw2].u, 0);
498 }
499 }
500 }
501 }
502#if 0 /* useful when running PGMAssertCR3(), a bit too troublesome for general use (TLBs). */
503 if ( uShw.pPD->a[iShw].n.u1Present
504 && !VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
505 {
506 LogFlow(("pgmPoolMonitorChainChanging: iShw=%#x: %RX32 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
507# ifdef IN_RC /* TLB load - we're pushing things a bit... */
508 ASMProbeReadByte(pvAddress);
509# endif
510 pgmPoolFree(pVM, uShw.pPD->a[iShw].u & X86_PDE_PG_MASK, pPage->idx, iShw);
511 ASMAtomicWriteSize(&uShw.pPD->a[iShw].u, 0);
512 }
513#endif
514 break;
515 }
516
517 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
518 {
519 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
520 const unsigned iShw = off / sizeof(X86PDEPAE);
521#ifndef IN_RING0
522 if (uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING)
523 {
524 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
525 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
526 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
527 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
528 break;
529 }
530#endif /* !IN_RING0 */
531 /*
532 * Causes trouble when the guest uses a PDE to refer to the whole page table level
533 * structure. (Invalidate here; faults later on when it tries to change the page
534 * table entries -> recheck; probably only applies to the RC case.)
535 */
536# ifndef IN_RING0
537 else
538# endif /* !IN_RING0 */
539 {
540 if (uShw.pPDPae->a[iShw].n.u1Present)
541 {
542 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
543 pgmPoolFree(pVM,
544 uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK,
545 pPage->idx,
546 iShw);
547 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw].u, 0);
548 }
549 }
550 /* paranoia / a bit assumptive. */
551 if ( pCpu
552 && (off & 7)
553 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
554 {
555 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
556 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
557
558#ifndef IN_RING0
559 if ( iShw2 != iShw
560 && uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING)
561 {
562 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
563 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
564 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
565 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
566 break;
567 }
568#endif /* !IN_RING0 */
569# ifndef IN_RING0
570 else
571# endif /* !IN_RING0 */
572 if (uShw.pPDPae->a[iShw2].n.u1Present)
573 {
574 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
575 pgmPoolFree(pVM,
576 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
577 pPage->idx,
578 iShw2);
579 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
580 }
581 }
582 break;
583 }
584
585 case PGMPOOLKIND_PAE_PDPT:
586 {
587 /*
588 * Hopefully this doesn't happen very often:
589 * - touching unused parts of the page
590 * - messing with the bits of pd pointers without changing the physical address
591 */
592 /* PDPT roots are not page aligned; 32 byte only! */
593 const unsigned offPdpt = GCPhysFault - pPage->GCPhys;
594
595 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
596 const unsigned iShw = offPdpt / sizeof(X86PDPE);
597 if (iShw < X86_PG_PAE_PDPE_ENTRIES) /* don't use RT_ELEMENTS(uShw.pPDPT->a), because that's for long mode only */
598 {
599# ifndef IN_RING0
600 if (uShw.pPDPT->a[iShw].u & PGM_PLXFLAGS_MAPPING)
601 {
602 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
603 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
604 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
605 LogFlow(("pgmPoolMonitorChainChanging: Detected pdpt conflict at iShw=%#x!\n", iShw));
606 break;
607 }
608# endif /* !IN_RING0 */
609# ifndef IN_RING0
610 else
611# endif /* !IN_RING0 */
612 if (uShw.pPDPT->a[iShw].n.u1Present)
613 {
614 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
615 pgmPoolFree(pVM,
616 uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK,
617 pPage->idx,
618 iShw);
619 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw].u, 0);
620 }
621
622 /* paranoia / a bit assumptive. */
623 if ( pCpu
624 && (offPdpt & 7)
625 && (offPdpt & 7) + cbWrite > sizeof(X86PDPE))
626 {
627 const unsigned iShw2 = (offPdpt + cbWrite - 1) / sizeof(X86PDPE);
628 if ( iShw2 != iShw
629 && iShw2 < X86_PG_PAE_PDPE_ENTRIES)
630 {
631# ifndef IN_RING0
632 if (uShw.pPDPT->a[iShw2].u & PGM_PLXFLAGS_MAPPING)
633 {
634 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
635 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
636 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
637 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
638 break;
639 }
640# endif /* !IN_RING0 */
641# ifndef IN_RING0
642 else
643# endif /* !IN_RING0 */
644 if (uShw.pPDPT->a[iShw2].n.u1Present)
645 {
646 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
647 pgmPoolFree(pVM,
648 uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK,
649 pPage->idx,
650 iShw2);
651 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw2].u, 0);
652 }
653 }
654 }
655 }
656 break;
657 }
658
659#ifndef IN_RC
660 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
661 {
662 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
663 const unsigned iShw = off / sizeof(X86PDEPAE);
664 Assert(!(uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING));
665 if (uShw.pPDPae->a[iShw].n.u1Present)
666 {
667 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
668 pgmPoolFree(pVM,
669 uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK,
670 pPage->idx,
671 iShw);
672 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw].u, 0);
673 }
674 /* paranoia / a bit assumptive. */
675 if ( pCpu
676 && (off & 7)
677 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
678 {
679 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
680 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
681
682 Assert(!(uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING));
683 if (uShw.pPDPae->a[iShw2].n.u1Present)
684 {
685 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
686 pgmPoolFree(pVM,
687 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
688 pPage->idx,
689 iShw2);
690 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
691 }
692 }
693 break;
694 }
695
696 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
697 {
698 /*
699 * Hopefully this doesn't happen very often:
700 * - messing with the bits of pd pointers without changing the physical address
701 */
702 if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
703 {
704 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
705 const unsigned iShw = off / sizeof(X86PDPE);
706 if (uShw.pPDPT->a[iShw].n.u1Present)
707 {
708 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
709 pgmPoolFree(pVM, uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK, pPage->idx, iShw);
710 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw].u, 0);
711 }
712 /* paranoia / a bit assumptive. */
713 if ( pCpu
714 && (off & 7)
715 && (off & 7) + cbWrite > sizeof(X86PDPE))
716 {
717 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDPE);
718 if (uShw.pPDPT->a[iShw2].n.u1Present)
719 {
720 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
721 pgmPoolFree(pVM, uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK, pPage->idx, iShw2);
722 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw2].u, 0);
723 }
724 }
725 }
726 break;
727 }
728
729 case PGMPOOLKIND_64BIT_PML4:
730 {
731 /*
732 * Hopefully this doesn't happen very often:
733 * - messing with the bits of pd pointers without changing the physical address
734 */
735 if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
736 {
737 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
738 const unsigned iShw = off / sizeof(X86PDPE);
739 if (uShw.pPML4->a[iShw].n.u1Present)
740 {
741 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPML4->a[iShw].u));
742 pgmPoolFree(pVM, uShw.pPML4->a[iShw].u & X86_PML4E_PG_MASK, pPage->idx, iShw);
743 ASMAtomicWriteSize(&uShw.pPML4->a[iShw].u, 0);
744 }
745 /* paranoia / a bit assumptive. */
746 if ( pCpu
747 && (off & 7)
748 && (off & 7) + cbWrite > sizeof(X86PDPE))
749 {
750 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PML4E);
751 if (uShw.pPML4->a[iShw2].n.u1Present)
752 {
753 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPML4->a[iShw2].u));
754 pgmPoolFree(pVM, uShw.pPML4->a[iShw2].u & X86_PML4E_PG_MASK, pPage->idx, iShw2);
755 ASMAtomicWriteSize(&uShw.pPML4->a[iShw2].u, 0);
756 }
757 }
758 }
759 break;
760 }
761#endif /* IN_RING0 */
762
763 default:
764 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
765 }
766 PGMPOOL_UNLOCK_PTR(pVM, uShw.pv);
767
768 /* next */
769 if (pPage->iMonitoredNext == NIL_PGMPOOL_IDX)
770 return;
771 pPage = &pPool->aPages[pPage->iMonitoredNext];
772 }
773}
774
775# ifndef IN_RING3
776/**
777 * Checks if a access could be a fork operation in progress.
778 *
779 * Meaning, that the guest is setuping up the parent process for Copy-On-Write.
780 *
781 * @returns true if it's likly that we're forking, otherwise false.
782 * @param pPool The pool.
783 * @param pCpu The disassembled instruction.
784 * @param offFault The access offset.
785 */
786DECLINLINE(bool) pgmPoolMonitorIsForking(PPGMPOOL pPool, PDISCPUSTATE pCpu, unsigned offFault)
787{
788 /*
789 * i386 linux is using btr to clear X86_PTE_RW.
790 * The functions involved are (2.6.16 source inspection):
791 * clear_bit
792 * ptep_set_wrprotect
793 * copy_one_pte
794 * copy_pte_range
795 * copy_pmd_range
796 * copy_pud_range
797 * copy_page_range
798 * dup_mmap
799 * dup_mm
800 * copy_mm
801 * copy_process
802 * do_fork
803 */
804 if ( pCpu->pCurInstr->opcode == OP_BTR
805 && !(offFault & 4)
806 /** @todo Validate that the bit index is X86_PTE_RW. */
807 )
808 {
809 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,Fork));
810 return true;
811 }
812 return false;
813}
814
815
816/**
817 * Determine whether the page is likely to have been reused.
818 *
819 * @returns true if we consider the page as being reused for a different purpose.
820 * @returns false if we consider it to still be a paging page.
821 * @param pVM VM Handle.
822 * @param pRegFrame Trap register frame.
823 * @param pCpu The disassembly info for the faulting instruction.
824 * @param pvFault The fault address.
825 *
826 * @remark The REP prefix check is left to the caller because of STOSD/W.
827 */
828DECLINLINE(bool) pgmPoolMonitorIsReused(PVM pVM, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pCpu, RTGCPTR pvFault)
829{
830#ifndef IN_RC
831 /** @todo could make this general, faulting close to rsp should be safe reuse heuristic. */
832 if ( HWACCMHasPendingIrq(pVM)
833 && (pRegFrame->rsp - pvFault) < 32)
834 {
835 /* Fault caused by stack writes while trying to inject an interrupt event. */
836 Log(("pgmPoolMonitorIsReused: reused %RGv for interrupt stack (rsp=%RGv).\n", pvFault, pRegFrame->rsp));
837 return true;
838 }
839#else
840 NOREF(pVM); NOREF(pvFault);
841#endif
842
843 switch (pCpu->pCurInstr->opcode)
844 {
845 /* call implies the actual push of the return address faulted */
846 case OP_CALL:
847 Log4(("pgmPoolMonitorIsReused: CALL\n"));
848 return true;
849 case OP_PUSH:
850 Log4(("pgmPoolMonitorIsReused: PUSH\n"));
851 return true;
852 case OP_PUSHF:
853 Log4(("pgmPoolMonitorIsReused: PUSHF\n"));
854 return true;
855 case OP_PUSHA:
856 Log4(("pgmPoolMonitorIsReused: PUSHA\n"));
857 return true;
858 case OP_FXSAVE:
859 Log4(("pgmPoolMonitorIsReused: FXSAVE\n"));
860 return true;
861 case OP_MOVNTI: /* solaris - block_zero_no_xmm */
862 Log4(("pgmPoolMonitorIsReused: MOVNTI\n"));
863 return true;
864 case OP_MOVNTDQ: /* solaris - hwblkclr & hwblkpagecopy */
865 Log4(("pgmPoolMonitorIsReused: MOVNTDQ\n"));
866 return true;
867 case OP_MOVSWD:
868 case OP_STOSWD:
869 if ( pCpu->prefix == (PREFIX_REP|PREFIX_REX)
870 && pRegFrame->rcx >= 0x40
871 )
872 {
873 Assert(pCpu->mode == CPUMODE_64BIT);
874
875 Log(("pgmPoolMonitorIsReused: OP_STOSQ\n"));
876 return true;
877 }
878 return false;
879 }
880 if ( (pCpu->param1.flags & USE_REG_GEN32)
881 && (pCpu->param1.base.reg_gen == USE_REG_ESP))
882 {
883 Log4(("pgmPoolMonitorIsReused: ESP\n"));
884 return true;
885 }
886
887 return false;
888}
889
890
891/**
892 * Flushes the page being accessed.
893 *
894 * @returns VBox status code suitable for scheduling.
895 * @param pVM The VM handle.
896 * @param pVCpu The VMCPU handle.
897 * @param pPool The pool.
898 * @param pPage The pool page (head).
899 * @param pCpu The disassembly of the write instruction.
900 * @param pRegFrame The trap register frame.
901 * @param GCPhysFault The fault address as guest physical address.
902 * @param pvFault The fault address.
903 */
904static int pgmPoolAccessHandlerFlush(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu,
905 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
906{
907 /*
908 * First, do the flushing.
909 */
910 int rc = pgmPoolMonitorChainFlush(pPool, pPage);
911
912 /*
913 * Emulate the instruction (xp/w2k problem, requires pc/cr2/sp detection).
914 */
915 uint32_t cbWritten;
916 int rc2 = EMInterpretInstructionCPU(pVM, pVCpu, pCpu, pRegFrame, pvFault, &cbWritten);
917 if (RT_SUCCESS(rc2))
918 pRegFrame->rip += pCpu->opsize;
919 else if (rc2 == VERR_EM_INTERPRETER)
920 {
921#ifdef IN_RC
922 if (PATMIsPatchGCAddr(pVM, (RTRCPTR)pRegFrame->eip))
923 {
924 LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for patch code %04x:%RGv, ignoring.\n",
925 pRegFrame->cs, (RTGCPTR)pRegFrame->eip));
926 rc = VINF_SUCCESS;
927 STAM_COUNTER_INC(&pPool->StatMonitorRZIntrFailPatch2);
928 }
929 else
930#endif
931 {
932 rc = VINF_EM_RAW_EMULATE_INSTR;
933 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,EmulateInstr));
934 }
935 }
936 else
937 rc = rc2;
938
939 /* See use in pgmPoolAccessHandlerSimple(). */
940 PGM_INVL_VCPU_TLBS(pVCpu);
941
942 LogFlow(("pgmPoolAccessHandlerPT: returns %Rrc (flushed)\n", rc));
943 return rc;
944
945}
946
947
948/**
949 * Handles the STOSD write accesses.
950 *
951 * @returns VBox status code suitable for scheduling.
952 * @param pVM The VM handle.
953 * @param pPool The pool.
954 * @param pPage The pool page (head).
955 * @param pCpu The disassembly of the write instruction.
956 * @param pRegFrame The trap register frame.
957 * @param GCPhysFault The fault address as guest physical address.
958 * @param pvFault The fault address.
959 */
960DECLINLINE(int) pgmPoolAccessHandlerSTOSD(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu,
961 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
962{
963 Assert(pCpu->mode == CPUMODE_32BIT);
964
965 Log3(("pgmPoolAccessHandlerSTOSD\n"));
966
967 /*
968 * Increment the modification counter and insert it into the list
969 * of modified pages the first time.
970 */
971 if (!pPage->cModifications++)
972 pgmPoolMonitorModifiedInsert(pPool, pPage);
973
974 /*
975 * Execute REP STOSD.
976 *
977 * This ASSUMES that we're not invoked by Trap0e on in a out-of-sync
978 * write situation, meaning that it's safe to write here.
979 */
980 PVMCPU pVCpu = VMMGetCpu(pPool->CTX_SUFF(pVM));
981 RTGCUINTPTR pu32 = (RTGCUINTPTR)pvFault;
982 while (pRegFrame->ecx)
983 {
984#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
985 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
986 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, (RTGCPTR)pu32, NULL);
987 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
988#else
989 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, (RTGCPTR)pu32, NULL);
990#endif
991#ifdef IN_RC
992 *(uint32_t *)pu32 = pRegFrame->eax;
993#else
994 PGMPhysSimpleWriteGCPhys(pVM, GCPhysFault, &pRegFrame->eax, 4);
995#endif
996 pu32 += 4;
997 GCPhysFault += 4;
998 pRegFrame->edi += 4;
999 pRegFrame->ecx--;
1000 }
1001 pRegFrame->rip += pCpu->opsize;
1002
1003#ifdef IN_RC
1004 /* See use in pgmPoolAccessHandlerSimple(). */
1005 PGM_INVL_VCPU_TLBS(pVCpu);
1006#endif
1007
1008 LogFlow(("pgmPoolAccessHandlerSTOSD: returns\n"));
1009 return VINF_SUCCESS;
1010}
1011
1012
1013/**
1014 * Handles the simple write accesses.
1015 *
1016 * @returns VBox status code suitable for scheduling.
1017 * @param pVM The VM handle.
1018 * @param pVCpu The VMCPU handle.
1019 * @param pPool The pool.
1020 * @param pPage The pool page (head).
1021 * @param pCpu The disassembly of the write instruction.
1022 * @param pRegFrame The trap register frame.
1023 * @param GCPhysFault The fault address as guest physical address.
1024 * @param pvFault The fault address.
1025 */
1026DECLINLINE(int) pgmPoolAccessHandlerSimple(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu,
1027 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
1028{
1029 Log3(("pgmPoolAccessHandlerSimple\n"));
1030 /*
1031 * Increment the modification counter and insert it into the list
1032 * of modified pages the first time.
1033 */
1034 if (!pPage->cModifications++)
1035 pgmPoolMonitorModifiedInsert(pPool, pPage);
1036
1037 /*
1038 * Clear all the pages. ASSUMES that pvFault is readable.
1039 */
1040#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
1041 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
1042 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, pvFault, pCpu);
1043 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
1044#else
1045 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, pvFault, pCpu);
1046#endif
1047
1048 /*
1049 * Interpret the instruction.
1050 */
1051 uint32_t cb;
1052 int rc = EMInterpretInstructionCPU(pVM, pVCpu, pCpu, pRegFrame, pvFault, &cb);
1053 if (RT_SUCCESS(rc))
1054 pRegFrame->rip += pCpu->opsize;
1055 else if (rc == VERR_EM_INTERPRETER)
1056 {
1057 LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for %04x:%RGv - opcode=%d\n",
1058 pRegFrame->cs, (RTGCPTR)pRegFrame->rip, pCpu->pCurInstr->opcode));
1059 rc = VINF_EM_RAW_EMULATE_INSTR;
1060 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,EmulateInstr));
1061 }
1062
1063#ifdef IN_RC
1064 /*
1065 * Quick hack, with logging enabled we're getting stale
1066 * code TLBs but no data TLB for EIP and crash in EMInterpretDisasOne.
1067 * Flushing here is BAD and expensive, I think EMInterpretDisasOne will
1068 * have to be fixed to support this. But that'll have to wait till next week.
1069 *
1070 * An alternative is to keep track of the changed PTEs together with the
1071 * GCPhys from the guest PT. This may proove expensive though.
1072 *
1073 * At the moment, it's VITAL that it's done AFTER the instruction interpreting
1074 * because we need the stale TLBs in some cases (XP boot). This MUST be fixed properly!
1075 */
1076 PGM_INVL_VCPU_TLBS(pVCpu);
1077#endif
1078
1079 LogFlow(("pgmPoolAccessHandlerSimple: returns %Rrc cb=%d\n", rc, cb));
1080 return rc;
1081}
1082
1083/**
1084 * \#PF Handler callback for PT write accesses.
1085 *
1086 * @returns VBox status code (appropriate for GC return).
1087 * @param pVM VM Handle.
1088 * @param uErrorCode CPU Error code.
1089 * @param pRegFrame Trap register frame.
1090 * NULL on DMA and other non CPU access.
1091 * @param pvFault The fault address (cr2).
1092 * @param GCPhysFault The GC physical address corresponding to pvFault.
1093 * @param pvUser User argument.
1094 */
1095DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
1096{
1097 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), a);
1098 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1099 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
1100 PVMCPU pVCpu = VMMGetCpu(pVM);
1101
1102 LogFlow(("pgmPoolAccessHandler: pvFault=%RGv pPage=%p:{.idx=%d} GCPhysFault=%RGp\n", pvFault, pPage, pPage->idx, GCPhysFault));
1103
1104 /*
1105 * We should ALWAYS have the list head as user parameter. This
1106 * is because we use that page to record the changes.
1107 */
1108 Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1109
1110 /*
1111 * Disassemble the faulting instruction.
1112 */
1113 DISCPUSTATE Cpu;
1114 int rc = EMInterpretDisasOne(pVM, pVCpu, pRegFrame, &Cpu, NULL);
1115 AssertRCReturn(rc, rc);
1116
1117 pgmLock(pVM);
1118 AssertMsg(PHYS_PAGE_ADDRESS(GCPhysFault) == PHYS_PAGE_ADDRESS(pPage->GCPhys), ("%RGp vs %RGp\n", PHYS_PAGE_ADDRESS(GCPhysFault), pPage->GCPhys));
1119
1120 /*
1121 * Check if it's worth dealing with.
1122 */
1123 bool fReused = false;
1124 if ( ( pPage->cModifications < 48 /** @todo #define */ /** @todo need to check that it's not mapping EIP. */ /** @todo adjust this! */
1125 || pgmPoolIsPageLocked(&pVM->pgm.s, pPage)
1126 )
1127 && !(fReused = pgmPoolMonitorIsReused(pVM, pRegFrame, &Cpu, pvFault))
1128 && !pgmPoolMonitorIsForking(pPool, &Cpu, GCPhysFault & PAGE_OFFSET_MASK))
1129 {
1130 /*
1131 * Simple instructions, no REP prefix.
1132 */
1133 if (!(Cpu.prefix & (PREFIX_REP | PREFIX_REPNE)))
1134 {
1135 rc = pgmPoolAccessHandlerSimple(pVM, pVCpu, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault);
1136 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,Handled), a);
1137 pgmUnlock(pVM);
1138 return rc;
1139 }
1140
1141 /*
1142 * Windows is frequently doing small memset() operations (netio test 4k+).
1143 * We have to deal with these or we'll kill the cache and performance.
1144 */
1145 if ( Cpu.pCurInstr->opcode == OP_STOSWD
1146 && CPUMGetGuestCPL(pVCpu, pRegFrame) == 0
1147 && pRegFrame->ecx <= 0x20
1148 && pRegFrame->ecx * 4 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK)
1149 && !((uintptr_t)pvFault & 3)
1150 && (pRegFrame->eax == 0 || pRegFrame->eax == 0x80) /* the two values observed. */
1151 && Cpu.mode == CPUMODE_32BIT
1152 && Cpu.opmode == CPUMODE_32BIT
1153 && Cpu.addrmode == CPUMODE_32BIT
1154 && Cpu.prefix == PREFIX_REP
1155 && !pRegFrame->eflags.Bits.u1DF
1156 )
1157 {
1158 rc = pgmPoolAccessHandlerSTOSD(pVM, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault);
1159 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,RepStosd), a);
1160 pgmUnlock(pVM);
1161 return rc;
1162 }
1163
1164 /* REP prefix, don't bother. */
1165 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,RepPrefix));
1166 Log4(("pgmPoolAccessHandler: eax=%#x ecx=%#x edi=%#x esi=%#x rip=%RGv opcode=%d prefix=%#x\n",
1167 pRegFrame->eax, pRegFrame->ecx, pRegFrame->edi, pRegFrame->esi, (RTGCPTR)pRegFrame->rip, Cpu.pCurInstr->opcode, Cpu.prefix));
1168 }
1169
1170 /*
1171 * Not worth it, so flush it.
1172 *
1173 * If we considered it to be reused, don't go back to ring-3
1174 * to emulate failed instructions since we usually cannot
1175 * interpret then. This may be a bit risky, in which case
1176 * the reuse detection must be fixed.
1177 */
1178 rc = pgmPoolAccessHandlerFlush(pVM, pVCpu, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault);
1179 if (rc == VINF_EM_RAW_EMULATE_INSTR && fReused)
1180 rc = VINF_SUCCESS;
1181 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,FlushPage), a);
1182 pgmUnlock(pVM);
1183 return rc;
1184}
1185
1186# endif /* !IN_RING3 */
1187#endif /* PGMPOOL_WITH_MONITORING */
1188
1189#ifdef PGMPOOL_WITH_CACHE
1190
1191/**
1192 * Inserts a page into the GCPhys hash table.
1193 *
1194 * @param pPool The pool.
1195 * @param pPage The page.
1196 */
1197DECLINLINE(void) pgmPoolHashInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1198{
1199 Log3(("pgmPoolHashInsert: %RGp\n", pPage->GCPhys));
1200 Assert(pPage->GCPhys != NIL_RTGCPHYS); Assert(pPage->iNext == NIL_PGMPOOL_IDX);
1201 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1202 pPage->iNext = pPool->aiHash[iHash];
1203 pPool->aiHash[iHash] = pPage->idx;
1204}
1205
1206
1207/**
1208 * Removes a page from the GCPhys hash table.
1209 *
1210 * @param pPool The pool.
1211 * @param pPage The page.
1212 */
1213DECLINLINE(void) pgmPoolHashRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1214{
1215 Log3(("pgmPoolHashRemove: %RGp\n", pPage->GCPhys));
1216 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1217 if (pPool->aiHash[iHash] == pPage->idx)
1218 pPool->aiHash[iHash] = pPage->iNext;
1219 else
1220 {
1221 uint16_t iPrev = pPool->aiHash[iHash];
1222 for (;;)
1223 {
1224 const int16_t i = pPool->aPages[iPrev].iNext;
1225 if (i == pPage->idx)
1226 {
1227 pPool->aPages[iPrev].iNext = pPage->iNext;
1228 break;
1229 }
1230 if (i == NIL_PGMPOOL_IDX)
1231 {
1232 AssertReleaseMsgFailed(("GCPhys=%RGp idx=%#x\n", pPage->GCPhys, pPage->idx));
1233 break;
1234 }
1235 iPrev = i;
1236 }
1237 }
1238 pPage->iNext = NIL_PGMPOOL_IDX;
1239}
1240
1241
1242/**
1243 * Frees up one cache page.
1244 *
1245 * @returns VBox status code.
1246 * @retval VINF_SUCCESS on success.
1247 * @param pPool The pool.
1248 * @param iUser The user index.
1249 */
1250static int pgmPoolCacheFreeOne(PPGMPOOL pPool, uint16_t iUser)
1251{
1252#ifndef IN_RC
1253 const PVM pVM = pPool->CTX_SUFF(pVM);
1254#endif
1255 Assert(pPool->iAgeHead != pPool->iAgeTail); /* We shouldn't be here if there < 2 cached entries! */
1256 STAM_COUNTER_INC(&pPool->StatCacheFreeUpOne);
1257
1258 /*
1259 * Select one page from the tail of the age list.
1260 */
1261 PPGMPOOLPAGE pPage;
1262 for (unsigned iLoop = 0; ; iLoop++)
1263 {
1264 uint16_t iToFree = pPool->iAgeTail;
1265 if (iToFree == iUser)
1266 iToFree = pPool->aPages[iToFree].iAgePrev;
1267/* This is the alternative to the SyncCR3 pgmPoolCacheUsed calls.
1268 if (pPool->aPages[iToFree].iUserHead != NIL_PGMPOOL_USER_INDEX)
1269 {
1270 uint16_t i = pPool->aPages[iToFree].iAgePrev;
1271 for (unsigned j = 0; j < 10 && i != NIL_PGMPOOL_USER_INDEX; j++, i = pPool->aPages[i].iAgePrev)
1272 {
1273 if (pPool->aPages[iToFree].iUserHead == NIL_PGMPOOL_USER_INDEX)
1274 continue;
1275 iToFree = i;
1276 break;
1277 }
1278 }
1279*/
1280 Assert(iToFree != iUser);
1281 AssertRelease(iToFree != NIL_PGMPOOL_IDX);
1282 pPage = &pPool->aPages[iToFree];
1283
1284 /*
1285 * Reject any attempts at flushing the currently active shadow CR3 mapping.
1286 * Call pgmPoolCacheUsed to move the page to the head of the age list.
1287 */
1288 if (!pgmPoolIsPageLocked(&pPool->CTX_SUFF(pVM)->pgm.s, pPage))
1289 break;
1290 LogFlow(("pgmPoolCacheFreeOne: refuse CR3 mapping\n"));
1291 pgmPoolCacheUsed(pPool, pPage);
1292 AssertLogRelReturn(iLoop < 8192, VERR_INTERNAL_ERROR);
1293 }
1294
1295 /*
1296 * Found a usable page, flush it and return.
1297 */
1298 int rc = pgmPoolFlushPage(pPool, pPage);
1299 if (rc == VINF_SUCCESS)
1300 PGM_INVL_VCPU_TLBS(VMMGetCpu(pVM)); /* see PT handler. */
1301 return rc;
1302}
1303
1304
1305/**
1306 * Checks if a kind mismatch is really a page being reused
1307 * or if it's just normal remappings.
1308 *
1309 * @returns true if reused and the cached page (enmKind1) should be flushed
1310 * @returns false if not reused.
1311 * @param enmKind1 The kind of the cached page.
1312 * @param enmKind2 The kind of the requested page.
1313 */
1314static bool pgmPoolCacheReusedByKind(PGMPOOLKIND enmKind1, PGMPOOLKIND enmKind2)
1315{
1316 switch (enmKind1)
1317 {
1318 /*
1319 * Never reuse them. There is no remapping in non-paging mode.
1320 */
1321 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1322 case PGMPOOLKIND_32BIT_PD_PHYS:
1323 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1324 case PGMPOOLKIND_PAE_PD_PHYS:
1325 case PGMPOOLKIND_PAE_PDPT_PHYS:
1326 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1327 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1328 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1329 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1330 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1331 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: /* never reuse them for other types */
1332 return false;
1333
1334 /*
1335 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
1336 */
1337 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1338 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1339 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1340 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1341 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1342 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1343 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1344 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1345 case PGMPOOLKIND_32BIT_PD:
1346 case PGMPOOLKIND_PAE_PDPT:
1347 switch (enmKind2)
1348 {
1349 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1350 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1351 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1352 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1353 case PGMPOOLKIND_64BIT_PML4:
1354 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1355 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1356 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1357 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1358 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1359 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1360 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1361 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1362 return true;
1363 default:
1364 return false;
1365 }
1366
1367 /*
1368 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
1369 */
1370 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1371 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1372 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1373 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1374 case PGMPOOLKIND_64BIT_PML4:
1375 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1376 switch (enmKind2)
1377 {
1378 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1379 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1380 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1381 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1382 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1383 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1384 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1385 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1386 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1387 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1388 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1389 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1390 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1391 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1392 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1393 return true;
1394 default:
1395 return false;
1396 }
1397
1398 /*
1399 * These cannot be flushed, and it's common to reuse the PDs as PTs.
1400 */
1401 case PGMPOOLKIND_ROOT_NESTED:
1402 return false;
1403
1404 default:
1405 AssertFatalMsgFailed(("enmKind1=%d\n", enmKind1));
1406 }
1407}
1408
1409
1410/**
1411 * Attempts to satisfy a pgmPoolAlloc request from the cache.
1412 *
1413 * @returns VBox status code.
1414 * @retval VINF_PGM_CACHED_PAGE on success.
1415 * @retval VERR_FILE_NOT_FOUND if not found.
1416 * @param pPool The pool.
1417 * @param GCPhys The GC physical address of the page we're gonna shadow.
1418 * @param enmKind The kind of mapping.
1419 * @param iUser The shadow page pool index of the user table.
1420 * @param iUserTable The index into the user table (shadowed).
1421 * @param ppPage Where to store the pointer to the page.
1422 */
1423static int pgmPoolCacheAlloc(PPGMPOOL pPool, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage)
1424{
1425#ifndef IN_RC
1426 const PVM pVM = pPool->CTX_SUFF(pVM);
1427#endif
1428 /*
1429 * Look up the GCPhys in the hash.
1430 */
1431 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
1432 Log3(("pgmPoolCacheAlloc: %RGp kind %s iUser=%x iUserTable=%x SLOT=%d\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable, i));
1433 if (i != NIL_PGMPOOL_IDX)
1434 {
1435 do
1436 {
1437 PPGMPOOLPAGE pPage = &pPool->aPages[i];
1438 Log4(("pgmPoolCacheAlloc: slot %d found page %RGp\n", i, pPage->GCPhys));
1439 if (pPage->GCPhys == GCPhys)
1440 {
1441 if ((PGMPOOLKIND)pPage->enmKind == enmKind)
1442 {
1443 /* Put it at the start of the use list to make sure pgmPoolTrackAddUser
1444 * doesn't flush it in case there are no more free use records.
1445 */
1446 pgmPoolCacheUsed(pPool, pPage);
1447
1448 int rc = pgmPoolTrackAddUser(pPool, pPage, iUser, iUserTable);
1449 if (RT_SUCCESS(rc))
1450 {
1451 Assert((PGMPOOLKIND)pPage->enmKind == enmKind);
1452 *ppPage = pPage;
1453 STAM_COUNTER_INC(&pPool->StatCacheHits);
1454 return VINF_PGM_CACHED_PAGE;
1455 }
1456 return rc;
1457 }
1458
1459 /*
1460 * The kind is different. In some cases we should now flush the page
1461 * as it has been reused, but in most cases this is normal remapping
1462 * of PDs as PT or big pages using the GCPhys field in a slightly
1463 * different way than the other kinds.
1464 */
1465 if (pgmPoolCacheReusedByKind((PGMPOOLKIND)pPage->enmKind, enmKind))
1466 {
1467 STAM_COUNTER_INC(&pPool->StatCacheKindMismatches);
1468 pgmPoolFlushPage(pPool, pPage);
1469 PGM_INVL_VCPU_TLBS(VMMGetCpu(pVM)); /* see PT handler. */
1470 break;
1471 }
1472 }
1473
1474 /* next */
1475 i = pPage->iNext;
1476 } while (i != NIL_PGMPOOL_IDX);
1477 }
1478
1479 Log3(("pgmPoolCacheAlloc: Missed GCPhys=%RGp enmKind=%s\n", GCPhys, pgmPoolPoolKindToStr(enmKind)));
1480 STAM_COUNTER_INC(&pPool->StatCacheMisses);
1481 return VERR_FILE_NOT_FOUND;
1482}
1483
1484
1485/**
1486 * Inserts a page into the cache.
1487 *
1488 * @param pPool The pool.
1489 * @param pPage The cached page.
1490 * @param fCanBeCached Set if the page is fit for caching from the caller's point of view.
1491 */
1492static void pgmPoolCacheInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fCanBeCached)
1493{
1494 /*
1495 * Insert into the GCPhys hash if the page is fit for that.
1496 */
1497 Assert(!pPage->fCached);
1498 if (fCanBeCached)
1499 {
1500 pPage->fCached = true;
1501 pgmPoolHashInsert(pPool, pPage);
1502 Log3(("pgmPoolCacheInsert: Caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
1503 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
1504 STAM_COUNTER_INC(&pPool->StatCacheCacheable);
1505 }
1506 else
1507 {
1508 Log3(("pgmPoolCacheInsert: Not caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
1509 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
1510 STAM_COUNTER_INC(&pPool->StatCacheUncacheable);
1511 }
1512
1513 /*
1514 * Insert at the head of the age list.
1515 */
1516 pPage->iAgePrev = NIL_PGMPOOL_IDX;
1517 pPage->iAgeNext = pPool->iAgeHead;
1518 if (pPool->iAgeHead != NIL_PGMPOOL_IDX)
1519 pPool->aPages[pPool->iAgeHead].iAgePrev = pPage->idx;
1520 else
1521 pPool->iAgeTail = pPage->idx;
1522 pPool->iAgeHead = pPage->idx;
1523}
1524
1525
1526/**
1527 * Flushes a cached page.
1528 *
1529 * @param pPool The pool.
1530 * @param pPage The cached page.
1531 */
1532static void pgmPoolCacheFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1533{
1534 Log3(("pgmPoolCacheFlushPage: %RGp\n", pPage->GCPhys));
1535
1536 /*
1537 * Remove the page from the hash.
1538 */
1539 if (pPage->fCached)
1540 {
1541 pPage->fCached = false;
1542 pgmPoolHashRemove(pPool, pPage);
1543 }
1544 else
1545 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
1546
1547 /*
1548 * Remove it from the age list.
1549 */
1550 if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
1551 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
1552 else
1553 pPool->iAgeTail = pPage->iAgePrev;
1554 if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
1555 pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
1556 else
1557 pPool->iAgeHead = pPage->iAgeNext;
1558 pPage->iAgeNext = NIL_PGMPOOL_IDX;
1559 pPage->iAgePrev = NIL_PGMPOOL_IDX;
1560}
1561
1562#endif /* PGMPOOL_WITH_CACHE */
1563#ifdef PGMPOOL_WITH_MONITORING
1564
1565/**
1566 * Looks for pages sharing the monitor.
1567 *
1568 * @returns Pointer to the head page.
1569 * @returns NULL if not found.
1570 * @param pPool The Pool
1571 * @param pNewPage The page which is going to be monitored.
1572 */
1573static PPGMPOOLPAGE pgmPoolMonitorGetPageByGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pNewPage)
1574{
1575#ifdef PGMPOOL_WITH_CACHE
1576 /*
1577 * Look up the GCPhys in the hash.
1578 */
1579 RTGCPHYS GCPhys = pNewPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
1580 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
1581 if (i == NIL_PGMPOOL_IDX)
1582 return NULL;
1583 do
1584 {
1585 PPGMPOOLPAGE pPage = &pPool->aPages[i];
1586 if ( pPage->GCPhys - GCPhys < PAGE_SIZE
1587 && pPage != pNewPage)
1588 {
1589 switch (pPage->enmKind)
1590 {
1591 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1592 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1593 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1594 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1595 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1596 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1597 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1598 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1599 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1600 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1601 case PGMPOOLKIND_64BIT_PML4:
1602 case PGMPOOLKIND_32BIT_PD:
1603 case PGMPOOLKIND_PAE_PDPT:
1604 {
1605 /* find the head */
1606 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
1607 {
1608 Assert(pPage->iMonitoredPrev != pPage->idx);
1609 pPage = &pPool->aPages[pPage->iMonitoredPrev];
1610 }
1611 return pPage;
1612 }
1613
1614 /* ignore, no monitoring. */
1615 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1616 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1617 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1618 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1619 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1620 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1621 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1622 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1623 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1624 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1625 case PGMPOOLKIND_ROOT_NESTED:
1626 case PGMPOOLKIND_PAE_PD_PHYS:
1627 case PGMPOOLKIND_PAE_PDPT_PHYS:
1628 case PGMPOOLKIND_32BIT_PD_PHYS:
1629 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
1630 break;
1631 default:
1632 AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx));
1633 }
1634 }
1635
1636 /* next */
1637 i = pPage->iNext;
1638 } while (i != NIL_PGMPOOL_IDX);
1639#endif
1640 return NULL;
1641}
1642
1643
1644/**
1645 * Enabled write monitoring of a guest page.
1646 *
1647 * @returns VBox status code.
1648 * @retval VINF_SUCCESS on success.
1649 * @param pPool The pool.
1650 * @param pPage The cached page.
1651 */
1652static int pgmPoolMonitorInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1653{
1654 LogFlow(("pgmPoolMonitorInsert %RGp\n", pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1)));
1655
1656 /*
1657 * Filter out the relevant kinds.
1658 */
1659 switch (pPage->enmKind)
1660 {
1661 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1662 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1663 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1664 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1665 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1666 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1667 case PGMPOOLKIND_64BIT_PML4:
1668 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1669 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1670 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1671 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1672 case PGMPOOLKIND_32BIT_PD:
1673 case PGMPOOLKIND_PAE_PDPT:
1674 break;
1675
1676 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1677 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1678 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1679 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1680 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1681 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1682 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1683 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1684 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1685 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1686 case PGMPOOLKIND_ROOT_NESTED:
1687 /* Nothing to monitor here. */
1688 return VINF_SUCCESS;
1689
1690 case PGMPOOLKIND_32BIT_PD_PHYS:
1691 case PGMPOOLKIND_PAE_PDPT_PHYS:
1692 case PGMPOOLKIND_PAE_PD_PHYS:
1693 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
1694 /* Nothing to monitor here. */
1695 return VINF_SUCCESS;
1696#ifdef PGMPOOL_WITH_MIXED_PT_CR3
1697 break;
1698#else
1699 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1700#endif
1701 default:
1702 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
1703 }
1704
1705 /*
1706 * Install handler.
1707 */
1708 int rc;
1709 PPGMPOOLPAGE pPageHead = pgmPoolMonitorGetPageByGCPhys(pPool, pPage);
1710 if (pPageHead)
1711 {
1712 Assert(pPageHead != pPage); Assert(pPageHead->iMonitoredNext != pPage->idx);
1713 Assert(pPageHead->iMonitoredPrev != pPage->idx);
1714 pPage->iMonitoredPrev = pPageHead->idx;
1715 pPage->iMonitoredNext = pPageHead->iMonitoredNext;
1716 if (pPageHead->iMonitoredNext != NIL_PGMPOOL_IDX)
1717 pPool->aPages[pPageHead->iMonitoredNext].iMonitoredPrev = pPage->idx;
1718 pPageHead->iMonitoredNext = pPage->idx;
1719 rc = VINF_SUCCESS;
1720 }
1721 else
1722 {
1723 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX); Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1724 PVM pVM = pPool->CTX_SUFF(pVM);
1725 const RTGCPHYS GCPhysPage = pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
1726 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
1727 GCPhysPage, GCPhysPage + (PAGE_SIZE - 1),
1728 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage),
1729 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage),
1730 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pPage),
1731 pPool->pszAccessHandler);
1732 /** @todo we should probably deal with out-of-memory conditions here, but for now increasing
1733 * the heap size should suffice. */
1734 AssertFatalMsgRC(rc, ("PGMHandlerPhysicalRegisterEx %RGp failed with %Rrc\n", GCPhysPage, rc));
1735 Assert(!(pVM->pgm.s.fGlobalSyncFlags & PGM_GLOBAL_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_ISSET(VMMGetCpu(pVM), VMCPU_FF_PGM_SYNC_CR3));
1736 }
1737 pPage->fMonitored = true;
1738 return rc;
1739}
1740
1741
1742/**
1743 * Disables write monitoring of a guest page.
1744 *
1745 * @returns VBox status code.
1746 * @retval VINF_SUCCESS on success.
1747 * @param pPool The pool.
1748 * @param pPage The cached page.
1749 */
1750static int pgmPoolMonitorFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1751{
1752 /*
1753 * Filter out the relevant kinds.
1754 */
1755 switch (pPage->enmKind)
1756 {
1757 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1758 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1759 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1760 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1761 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1762 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1763 case PGMPOOLKIND_64BIT_PML4:
1764 case PGMPOOLKIND_32BIT_PD:
1765 case PGMPOOLKIND_PAE_PDPT:
1766 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1767 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1768 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1769 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1770 break;
1771
1772 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1773 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1774 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1775 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1776 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1777 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1778 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1779 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1780 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1781 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1782 case PGMPOOLKIND_ROOT_NESTED:
1783 case PGMPOOLKIND_PAE_PD_PHYS:
1784 case PGMPOOLKIND_PAE_PDPT_PHYS:
1785 case PGMPOOLKIND_32BIT_PD_PHYS:
1786 /* Nothing to monitor here. */
1787 return VINF_SUCCESS;
1788
1789#ifdef PGMPOOL_WITH_MIXED_PT_CR3
1790 break;
1791#endif
1792 default:
1793 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
1794 }
1795
1796 /*
1797 * Remove the page from the monitored list or uninstall it if last.
1798 */
1799 const PVM pVM = pPool->CTX_SUFF(pVM);
1800 int rc;
1801 if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX
1802 || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
1803 {
1804 if (pPage->iMonitoredPrev == NIL_PGMPOOL_IDX)
1805 {
1806 PPGMPOOLPAGE pNewHead = &pPool->aPages[pPage->iMonitoredNext];
1807 pNewHead->iMonitoredPrev = NIL_PGMPOOL_IDX;
1808 rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1),
1809 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pNewHead),
1810 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pNewHead),
1811 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pNewHead),
1812 pPool->pszAccessHandler);
1813 AssertFatalRCSuccess(rc);
1814 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
1815 }
1816 else
1817 {
1818 pPool->aPages[pPage->iMonitoredPrev].iMonitoredNext = pPage->iMonitoredNext;
1819 if (pPage->iMonitoredNext != NIL_PGMPOOL_IDX)
1820 {
1821 pPool->aPages[pPage->iMonitoredNext].iMonitoredPrev = pPage->iMonitoredPrev;
1822 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
1823 }
1824 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
1825 rc = VINF_SUCCESS;
1826 }
1827 }
1828 else
1829 {
1830 rc = PGMHandlerPhysicalDeregister(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1));
1831 AssertFatalRC(rc);
1832 AssertMsg(!(pVM->pgm.s.fGlobalSyncFlags & PGM_GLOBAL_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_ISSET(VMMGetCpu(pVM), VMCPU_FF_PGM_SYNC_CR3),
1833 ("%#x %#x\n", pVM->pgm.s.fGlobalSyncFlags, pVM->fGlobalForcedActions));
1834 }
1835 pPage->fMonitored = false;
1836
1837 /*
1838 * Remove it from the list of modified pages (if in it).
1839 */
1840 pgmPoolMonitorModifiedRemove(pPool, pPage);
1841
1842 return rc;
1843}
1844
1845
1846/**
1847 * Inserts the page into the list of modified pages.
1848 *
1849 * @param pPool The pool.
1850 * @param pPage The page.
1851 */
1852void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1853{
1854 Log3(("pgmPoolMonitorModifiedInsert: idx=%d\n", pPage->idx));
1855 AssertMsg( pPage->iModifiedNext == NIL_PGMPOOL_IDX
1856 && pPage->iModifiedPrev == NIL_PGMPOOL_IDX
1857 && pPool->iModifiedHead != pPage->idx,
1858 ("Next=%d Prev=%d idx=%d cModifications=%d Head=%d cModifiedPages=%d\n",
1859 pPage->iModifiedNext, pPage->iModifiedPrev, pPage->idx, pPage->cModifications,
1860 pPool->iModifiedHead, pPool->cModifiedPages));
1861
1862 pPage->iModifiedNext = pPool->iModifiedHead;
1863 if (pPool->iModifiedHead != NIL_PGMPOOL_IDX)
1864 pPool->aPages[pPool->iModifiedHead].iModifiedPrev = pPage->idx;
1865 pPool->iModifiedHead = pPage->idx;
1866 pPool->cModifiedPages++;
1867#ifdef VBOX_WITH_STATISTICS
1868 if (pPool->cModifiedPages > pPool->cModifiedPagesHigh)
1869 pPool->cModifiedPagesHigh = pPool->cModifiedPages;
1870#endif
1871}
1872
1873
1874/**
1875 * Removes the page from the list of modified pages and resets the
1876 * moficiation counter.
1877 *
1878 * @param pPool The pool.
1879 * @param pPage The page which is believed to be in the list of modified pages.
1880 */
1881static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1882{
1883 Log3(("pgmPoolMonitorModifiedRemove: idx=%d cModifications=%d\n", pPage->idx, pPage->cModifications));
1884 if (pPool->iModifiedHead == pPage->idx)
1885 {
1886 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
1887 pPool->iModifiedHead = pPage->iModifiedNext;
1888 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
1889 {
1890 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = NIL_PGMPOOL_IDX;
1891 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
1892 }
1893 pPool->cModifiedPages--;
1894 }
1895 else if (pPage->iModifiedPrev != NIL_PGMPOOL_IDX)
1896 {
1897 pPool->aPages[pPage->iModifiedPrev].iModifiedNext = pPage->iModifiedNext;
1898 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
1899 {
1900 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = pPage->iModifiedPrev;
1901 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
1902 }
1903 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
1904 pPool->cModifiedPages--;
1905 }
1906 else
1907 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
1908 pPage->cModifications = 0;
1909}
1910
1911
1912/**
1913 * Zaps the list of modified pages, resetting their modification counters in the process.
1914 *
1915 * @param pVM The VM handle.
1916 */
1917void pgmPoolMonitorModifiedClearAll(PVM pVM)
1918{
1919 pgmLock(pVM);
1920 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1921 LogFlow(("pgmPoolMonitorModifiedClearAll: cModifiedPages=%d\n", pPool->cModifiedPages));
1922
1923 unsigned cPages = 0; NOREF(cPages);
1924 uint16_t idx = pPool->iModifiedHead;
1925 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
1926 while (idx != NIL_PGMPOOL_IDX)
1927 {
1928 PPGMPOOLPAGE pPage = &pPool->aPages[idx];
1929 idx = pPage->iModifiedNext;
1930 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
1931 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
1932 pPage->cModifications = 0;
1933 Assert(++cPages);
1934 }
1935 AssertMsg(cPages == pPool->cModifiedPages, ("%d != %d\n", cPages, pPool->cModifiedPages));
1936 pPool->cModifiedPages = 0;
1937 pgmUnlock(pVM);
1938}
1939
1940
1941#ifdef IN_RING3
1942/**
1943 * Callback to clear all shadow pages and clear all modification counters.
1944 *
1945 * @returns VBox status code.
1946 * @param pVM The VM handle.
1947 * @param pvUser Unused parameter
1948 * @remark Should only be used when monitoring is available, thus placed in
1949 * the PGMPOOL_WITH_MONITORING #ifdef.
1950 */
1951DECLCALLBACK(int) pgmPoolClearAll(PVM pVM, void *pvUser)
1952{
1953 NOREF(pvUser);
1954 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1955 STAM_PROFILE_START(&pPool->StatClearAll, c);
1956 LogFlow(("pgmPoolClearAll: cUsedPages=%d\n", pPool->cUsedPages));
1957
1958 pgmLock(pVM);
1959
1960 /*
1961 * Iterate all the pages until we've encountered all that in use.
1962 * This is simple but not quite optimal solution.
1963 */
1964 unsigned cModifiedPages = 0; NOREF(cModifiedPages);
1965 unsigned cLeft = pPool->cUsedPages;
1966 unsigned iPage = pPool->cCurPages;
1967 while (--iPage >= PGMPOOL_IDX_FIRST)
1968 {
1969 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
1970 if (pPage->GCPhys != NIL_RTGCPHYS)
1971 {
1972 switch (pPage->enmKind)
1973 {
1974 /*
1975 * We only care about shadow page tables.
1976 */
1977 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1978 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1979 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1980 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1981 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1982 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1983 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1984 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1985 {
1986#ifdef PGMPOOL_WITH_USER_TRACKING
1987 if (pPage->cPresent)
1988#endif
1989 {
1990 void *pvShw = PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
1991 STAM_PROFILE_START(&pPool->StatZeroPage, z);
1992 ASMMemZeroPage(pvShw);
1993 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
1994#ifdef PGMPOOL_WITH_USER_TRACKING
1995 pPage->cPresent = 0;
1996 pPage->iFirstPresent = ~0;
1997#endif
1998 }
1999 }
2000 /* fall thru */
2001
2002 default:
2003 Assert(!pPage->cModifications || ++cModifiedPages);
2004 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
2005 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
2006 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2007 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2008 pPage->cModifications = 0;
2009 break;
2010
2011 }
2012 if (!--cLeft)
2013 break;
2014 }
2015 }
2016
2017 /* swipe the special pages too. */
2018 for (iPage = PGMPOOL_IDX_FIRST_SPECIAL; iPage < PGMPOOL_IDX_FIRST; iPage++)
2019 {
2020 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
2021 if (pPage->GCPhys != NIL_RTGCPHYS)
2022 {
2023 Assert(!pPage->cModifications || ++cModifiedPages);
2024 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
2025 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
2026 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2027 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2028 pPage->cModifications = 0;
2029 }
2030 }
2031
2032#ifndef DEBUG_michael
2033 AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages));
2034#endif
2035 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
2036 pPool->cModifiedPages = 0;
2037
2038#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2039 /*
2040 * Clear all the GCPhys links and rebuild the phys ext free list.
2041 */
2042 for (PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
2043 pRam;
2044 pRam = pRam->CTX_SUFF(pNext))
2045 {
2046 unsigned iPage = pRam->cb >> PAGE_SHIFT;
2047 while (iPage-- > 0)
2048 PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0);
2049 }
2050
2051 pPool->iPhysExtFreeHead = 0;
2052 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
2053 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
2054 for (unsigned i = 0; i < cMaxPhysExts; i++)
2055 {
2056 paPhysExts[i].iNext = i + 1;
2057 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
2058 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
2059 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
2060 }
2061 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
2062#endif
2063
2064 pPool->cPresent = 0;
2065 pgmUnlock(pVM);
2066 PGM_INVL_ALL_VCPU_TLBS(pVM);
2067 STAM_PROFILE_STOP(&pPool->StatClearAll, c);
2068 return VINF_SUCCESS;
2069}
2070#endif /* IN_RING3 */
2071
2072
2073/**
2074 * Handle SyncCR3 pool tasks
2075 *
2076 * @returns VBox status code.
2077 * @retval VINF_SUCCESS if successfully added.
2078 * @retval VINF_PGM_SYNC_CR3 is it needs to be deferred to ring 3 (GC only)
2079 * @param pVM The VM handle.
2080 * @remark Should only be used when monitoring is available, thus placed in
2081 * the PGMPOOL_WITH_MONITORING #ifdef.
2082 */
2083int pgmPoolSyncCR3(PVM pVM)
2084{
2085 LogFlow(("pgmPoolSyncCR3\n"));
2086 /*
2087 * When monitoring shadowed pages, we reset the modification counters on CR3 sync.
2088 * Occasionally we will have to clear all the shadow page tables because we wanted
2089 * to monitor a page which was mapped by too many shadowed page tables. This operation
2090 * sometimes refered to as a 'lightweight flush'.
2091 */
2092# ifdef IN_RING3 /* Don't flush in ring-0 or raw mode, it's taking too long. */
2093 if (ASMBitTestAndClear(&pVM->pgm.s.fGlobalSyncFlags, PGM_GLOBAL_SYNC_CLEAR_PGM_POOL_BIT))
2094 {
2095 VMMR3AtomicExecuteHandler(pVM, pgmPoolClearAll, NULL);
2096# else /* !IN_RING3 */
2097 if (pVM->pgm.s.fGlobalSyncFlags & PGM_GLOBAL_SYNC_CLEAR_PGM_POOL)
2098 {
2099 LogFlow(("SyncCR3: PGM_GLOBAL_SYNC_CLEAR_PGM_POOL is set -> VINF_PGM_SYNC_CR3\n"));
2100 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
2101 return VINF_PGM_SYNC_CR3;
2102# endif /* !IN_RING3 */
2103 }
2104 else
2105 pgmPoolMonitorModifiedClearAll(pVM);
2106
2107 return VINF_SUCCESS;
2108}
2109
2110#endif /* PGMPOOL_WITH_MONITORING */
2111#ifdef PGMPOOL_WITH_USER_TRACKING
2112
2113/**
2114 * Frees up at least one user entry.
2115 *
2116 * @returns VBox status code.
2117 * @retval VINF_SUCCESS if successfully added.
2118 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2119 * @param pPool The pool.
2120 * @param iUser The user index.
2121 */
2122static int pgmPoolTrackFreeOneUser(PPGMPOOL pPool, uint16_t iUser)
2123{
2124 STAM_COUNTER_INC(&pPool->StatTrackFreeUpOneUser);
2125#ifdef PGMPOOL_WITH_CACHE
2126 /*
2127 * Just free cached pages in a braindead fashion.
2128 */
2129 /** @todo walk the age list backwards and free the first with usage. */
2130 int rc = VINF_SUCCESS;
2131 do
2132 {
2133 int rc2 = pgmPoolCacheFreeOne(pPool, iUser);
2134 if (RT_FAILURE(rc2) && rc == VINF_SUCCESS)
2135 rc = rc2;
2136 } while (pPool->iUserFreeHead == NIL_PGMPOOL_USER_INDEX);
2137 return rc;
2138#else
2139 /*
2140 * Lazy approach.
2141 */
2142 /* @todo This path no longer works (CR3 root pages will be flushed)!! */
2143 AssertCompileFailed();
2144 Assert(!CPUMIsGuestInLongMode(pVM));
2145 pgmPoolFlushAllInt(pPool);
2146 return VERR_PGM_POOL_FLUSHED;
2147#endif
2148}
2149
2150
2151/**
2152 * Inserts a page into the cache.
2153 *
2154 * This will create user node for the page, insert it into the GCPhys
2155 * hash, and insert it into the age list.
2156 *
2157 * @returns VBox status code.
2158 * @retval VINF_SUCCESS if successfully added.
2159 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2160 * @param pPool The pool.
2161 * @param pPage The cached page.
2162 * @param GCPhys The GC physical address of the page we're gonna shadow.
2163 * @param iUser The user index.
2164 * @param iUserTable The user table index.
2165 */
2166DECLINLINE(int) pgmPoolTrackInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhys, uint16_t iUser, uint32_t iUserTable)
2167{
2168 int rc = VINF_SUCCESS;
2169 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2170
2171 LogFlow(("pgmPoolTrackInsert GCPhys=%RGp iUser %x iUserTable %x\n", GCPhys, iUser, iUserTable));
2172
2173#ifdef VBOX_STRICT
2174 /*
2175 * Check that the entry doesn't already exists.
2176 */
2177 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2178 {
2179 uint16_t i = pPage->iUserHead;
2180 do
2181 {
2182 Assert(i < pPool->cMaxUsers);
2183 AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2184 i = paUsers[i].iNext;
2185 } while (i != NIL_PGMPOOL_USER_INDEX);
2186 }
2187#endif
2188
2189 /*
2190 * Find free a user node.
2191 */
2192 uint16_t i = pPool->iUserFreeHead;
2193 if (i == NIL_PGMPOOL_USER_INDEX)
2194 {
2195 int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2196 if (RT_FAILURE(rc))
2197 return rc;
2198 i = pPool->iUserFreeHead;
2199 }
2200
2201 /*
2202 * Unlink the user node from the free list,
2203 * initialize and insert it into the user list.
2204 */
2205 pPool->iUserFreeHead = paUsers[i].iNext;
2206 paUsers[i].iNext = NIL_PGMPOOL_USER_INDEX;
2207 paUsers[i].iUser = iUser;
2208 paUsers[i].iUserTable = iUserTable;
2209 pPage->iUserHead = i;
2210
2211 /*
2212 * Insert into cache and enable monitoring of the guest page if enabled.
2213 *
2214 * Until we implement caching of all levels, including the CR3 one, we'll
2215 * have to make sure we don't try monitor & cache any recursive reuse of
2216 * a monitored CR3 page. Because all windows versions are doing this we'll
2217 * have to be able to do combined access monitoring, CR3 + PT and
2218 * PD + PT (guest PAE).
2219 *
2220 * Update:
2221 * We're now cooperating with the CR3 monitor if an uncachable page is found.
2222 */
2223#if defined(PGMPOOL_WITH_MONITORING) || defined(PGMPOOL_WITH_CACHE)
2224# ifdef PGMPOOL_WITH_MIXED_PT_CR3
2225 const bool fCanBeMonitored = true;
2226# else
2227 bool fCanBeMonitored = pPool->CTX_SUFF(pVM)->pgm.s.GCPhysGstCR3Monitored == NIL_RTGCPHYS
2228 || (GCPhys & X86_PTE_PAE_PG_MASK) != (pPool->CTX_SUFF(pVM)->pgm.s.GCPhysGstCR3Monitored & X86_PTE_PAE_PG_MASK)
2229 || pgmPoolIsBigPage((PGMPOOLKIND)pPage->enmKind);
2230# endif
2231# ifdef PGMPOOL_WITH_CACHE
2232 pgmPoolCacheInsert(pPool, pPage, fCanBeMonitored); /* This can be expanded. */
2233# endif
2234 if (fCanBeMonitored)
2235 {
2236# ifdef PGMPOOL_WITH_MONITORING
2237 rc = pgmPoolMonitorInsert(pPool, pPage);
2238 AssertRC(rc);
2239 }
2240# endif
2241#endif /* PGMPOOL_WITH_MONITORING */
2242 return rc;
2243}
2244
2245
2246# ifdef PGMPOOL_WITH_CACHE /* (only used when the cache is enabled.) */
2247/**
2248 * Adds a user reference to a page.
2249 *
2250 * This will move the page to the head of the
2251 *
2252 * @returns VBox status code.
2253 * @retval VINF_SUCCESS if successfully added.
2254 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2255 * @param pPool The pool.
2256 * @param pPage The cached page.
2257 * @param iUser The user index.
2258 * @param iUserTable The user table.
2259 */
2260static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2261{
2262 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2263
2264 Log3(("pgmPoolTrackAddUser GCPhys = %RGp iUser %x iUserTable %x\n", pPage->GCPhys, iUser, iUserTable));
2265
2266# ifdef VBOX_STRICT
2267 /*
2268 * Check that the entry doesn't already exists. We only allow multiple users of top-level paging structures (SHW_POOL_ROOT_IDX).
2269 */
2270 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2271 {
2272 uint16_t i = pPage->iUserHead;
2273 do
2274 {
2275 Assert(i < pPool->cMaxUsers);
2276 AssertMsg(iUser != PGMPOOL_IDX_PD || iUser != PGMPOOL_IDX_PDPT || iUser != PGMPOOL_IDX_NESTED_ROOT || iUser != PGMPOOL_IDX_AMD64_CR3 ||
2277 paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2278 i = paUsers[i].iNext;
2279 } while (i != NIL_PGMPOOL_USER_INDEX);
2280 }
2281# endif
2282
2283 /*
2284 * Allocate a user node.
2285 */
2286 uint16_t i = pPool->iUserFreeHead;
2287 if (i == NIL_PGMPOOL_USER_INDEX)
2288 {
2289 int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2290 if (RT_FAILURE(rc))
2291 return rc;
2292 i = pPool->iUserFreeHead;
2293 }
2294 pPool->iUserFreeHead = paUsers[i].iNext;
2295
2296 /*
2297 * Initialize the user node and insert it.
2298 */
2299 paUsers[i].iNext = pPage->iUserHead;
2300 paUsers[i].iUser = iUser;
2301 paUsers[i].iUserTable = iUserTable;
2302 pPage->iUserHead = i;
2303
2304# ifdef PGMPOOL_WITH_CACHE
2305 /*
2306 * Tell the cache to update its replacement stats for this page.
2307 */
2308 pgmPoolCacheUsed(pPool, pPage);
2309# endif
2310 return VINF_SUCCESS;
2311}
2312# endif /* PGMPOOL_WITH_CACHE */
2313
2314
2315/**
2316 * Frees a user record associated with a page.
2317 *
2318 * This does not clear the entry in the user table, it simply replaces the
2319 * user record to the chain of free records.
2320 *
2321 * @param pPool The pool.
2322 * @param HCPhys The HC physical address of the shadow page.
2323 * @param iUser The shadow page pool index of the user table.
2324 * @param iUserTable The index into the user table (shadowed).
2325 */
2326static void pgmPoolTrackFreeUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2327{
2328 /*
2329 * Unlink and free the specified user entry.
2330 */
2331 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2332
2333 Log3(("pgmPoolTrackFreeUser %RGp %x %x\n", pPage->GCPhys, iUser, iUserTable));
2334 /* Special: For PAE and 32-bit paging, there is usually no more than one user. */
2335 uint16_t i = pPage->iUserHead;
2336 if ( i != NIL_PGMPOOL_USER_INDEX
2337 && paUsers[i].iUser == iUser
2338 && paUsers[i].iUserTable == iUserTable)
2339 {
2340 pPage->iUserHead = paUsers[i].iNext;
2341
2342 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2343 paUsers[i].iNext = pPool->iUserFreeHead;
2344 pPool->iUserFreeHead = i;
2345 return;
2346 }
2347
2348 /* General: Linear search. */
2349 uint16_t iPrev = NIL_PGMPOOL_USER_INDEX;
2350 while (i != NIL_PGMPOOL_USER_INDEX)
2351 {
2352 if ( paUsers[i].iUser == iUser
2353 && paUsers[i].iUserTable == iUserTable)
2354 {
2355 if (iPrev != NIL_PGMPOOL_USER_INDEX)
2356 paUsers[iPrev].iNext = paUsers[i].iNext;
2357 else
2358 pPage->iUserHead = paUsers[i].iNext;
2359
2360 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2361 paUsers[i].iNext = pPool->iUserFreeHead;
2362 pPool->iUserFreeHead = i;
2363 return;
2364 }
2365 iPrev = i;
2366 i = paUsers[i].iNext;
2367 }
2368
2369 /* Fatal: didn't find it */
2370 AssertFatalMsgFailed(("Didn't find the user entry! iUser=%#x iUserTable=%#x GCPhys=%RGp\n",
2371 iUser, iUserTable, pPage->GCPhys));
2372}
2373
2374
2375/**
2376 * Gets the entry size of a shadow table.
2377 *
2378 * @param enmKind The kind of page.
2379 *
2380 * @returns The size of the entry in bytes. That is, 4 or 8.
2381 * @returns If the kind is not for a table, an assertion is raised and 0 is
2382 * returned.
2383 */
2384DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind)
2385{
2386 switch (enmKind)
2387 {
2388 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2389 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2390 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2391 case PGMPOOLKIND_32BIT_PD:
2392 case PGMPOOLKIND_32BIT_PD_PHYS:
2393 return 4;
2394
2395 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2396 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2397 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2398 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2399 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2400 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2401 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2402 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2403 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2404 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2405 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2406 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2407 case PGMPOOLKIND_64BIT_PML4:
2408 case PGMPOOLKIND_PAE_PDPT:
2409 case PGMPOOLKIND_ROOT_NESTED:
2410 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2411 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2412 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2413 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2414 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2415 case PGMPOOLKIND_PAE_PD_PHYS:
2416 case PGMPOOLKIND_PAE_PDPT_PHYS:
2417 return 8;
2418
2419 default:
2420 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
2421 }
2422}
2423
2424
2425/**
2426 * Gets the entry size of a guest table.
2427 *
2428 * @param enmKind The kind of page.
2429 *
2430 * @returns The size of the entry in bytes. That is, 0, 4 or 8.
2431 * @returns If the kind is not for a table, an assertion is raised and 0 is
2432 * returned.
2433 */
2434DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind)
2435{
2436 switch (enmKind)
2437 {
2438 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2439 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2440 case PGMPOOLKIND_32BIT_PD:
2441 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2442 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2443 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2444 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2445 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2446 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2447 return 4;
2448
2449 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2450 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2451 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2452 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2453 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2454 case PGMPOOLKIND_64BIT_PML4:
2455 case PGMPOOLKIND_PAE_PDPT:
2456 return 8;
2457
2458 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2459 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2460 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2461 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2462 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2463 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2464 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2465 case PGMPOOLKIND_ROOT_NESTED:
2466 case PGMPOOLKIND_PAE_PD_PHYS:
2467 case PGMPOOLKIND_PAE_PDPT_PHYS:
2468 case PGMPOOLKIND_32BIT_PD_PHYS:
2469 /** @todo can we return 0? (nobody is calling this...) */
2470 AssertFailed();
2471 return 0;
2472
2473 default:
2474 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
2475 }
2476}
2477
2478#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2479
2480/**
2481 * Scans one shadow page table for mappings of a physical page.
2482 *
2483 * @param pVM The VM handle.
2484 * @param pPhysPage The guest page in question.
2485 * @param iShw The shadow page table.
2486 * @param cRefs The number of references made in that PT.
2487 */
2488static void pgmPoolTrackFlushGCPhysPTInt(PVM pVM, PCPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs)
2489{
2490 LogFlow(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%R[pgmpage] iShw=%d cRefs=%d\n", pPhysPage, iShw, cRefs));
2491 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2492
2493 /*
2494 * Assert sanity.
2495 */
2496 Assert(cRefs == 1);
2497 AssertFatalMsg(iShw < pPool->cCurPages && iShw != NIL_PGMPOOL_IDX, ("iShw=%d\n", iShw));
2498 PPGMPOOLPAGE pPage = &pPool->aPages[iShw];
2499
2500 /*
2501 * Then, clear the actual mappings to the page in the shadow PT.
2502 */
2503 switch (pPage->enmKind)
2504 {
2505 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2506 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2507 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2508 {
2509 const uint32_t u32 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2510 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2511 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2512 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
2513 {
2514 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX32 cRefs=%#x\n", i, pPT->a[i], cRefs));
2515 pPT->a[i].u = 0;
2516 cRefs--;
2517 if (!cRefs)
2518 return;
2519 }
2520#ifdef LOG_ENABLED
2521 RTLogPrintf("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent);
2522 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
2523 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
2524 {
2525 RTLogPrintf("i=%d cRefs=%d\n", i, cRefs--);
2526 pPT->a[i].u = 0;
2527 }
2528#endif
2529 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
2530 break;
2531 }
2532
2533 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2534 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2535 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2536 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2537 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2538 {
2539 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2540 PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2541 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2542 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
2543 {
2544 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64 cRefs=%#x\n", i, pPT->a[i], cRefs));
2545 pPT->a[i].u = 0;
2546 cRefs--;
2547 if (!cRefs)
2548 return;
2549 }
2550#ifdef LOG_ENABLED
2551 RTLogPrintf("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent);
2552 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
2553 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
2554 {
2555 RTLogPrintf("i=%d cRefs=%d\n", i, cRefs--);
2556 pPT->a[i].u = 0;
2557 }
2558#endif
2559 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d u64=%RX64\n", cRefs, pPage->iFirstPresent, pPage->cPresent, u64));
2560 break;
2561 }
2562
2563 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2564 {
2565 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2566 PEPTPT pPT = (PEPTPT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2567 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2568 if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64)
2569 {
2570 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64 cRefs=%#x\n", i, pPT->a[i], cRefs));
2571 pPT->a[i].u = 0;
2572 cRefs--;
2573 if (!cRefs)
2574 return;
2575 }
2576#ifdef LOG_ENABLED
2577 RTLogPrintf("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent);
2578 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
2579 if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64)
2580 {
2581 RTLogPrintf("i=%d cRefs=%d\n", i, cRefs--);
2582 pPT->a[i].u = 0;
2583 }
2584#endif
2585 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
2586 break;
2587 }
2588
2589 default:
2590 AssertFatalMsgFailed(("enmKind=%d iShw=%d\n", pPage->enmKind, iShw));
2591 }
2592}
2593
2594
2595/**
2596 * Scans one shadow page table for mappings of a physical page.
2597 *
2598 * @param pVM The VM handle.
2599 * @param pPhysPage The guest page in question.
2600 * @param iShw The shadow page table.
2601 * @param cRefs The number of references made in that PT.
2602 */
2603void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs)
2604{
2605 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
2606 LogFlow(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%R[pgmpage] iShw=%d cRefs=%d\n", pPhysPage, iShw, cRefs));
2607 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPT, f);
2608 pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, iShw, cRefs);
2609 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
2610 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPT, f);
2611}
2612
2613
2614/**
2615 * Flushes a list of shadow page tables mapping the same physical page.
2616 *
2617 * @param pVM The VM handle.
2618 * @param pPhysPage The guest page in question.
2619 * @param iPhysExt The physical cross reference extent list to flush.
2620 */
2621void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt)
2622{
2623 Assert(PGMIsLockOwner(pVM));
2624 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2625 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTs, f);
2626 LogFlow(("pgmPoolTrackFlushGCPhysPTs: pPhysPage=%R[pgmpage] iPhysExt\n", pPhysPage, iPhysExt));
2627
2628 const uint16_t iPhysExtStart = iPhysExt;
2629 PPGMPOOLPHYSEXT pPhysExt;
2630 do
2631 {
2632 Assert(iPhysExt < pPool->cMaxPhysExts);
2633 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
2634 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
2635 if (pPhysExt->aidx[i] != NIL_PGMPOOL_IDX)
2636 {
2637 pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, pPhysExt->aidx[i], 1);
2638 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
2639 }
2640
2641 /* next */
2642 iPhysExt = pPhysExt->iNext;
2643 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
2644
2645 /* insert the list into the free list and clear the ram range entry. */
2646 pPhysExt->iNext = pPool->iPhysExtFreeHead;
2647 pPool->iPhysExtFreeHead = iPhysExtStart;
2648 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
2649
2650 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTs, f);
2651}
2652
2653#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
2654
2655/**
2656 * Flushes all shadow page table mappings of the given guest page.
2657 *
2658 * This is typically called when the host page backing the guest one has been
2659 * replaced or when the page protection was changed due to an access handler.
2660 *
2661 * @returns VBox status code.
2662 * @retval VINF_SUCCESS if all references has been successfully cleared.
2663 * @retval VINF_PGM_SYNC_CR3 if we're better off with a CR3 sync and a page
2664 * pool cleaning. FF and sync flags are set.
2665 *
2666 * @param pVM The VM handle.
2667 * @param pPhysPage The guest page in question.
2668 * @param pfFlushTLBs This is set to @a true if the shadow TLBs should be
2669 * flushed, it is NOT touched if this isn't necessary.
2670 * The caller MUST initialized this to @a false.
2671 */
2672int pgmPoolTrackFlushGCPhys(PVM pVM, PPGMPAGE pPhysPage, bool *pfFlushTLBs)
2673{
2674 pgmLock(pVM);
2675 int rc = VINF_SUCCESS;
2676#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2677 const uint16_t u16 = PGM_PAGE_GET_TRACKING(pPhysPage);
2678 if (u16)
2679 {
2680 /*
2681 * The zero page is currently screwing up the tracking and we'll
2682 * have to flush the whole shebang. Unless VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2683 * is defined, zero pages won't normally be mapped. Some kind of solution
2684 * will be needed for this problem of course, but it will have to wait...
2685 */
2686 if (PGM_PAGE_IS_ZERO(pPhysPage))
2687 rc = VINF_PGM_GCPHYS_ALIASED;
2688 else
2689 {
2690# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2691 /* Start a subset here because pgmPoolTrackFlushGCPhysPTsSlow and
2692 pgmPoolTrackFlushGCPhysPTs will/may kill the pool otherwise. */
2693 PVMCPU pVCpu = VMMGetCpu(pVM);
2694 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
2695# endif
2696
2697 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
2698 pgmPoolTrackFlushGCPhysPT(pVM,
2699 pPhysPage,
2700 PGMPOOL_TD_GET_IDX(u16),
2701 PGMPOOL_TD_GET_CREFS(u16));
2702 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
2703 pgmPoolTrackFlushGCPhysPTs(pVM, pPhysPage, PGMPOOL_TD_GET_IDX(u16));
2704 else
2705 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage);
2706 *pfFlushTLBs = true;
2707
2708# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2709 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
2710# endif
2711 }
2712 }
2713
2714#elif defined(PGMPOOL_WITH_CACHE)
2715 if (PGM_PAGE_IS_ZERO(pPhysPage))
2716 rc = VINF_PGM_GCPHYS_ALIASED;
2717 else
2718 {
2719# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2720 /* Start a subset here because pgmPoolTrackFlushGCPhysPTsSlow kill the pool otherwise. */
2721 PVMCPU pVCpu = VMMGetCpu(pVM);
2722 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
2723# endif
2724 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage);
2725 if (rc == VINF_SUCCESS)
2726 *pfFlushTLBs = true;
2727 }
2728
2729# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2730 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
2731# endif
2732
2733#else
2734 rc = VINF_PGM_GCPHYS_ALIASED;
2735#endif
2736
2737 if (rc == VINF_PGM_GCPHYS_ALIASED)
2738 {
2739 pVM->pgm.s.fGlobalSyncFlags |= PGM_GLOBAL_SYNC_CLEAR_PGM_POOL;
2740 for (unsigned i=0;i<pVM->cCPUs;i++)
2741 {
2742 PVMCPU pVCpu = &pVM->aCpus[i];
2743 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2744 }
2745 rc = VINF_PGM_SYNC_CR3;
2746 }
2747 pgmUnlock(pVM);
2748 return rc;
2749}
2750
2751
2752/**
2753 * Scans all shadow page tables for mappings of a physical page.
2754 *
2755 * This may be slow, but it's most likely more efficient than cleaning
2756 * out the entire page pool / cache.
2757 *
2758 * @returns VBox status code.
2759 * @retval VINF_SUCCESS if all references has been successfully cleared.
2760 * @retval VINF_PGM_GCPHYS_ALIASED if we're better off with a CR3 sync and
2761 * a page pool cleaning.
2762 *
2763 * @param pVM The VM handle.
2764 * @param pPhysPage The guest page in question.
2765 */
2766int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage)
2767{
2768 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2769 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTsSlow, s);
2770 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: cUsedPages=%d cPresent=%d pPhysPage=%R[pgmpage]\n",
2771 pPool->cUsedPages, pPool->cPresent, pPhysPage));
2772
2773#if 1
2774 /*
2775 * There is a limit to what makes sense.
2776 */
2777 if (pPool->cPresent > 1024)
2778 {
2779 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent));
2780 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
2781 return VINF_PGM_GCPHYS_ALIASED;
2782 }
2783#endif
2784
2785 /*
2786 * Iterate all the pages until we've encountered all that in use.
2787 * This is simple but not quite optimal solution.
2788 */
2789 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2790 const uint32_t u32 = u64;
2791 unsigned cLeft = pPool->cUsedPages;
2792 unsigned iPage = pPool->cCurPages;
2793 while (--iPage >= PGMPOOL_IDX_FIRST)
2794 {
2795 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
2796 if (pPage->GCPhys != NIL_RTGCPHYS)
2797 {
2798 switch (pPage->enmKind)
2799 {
2800 /*
2801 * We only care about shadow page tables.
2802 */
2803 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2804 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2805 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2806 {
2807 unsigned cPresent = pPage->cPresent;
2808 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2809 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2810 if (pPT->a[i].n.u1Present)
2811 {
2812 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
2813 {
2814 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX32\n", iPage, i, pPT->a[i]));
2815 pPT->a[i].u = 0;
2816 }
2817 if (!--cPresent)
2818 break;
2819 }
2820 break;
2821 }
2822
2823 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2824 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2825 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2826 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2827 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2828 {
2829 unsigned cPresent = pPage->cPresent;
2830 PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2831 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2832 if (pPT->a[i].n.u1Present)
2833 {
2834 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
2835 {
2836 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i]));
2837 pPT->a[i].u = 0;
2838 }
2839 if (!--cPresent)
2840 break;
2841 }
2842 break;
2843 }
2844 }
2845 if (!--cLeft)
2846 break;
2847 }
2848 }
2849
2850 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
2851 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
2852 return VINF_SUCCESS;
2853}
2854
2855
2856/**
2857 * Clears the user entry in a user table.
2858 *
2859 * This is used to remove all references to a page when flushing it.
2860 */
2861static void pgmPoolTrackClearPageUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PCPGMPOOLUSER pUser)
2862{
2863 Assert(pUser->iUser != NIL_PGMPOOL_IDX);
2864 Assert(pUser->iUser < pPool->cCurPages);
2865 uint32_t iUserTable = pUser->iUserTable;
2866
2867 /*
2868 * Map the user page.
2869 */
2870 PPGMPOOLPAGE pUserPage = &pPool->aPages[pUser->iUser];
2871 union
2872 {
2873 uint64_t *pau64;
2874 uint32_t *pau32;
2875 } u;
2876 u.pau64 = (uint64_t *)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pUserPage);
2877
2878 LogFlow(("pgmPoolTrackClearPageUser: clear %x in %s (%RGp) (flushing %s)\n", iUserTable, pgmPoolPoolKindToStr(pUserPage->enmKind), pUserPage->Core.Key, pgmPoolPoolKindToStr(pPage->enmKind)));
2879
2880 /* Safety precaution in case we change the paging for other modes too in the future. */
2881 Assert(!pgmPoolIsPageLocked(&pPool->CTX_SUFF(pVM)->pgm.s, pPage));
2882
2883#ifdef VBOX_STRICT
2884 /*
2885 * Some sanity checks.
2886 */
2887 switch (pUserPage->enmKind)
2888 {
2889 case PGMPOOLKIND_32BIT_PD:
2890 case PGMPOOLKIND_32BIT_PD_PHYS:
2891 Assert(iUserTable < X86_PG_ENTRIES);
2892 break;
2893 case PGMPOOLKIND_PAE_PDPT:
2894 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2895 case PGMPOOLKIND_PAE_PDPT_PHYS:
2896 Assert(iUserTable < 4);
2897 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
2898 break;
2899 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2900 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2901 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2902 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2903 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2904 case PGMPOOLKIND_PAE_PD_PHYS:
2905 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2906 break;
2907 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2908 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2909 Assert(!(u.pau64[iUserTable] & PGM_PDFLAGS_MAPPING));
2910 break;
2911 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2912 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2913 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
2914 break;
2915 case PGMPOOLKIND_64BIT_PML4:
2916 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
2917 /* GCPhys >> PAGE_SHIFT is the index here */
2918 break;
2919 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2920 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2921 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2922 break;
2923
2924 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2925 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2926 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2927 break;
2928
2929 case PGMPOOLKIND_ROOT_NESTED:
2930 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2931 break;
2932
2933 default:
2934 AssertMsgFailed(("enmKind=%d\n", pUserPage->enmKind));
2935 break;
2936 }
2937#endif /* VBOX_STRICT */
2938
2939 /*
2940 * Clear the entry in the user page.
2941 */
2942 switch (pUserPage->enmKind)
2943 {
2944 /* 32-bit entries */
2945 case PGMPOOLKIND_32BIT_PD:
2946 case PGMPOOLKIND_32BIT_PD_PHYS:
2947 u.pau32[iUserTable] = 0;
2948 break;
2949
2950 /* 64-bit entries */
2951 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2952 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2953 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2954 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2955 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2956#if defined(IN_RC)
2957 /* In 32 bits PAE mode we *must* invalidate the TLB when changing a PDPT entry; the CPU fetches them only during cr3 load, so any
2958 * non-present PDPT will continue to cause page faults.
2959 */
2960 ASMReloadCR3();
2961#endif
2962 /* no break */
2963 case PGMPOOLKIND_PAE_PD_PHYS:
2964 case PGMPOOLKIND_PAE_PDPT_PHYS:
2965 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2966 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2967 case PGMPOOLKIND_64BIT_PML4:
2968 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2969 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2970 case PGMPOOLKIND_PAE_PDPT:
2971 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2972 case PGMPOOLKIND_ROOT_NESTED:
2973 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2974 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2975 u.pau64[iUserTable] = 0;
2976 break;
2977
2978 default:
2979 AssertFatalMsgFailed(("enmKind=%d iUser=%#x iUserTable=%#x\n", pUserPage->enmKind, pUser->iUser, pUser->iUserTable));
2980 }
2981}
2982
2983
2984/**
2985 * Clears all users of a page.
2986 */
2987static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2988{
2989 /*
2990 * Free all the user records.
2991 */
2992 LogFlow(("pgmPoolTrackClearPageUsers %RGp\n", pPage->GCPhys));
2993
2994 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2995 uint16_t i = pPage->iUserHead;
2996 while (i != NIL_PGMPOOL_USER_INDEX)
2997 {
2998 /* Clear enter in user table. */
2999 pgmPoolTrackClearPageUser(pPool, pPage, &paUsers[i]);
3000
3001 /* Free it. */
3002 const uint16_t iNext = paUsers[i].iNext;
3003 paUsers[i].iUser = NIL_PGMPOOL_IDX;
3004 paUsers[i].iNext = pPool->iUserFreeHead;
3005 pPool->iUserFreeHead = i;
3006
3007 /* Next. */
3008 i = iNext;
3009 }
3010 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
3011}
3012
3013#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3014
3015/**
3016 * Allocates a new physical cross reference extent.
3017 *
3018 * @returns Pointer to the allocated extent on success. NULL if we're out of them.
3019 * @param pVM The VM handle.
3020 * @param piPhysExt Where to store the phys ext index.
3021 */
3022PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt)
3023{
3024 Assert(PGMIsLockOwner(pVM));
3025 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3026 uint16_t iPhysExt = pPool->iPhysExtFreeHead;
3027 if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX)
3028 {
3029 STAM_COUNTER_INC(&pPool->StamTrackPhysExtAllocFailures);
3030 return NULL;
3031 }
3032 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3033 pPool->iPhysExtFreeHead = pPhysExt->iNext;
3034 pPhysExt->iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
3035 *piPhysExt = iPhysExt;
3036 return pPhysExt;
3037}
3038
3039
3040/**
3041 * Frees a physical cross reference extent.
3042 *
3043 * @param pVM The VM handle.
3044 * @param iPhysExt The extent to free.
3045 */
3046void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt)
3047{
3048 Assert(PGMIsLockOwner(pVM));
3049 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3050 Assert(iPhysExt < pPool->cMaxPhysExts);
3051 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3052 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3053 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3054 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3055 pPool->iPhysExtFreeHead = iPhysExt;
3056}
3057
3058
3059/**
3060 * Frees a physical cross reference extent.
3061 *
3062 * @param pVM The VM handle.
3063 * @param iPhysExt The extent to free.
3064 */
3065void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt)
3066{
3067 Assert(PGMIsLockOwner(pVM));
3068 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3069
3070 const uint16_t iPhysExtStart = iPhysExt;
3071 PPGMPOOLPHYSEXT pPhysExt;
3072 do
3073 {
3074 Assert(iPhysExt < pPool->cMaxPhysExts);
3075 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3076 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3077 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3078
3079 /* next */
3080 iPhysExt = pPhysExt->iNext;
3081 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3082
3083 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3084 pPool->iPhysExtFreeHead = iPhysExtStart;
3085}
3086
3087
3088/**
3089 * Insert a reference into a list of physical cross reference extents.
3090 *
3091 * @returns The new tracking data for PGMPAGE.
3092 *
3093 * @param pVM The VM handle.
3094 * @param iPhysExt The physical extent index of the list head.
3095 * @param iShwPT The shadow page table index.
3096 *
3097 */
3098static uint16_t pgmPoolTrackPhysExtInsert(PVM pVM, uint16_t iPhysExt, uint16_t iShwPT)
3099{
3100 Assert(PGMIsLockOwner(pVM));
3101 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3102 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3103
3104 /* special common case. */
3105 if (paPhysExts[iPhysExt].aidx[2] == NIL_PGMPOOL_IDX)
3106 {
3107 paPhysExts[iPhysExt].aidx[2] = iShwPT;
3108 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany);
3109 LogFlow(("pgmPoolTrackPhysExtAddref: %d:{,,%d}\n", iPhysExt, iShwPT));
3110 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3111 }
3112
3113 /* general treatment. */
3114 const uint16_t iPhysExtStart = iPhysExt;
3115 unsigned cMax = 15;
3116 for (;;)
3117 {
3118 Assert(iPhysExt < pPool->cMaxPhysExts);
3119 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3120 if (paPhysExts[iPhysExt].aidx[i] == NIL_PGMPOOL_IDX)
3121 {
3122 paPhysExts[iPhysExt].aidx[i] = iShwPT;
3123 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany);
3124 LogFlow(("pgmPoolTrackPhysExtAddref: %d:{%d} i=%d cMax=%d\n", iPhysExt, iShwPT, i, cMax));
3125 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtStart);
3126 }
3127 if (!--cMax)
3128 {
3129 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows);
3130 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
3131 LogFlow(("pgmPoolTrackPhysExtAddref: overflow (1) iShwPT=%d\n", iShwPT));
3132 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3133 }
3134 }
3135
3136 /* add another extent to the list. */
3137 PPGMPOOLPHYSEXT pNew = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
3138 if (!pNew)
3139 {
3140 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows);
3141 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
3142 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3143 }
3144 pNew->iNext = iPhysExtStart;
3145 pNew->aidx[0] = iShwPT;
3146 LogFlow(("pgmPoolTrackPhysExtAddref: added new extent %d:{%d}->%d\n", iPhysExt, iShwPT, iPhysExtStart));
3147 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3148}
3149
3150
3151/**
3152 * Add a reference to guest physical page where extents are in use.
3153 *
3154 * @returns The new tracking data for PGMPAGE.
3155 *
3156 * @param pVM The VM handle.
3157 * @param u16 The ram range flags (top 16-bits).
3158 * @param iShwPT The shadow page table index.
3159 */
3160uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT)
3161{
3162 pgmLock(pVM);
3163 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
3164 {
3165 /*
3166 * Convert to extent list.
3167 */
3168 Assert(PGMPOOL_TD_GET_CREFS(u16) == 1);
3169 uint16_t iPhysExt;
3170 PPGMPOOLPHYSEXT pPhysExt = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
3171 if (pPhysExt)
3172 {
3173 LogFlow(("pgmPoolTrackPhysExtAddref: new extent: %d:{%d, %d}\n", iPhysExt, PGMPOOL_TD_GET_IDX(u16), iShwPT));
3174 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliased);
3175 pPhysExt->aidx[0] = PGMPOOL_TD_GET_IDX(u16);
3176 pPhysExt->aidx[1] = iShwPT;
3177 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3178 }
3179 else
3180 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3181 }
3182 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
3183 {
3184 /*
3185 * Insert into the extent list.
3186 */
3187 u16 = pgmPoolTrackPhysExtInsert(pVM, PGMPOOL_TD_GET_IDX(u16), iShwPT);
3188 }
3189 else
3190 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedLots);
3191 pgmUnlock(pVM);
3192 return u16;
3193}
3194
3195
3196/**
3197 * Clear references to guest physical memory.
3198 *
3199 * @param pPool The pool.
3200 * @param pPage The page.
3201 * @param pPhysPage Pointer to the aPages entry in the ram range.
3202 */
3203void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMPAGE pPhysPage)
3204{
3205 const unsigned cRefs = PGM_PAGE_GET_TD_CREFS(pPhysPage);
3206 AssertFatalMsg(cRefs == PGMPOOL_TD_CREFS_PHYSEXT, ("cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
3207
3208 uint16_t iPhysExt = PGM_PAGE_GET_TD_IDX(pPhysPage);
3209 if (iPhysExt != PGMPOOL_TD_IDX_OVERFLOWED)
3210 {
3211 PVM pVM = pPool->CTX_SUFF(pVM);
3212 pgmLock(pVM);
3213
3214 uint16_t iPhysExtPrev = NIL_PGMPOOL_PHYSEXT_INDEX;
3215 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3216 do
3217 {
3218 Assert(iPhysExt < pPool->cMaxPhysExts);
3219
3220 /*
3221 * Look for the shadow page and check if it's all freed.
3222 */
3223 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3224 {
3225 if (paPhysExts[iPhysExt].aidx[i] == pPage->idx)
3226 {
3227 paPhysExts[iPhysExt].aidx[i] = NIL_PGMPOOL_IDX;
3228
3229 for (i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3230 if (paPhysExts[iPhysExt].aidx[i] != NIL_PGMPOOL_IDX)
3231 {
3232 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
3233 pgmUnlock(pVM);
3234 return;
3235 }
3236
3237 /* we can free the node. */
3238 const uint16_t iPhysExtNext = paPhysExts[iPhysExt].iNext;
3239 if ( iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX
3240 && iPhysExtNext == NIL_PGMPOOL_PHYSEXT_INDEX)
3241 {
3242 /* lonely node */
3243 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3244 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d lonely\n", pPhysPage, pPage->idx));
3245 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
3246 }
3247 else if (iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX)
3248 {
3249 /* head */
3250 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d head\n", pPhysPage, pPage->idx));
3251 PGM_PAGE_SET_TRACKING(pPhysPage, PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtNext));
3252 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3253 }
3254 else
3255 {
3256 /* in list */
3257 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
3258 paPhysExts[iPhysExtPrev].iNext = iPhysExtNext;
3259 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3260 }
3261 iPhysExt = iPhysExtNext;
3262 pgmUnlock(pVM);
3263 return;
3264 }
3265 }
3266
3267 /* next */
3268 iPhysExtPrev = iPhysExt;
3269 iPhysExt = paPhysExts[iPhysExt].iNext;
3270 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3271
3272 pgmUnlock(pVM);
3273 AssertFatalMsgFailed(("not-found! cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
3274 }
3275 else /* nothing to do */
3276 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage]\n", pPhysPage));
3277}
3278
3279
3280/**
3281 * Clear references to guest physical memory.
3282 *
3283 * This is the same as pgmPoolTracDerefGCPhys except that the guest physical address
3284 * is assumed to be correct, so the linear search can be skipped and we can assert
3285 * at an earlier point.
3286 *
3287 * @param pPool The pool.
3288 * @param pPage The page.
3289 * @param HCPhys The host physical address corresponding to the guest page.
3290 * @param GCPhys The guest physical address corresponding to HCPhys.
3291 */
3292static void pgmPoolTracDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhys)
3293{
3294 /*
3295 * Walk range list.
3296 */
3297 PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3298 while (pRam)
3299 {
3300 RTGCPHYS off = GCPhys - pRam->GCPhys;
3301 if (off < pRam->cb)
3302 {
3303 /* does it match? */
3304 const unsigned iPage = off >> PAGE_SHIFT;
3305 Assert(PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]));
3306#ifdef LOG_ENABLED
3307RTHCPHYS HCPhysPage = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]);
3308Log2(("pgmPoolTracDerefGCPhys %RHp vs %RHp\n", HCPhysPage, HCPhys));
3309#endif
3310 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3311 {
3312 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3313 return;
3314 }
3315 break;
3316 }
3317 pRam = pRam->CTX_SUFF(pNext);
3318 }
3319 AssertFatalMsgFailed(("HCPhys=%RHp GCPhys=%RGp\n", HCPhys, GCPhys));
3320}
3321
3322
3323/**
3324 * Clear references to guest physical memory.
3325 *
3326 * @param pPool The pool.
3327 * @param pPage The page.
3328 * @param HCPhys The host physical address corresponding to the guest page.
3329 * @param GCPhysHint The guest physical address which may corresponding to HCPhys.
3330 */
3331static void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint)
3332{
3333 Log4(("pgmPoolTracDerefGCPhysHint %RHp %RGp\n", HCPhys, GCPhysHint));
3334
3335 /*
3336 * Walk range list.
3337 */
3338 PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3339 while (pRam)
3340 {
3341 RTGCPHYS off = GCPhysHint - pRam->GCPhys;
3342 if (off < pRam->cb)
3343 {
3344 /* does it match? */
3345 const unsigned iPage = off >> PAGE_SHIFT;
3346 Assert(PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]));
3347 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3348 {
3349 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3350 return;
3351 }
3352 break;
3353 }
3354 pRam = pRam->CTX_SUFF(pNext);
3355 }
3356
3357 /*
3358 * Damn, the hint didn't work. We'll have to do an expensive linear search.
3359 */
3360 STAM_COUNTER_INC(&pPool->StatTrackLinearRamSearches);
3361 pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3362 while (pRam)
3363 {
3364 unsigned iPage = pRam->cb >> PAGE_SHIFT;
3365 while (iPage-- > 0)
3366 {
3367 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3368 {
3369 Log4(("pgmPoolTracDerefGCPhysHint: Linear HCPhys=%RHp GCPhysHint=%RGp GCPhysReal=%RGp\n",
3370 HCPhys, GCPhysHint, pRam->GCPhys + (iPage << PAGE_SHIFT)));
3371 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3372 return;
3373 }
3374 }
3375 pRam = pRam->CTX_SUFF(pNext);
3376 }
3377
3378 AssertFatalMsgFailed(("HCPhys=%RHp GCPhysHint=%RGp\n", HCPhys, GCPhysHint));
3379}
3380
3381
3382/**
3383 * Clear references to guest physical memory in a 32-bit / 32-bit page table.
3384 *
3385 * @param pPool The pool.
3386 * @param pPage The page.
3387 * @param pShwPT The shadow page table (mapping of the page).
3388 * @param pGstPT The guest page table.
3389 */
3390DECLINLINE(void) pgmPoolTrackDerefPT32Bit32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT, PCX86PT pGstPT)
3391{
3392 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
3393 if (pShwPT->a[i].n.u1Present)
3394 {
3395 Log4(("pgmPoolTrackDerefPT32Bit32Bit: i=%d pte=%RX32 hint=%RX32\n",
3396 i, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
3397 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK);
3398 if (!--pPage->cPresent)
3399 break;
3400 }
3401}
3402
3403
3404/**
3405 * Clear references to guest physical memory in a PAE / 32-bit page table.
3406 *
3407 * @param pPool The pool.
3408 * @param pPage The page.
3409 * @param pShwPT The shadow page table (mapping of the page).
3410 * @param pGstPT The guest page table (just a half one).
3411 */
3412DECLINLINE(void) pgmPoolTrackDerefPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PT pGstPT)
3413{
3414 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++)
3415 if (pShwPT->a[i].n.u1Present)
3416 {
3417 Log4(("pgmPoolTrackDerefPTPae32Bit: i=%d pte=%RX64 hint=%RX32\n",
3418 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
3419 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK);
3420 }
3421}
3422
3423
3424/**
3425 * Clear references to guest physical memory in a PAE / PAE page table.
3426 *
3427 * @param pPool The pool.
3428 * @param pPage The page.
3429 * @param pShwPT The shadow page table (mapping of the page).
3430 * @param pGstPT The guest page table.
3431 */
3432DECLINLINE(void) pgmPoolTrackDerefPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PTPAE pGstPT)
3433{
3434 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++)
3435 if (pShwPT->a[i].n.u1Present)
3436 {
3437 Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX32 hint=%RX32\n",
3438 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK));
3439 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK);
3440 }
3441}
3442
3443
3444/**
3445 * Clear references to guest physical memory in a 32-bit / 4MB page table.
3446 *
3447 * @param pPool The pool.
3448 * @param pPage The page.
3449 * @param pShwPT The shadow page table (mapping of the page).
3450 */
3451DECLINLINE(void) pgmPoolTrackDerefPT32Bit4MB(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT)
3452{
3453 RTGCPHYS GCPhys = pPage->GCPhys;
3454 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
3455 if (pShwPT->a[i].n.u1Present)
3456 {
3457 Log4(("pgmPoolTrackDerefPT32Bit4MB: i=%d pte=%RX32 GCPhys=%RGp\n",
3458 i, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys));
3459 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys);
3460 }
3461}
3462
3463
3464/**
3465 * Clear references to guest physical memory in a PAE / 2/4MB page table.
3466 *
3467 * @param pPool The pool.
3468 * @param pPage The page.
3469 * @param pShwPT The shadow page table (mapping of the page).
3470 */
3471DECLINLINE(void) pgmPoolTrackDerefPTPaeBig(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT)
3472{
3473 RTGCPHYS GCPhys = pPage->GCPhys;
3474 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
3475 if (pShwPT->a[i].n.u1Present)
3476 {
3477 Log4(("pgmPoolTrackDerefPTPaeBig: i=%d pte=%RX64 hint=%RGp\n",
3478 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys));
3479 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys);
3480 }
3481}
3482
3483#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
3484
3485
3486/**
3487 * Clear references to shadowed pages in a 32 bits page directory.
3488 *
3489 * @param pPool The pool.
3490 * @param pPage The page.
3491 * @param pShwPD The shadow page directory (mapping of the page).
3492 */
3493DECLINLINE(void) pgmPoolTrackDerefPD(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PD pShwPD)
3494{
3495 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
3496 {
3497 if ( pShwPD->a[i].n.u1Present
3498 && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)
3499 )
3500 {
3501 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PG_MASK);
3502 if (pSubPage)
3503 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3504 else
3505 AssertFatalMsgFailed(("%x\n", pShwPD->a[i].u & X86_PDE_PG_MASK));
3506 }
3507 }
3508}
3509
3510/**
3511 * Clear references to shadowed pages in a PAE (legacy or 64 bits) page directory.
3512 *
3513 * @param pPool The pool.
3514 * @param pPage The page.
3515 * @param pShwPD The shadow page directory (mapping of the page).
3516 */
3517DECLINLINE(void) pgmPoolTrackDerefPDPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPAE pShwPD)
3518{
3519 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
3520 {
3521 if ( pShwPD->a[i].n.u1Present
3522 && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)
3523 )
3524 {
3525 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PAE_PG_MASK);
3526 if (pSubPage)
3527 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3528 else
3529 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & X86_PDE_PAE_PG_MASK));
3530 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3531 }
3532 }
3533}
3534
3535/**
3536 * Clear references to shadowed pages in a PAE page directory pointer table.
3537 *
3538 * @param pPool The pool.
3539 * @param pPage The page.
3540 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
3541 */
3542DECLINLINE(void) pgmPoolTrackDerefPDPTPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
3543{
3544 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
3545 {
3546 if ( pShwPDPT->a[i].n.u1Present
3547 && !(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING)
3548 )
3549 {
3550 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK);
3551 if (pSubPage)
3552 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3553 else
3554 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK));
3555 }
3556 }
3557}
3558
3559
3560/**
3561 * Clear references to shadowed pages in a 64-bit page directory pointer table.
3562 *
3563 * @param pPool The pool.
3564 * @param pPage The page.
3565 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
3566 */
3567DECLINLINE(void) pgmPoolTrackDerefPDPT64Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
3568{
3569 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
3570 {
3571 Assert(!(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING));
3572 if (pShwPDPT->a[i].n.u1Present)
3573 {
3574 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK);
3575 if (pSubPage)
3576 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3577 else
3578 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK));
3579 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3580 }
3581 }
3582}
3583
3584
3585/**
3586 * Clear references to shadowed pages in a 64-bit level 4 page table.
3587 *
3588 * @param pPool The pool.
3589 * @param pPage The page.
3590 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
3591 */
3592DECLINLINE(void) pgmPoolTrackDerefPML464Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PML4 pShwPML4)
3593{
3594 for (unsigned i = 0; i < RT_ELEMENTS(pShwPML4->a); i++)
3595 {
3596 if (pShwPML4->a[i].n.u1Present)
3597 {
3598 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPML4->a[i].u & X86_PDPE_PG_MASK);
3599 if (pSubPage)
3600 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3601 else
3602 AssertFatalMsgFailed(("%RX64\n", pShwPML4->a[i].u & X86_PML4E_PG_MASK));
3603 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3604 }
3605 }
3606}
3607
3608
3609/**
3610 * Clear references to shadowed pages in an EPT page table.
3611 *
3612 * @param pPool The pool.
3613 * @param pPage The page.
3614 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
3615 */
3616DECLINLINE(void) pgmPoolTrackDerefPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPT pShwPT)
3617{
3618 RTGCPHYS GCPhys = pPage->GCPhys;
3619 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
3620 if (pShwPT->a[i].n.u1Present)
3621 {
3622 Log4(("pgmPoolTrackDerefPTEPT: i=%d pte=%RX64 GCPhys=%RX64\n",
3623 i, pShwPT->a[i].u & EPT_PTE_PG_MASK, pPage->GCPhys));
3624 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & EPT_PTE_PG_MASK, GCPhys);
3625 }
3626}
3627
3628
3629/**
3630 * Clear references to shadowed pages in an EPT page directory.
3631 *
3632 * @param pPool The pool.
3633 * @param pPage The page.
3634 * @param pShwPD The shadow page directory (mapping of the page).
3635 */
3636DECLINLINE(void) pgmPoolTrackDerefPDEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPD pShwPD)
3637{
3638 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
3639 {
3640 if (pShwPD->a[i].n.u1Present)
3641 {
3642 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & EPT_PDE_PG_MASK);
3643 if (pSubPage)
3644 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3645 else
3646 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & EPT_PDE_PG_MASK));
3647 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3648 }
3649 }
3650}
3651
3652
3653/**
3654 * Clear references to shadowed pages in an EPT page directory pointer table.
3655 *
3656 * @param pPool The pool.
3657 * @param pPage The page.
3658 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
3659 */
3660DECLINLINE(void) pgmPoolTrackDerefPDPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPDPT pShwPDPT)
3661{
3662 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
3663 {
3664 if (pShwPDPT->a[i].n.u1Present)
3665 {
3666 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK);
3667 if (pSubPage)
3668 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3669 else
3670 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK));
3671 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3672 }
3673 }
3674}
3675
3676
3677/**
3678 * Clears all references made by this page.
3679 *
3680 * This includes other shadow pages and GC physical addresses.
3681 *
3682 * @param pPool The pool.
3683 * @param pPage The page.
3684 */
3685static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3686{
3687 /*
3688 * Map the shadow page and take action according to the page kind.
3689 */
3690 void *pvShw = PGMPOOL_PAGE_2_LOCKED_PTR(pPool->CTX_SUFF(pVM), pPage);
3691 switch (pPage->enmKind)
3692 {
3693#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3694 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3695 {
3696 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3697 void *pvGst;
3698 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
3699 pgmPoolTrackDerefPT32Bit32Bit(pPool, pPage, (PX86PT)pvShw, (PCX86PT)pvGst);
3700 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3701 break;
3702 }
3703
3704 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3705 {
3706 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3707 void *pvGst;
3708 int rc = PGM_GCPHYS_2_PTR_EX(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
3709 pgmPoolTrackDerefPTPae32Bit(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PT)pvGst);
3710 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3711 break;
3712 }
3713
3714 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3715 {
3716 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3717 void *pvGst;
3718 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
3719 pgmPoolTrackDerefPTPaePae(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PTPAE)pvGst);
3720 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3721 break;
3722 }
3723
3724 case PGMPOOLKIND_32BIT_PT_FOR_PHYS: /* treat it like a 4 MB page */
3725 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3726 {
3727 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3728 pgmPoolTrackDerefPT32Bit4MB(pPool, pPage, (PX86PT)pvShw);
3729 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3730 break;
3731 }
3732
3733 case PGMPOOLKIND_PAE_PT_FOR_PHYS: /* treat it like a 2 MB page */
3734 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3735 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3736 {
3737 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3738 pgmPoolTrackDerefPTPaeBig(pPool, pPage, (PX86PTPAE)pvShw);
3739 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3740 break;
3741 }
3742
3743#else /* !PGMPOOL_WITH_GCPHYS_TRACKING */
3744 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3745 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3746 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3747 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3748 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3749 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3750 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3751 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3752 break;
3753#endif /* !PGMPOOL_WITH_GCPHYS_TRACKING */
3754
3755 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3756 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3757 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3758 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3759 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3760 case PGMPOOLKIND_PAE_PD_PHYS:
3761 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3762 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3763 pgmPoolTrackDerefPDPae(pPool, pPage, (PX86PDPAE)pvShw);
3764 break;
3765
3766 case PGMPOOLKIND_32BIT_PD_PHYS:
3767 case PGMPOOLKIND_32BIT_PD:
3768 pgmPoolTrackDerefPD(pPool, pPage, (PX86PD)pvShw);
3769 break;
3770
3771 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
3772 case PGMPOOLKIND_PAE_PDPT:
3773 case PGMPOOLKIND_PAE_PDPT_PHYS:
3774 pgmPoolTrackDerefPDPTPae(pPool, pPage, (PX86PDPT)pvShw);
3775 break;
3776
3777 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3778 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3779 pgmPoolTrackDerefPDPT64Bit(pPool, pPage, (PX86PDPT)pvShw);
3780 break;
3781
3782 case PGMPOOLKIND_64BIT_PML4:
3783 pgmPoolTrackDerefPML464Bit(pPool, pPage, (PX86PML4)pvShw);
3784 break;
3785
3786 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3787 pgmPoolTrackDerefPTEPT(pPool, pPage, (PEPTPT)pvShw);
3788 break;
3789
3790 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3791 pgmPoolTrackDerefPDEPT(pPool, pPage, (PEPTPD)pvShw);
3792 break;
3793
3794 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3795 pgmPoolTrackDerefPDPTEPT(pPool, pPage, (PEPTPDPT)pvShw);
3796 break;
3797
3798 default:
3799 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
3800 }
3801
3802 /* paranoia, clear the shadow page. Remove this laser (i.e. let Alloc and ClearAll do it). */
3803 STAM_PROFILE_START(&pPool->StatZeroPage, z);
3804 ASMMemZeroPage(pvShw);
3805 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
3806 pPage->fZeroed = true;
3807 PGMPOOL_UNLOCK_PTR(pPool->CTX_SUFF(pVM), pvShw);
3808}
3809#endif /* PGMPOOL_WITH_USER_TRACKING */
3810
3811/**
3812 * Flushes a pool page.
3813 *
3814 * This moves the page to the free list after removing all user references to it.
3815 *
3816 * @returns VBox status code.
3817 * @retval VINF_SUCCESS on success.
3818 * @param pPool The pool.
3819 * @param HCPhys The HC physical address of the shadow page.
3820 */
3821int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3822{
3823 PVM pVM = pPool->CTX_SUFF(pVM);
3824
3825 int rc = VINF_SUCCESS;
3826 STAM_PROFILE_START(&pPool->StatFlushPage, f);
3827 LogFlow(("pgmPoolFlushPage: pPage=%p:{.Key=%RHp, .idx=%d, .enmKind=%s, .GCPhys=%RGp}\n",
3828 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
3829
3830 /*
3831 * Quietly reject any attempts at flushing any of the special root pages.
3832 */
3833 if (pPage->idx < PGMPOOL_IDX_FIRST)
3834 {
3835 AssertFailed(); /* can no longer happen */
3836 Log(("pgmPoolFlushPage: special root page, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
3837 return VINF_SUCCESS;
3838 }
3839
3840 pgmLock(pVM);
3841
3842 /*
3843 * Quietly reject any attempts at flushing the currently active shadow CR3 mapping
3844 */
3845 if (pgmPoolIsPageLocked(&pVM->pgm.s, pPage))
3846 {
3847 AssertMsg( pPage->enmKind == PGMPOOLKIND_64BIT_PML4
3848 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT
3849 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT_FOR_32BIT
3850 || pPage->enmKind == PGMPOOLKIND_32BIT_PD
3851 || pPage->enmKind == PGMPOOLKIND_PAE_PD_FOR_PAE_PD
3852 || pPage->enmKind == PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD
3853 || pPage->enmKind == PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD
3854 || pPage->enmKind == PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD
3855 || pPage->enmKind == PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD,
3856 ("Can't free the shadow CR3! (%RHp vs %RHp kind=%d\n", PGMGetHyperCR3(VMMGetCpu(pVM)), pPage->Core.Key, pPage->enmKind));
3857 Log(("pgmPoolFlushPage: current active shadow CR3, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
3858 pgmUnlock(pVM);
3859 return VINF_SUCCESS;
3860 }
3861
3862#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3863 /* Start a subset so we won't run out of mapping space. */
3864 PVMCPU pVCpu = VMMGetCpu(pVM);
3865 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
3866#endif
3867
3868 /*
3869 * Mark the page as being in need of a ASMMemZeroPage().
3870 */
3871 pPage->fZeroed = false;
3872
3873#ifdef PGMPOOL_WITH_USER_TRACKING
3874 /*
3875 * Clear the page.
3876 */
3877 pgmPoolTrackClearPageUsers(pPool, pPage);
3878 STAM_PROFILE_START(&pPool->StatTrackDeref,a);
3879 pgmPoolTrackDeref(pPool, pPage);
3880 STAM_PROFILE_STOP(&pPool->StatTrackDeref,a);
3881#endif
3882
3883#ifdef PGMPOOL_WITH_CACHE
3884 /*
3885 * Flush it from the cache.
3886 */
3887 pgmPoolCacheFlushPage(pPool, pPage);
3888#endif /* PGMPOOL_WITH_CACHE */
3889
3890#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3891 /* Heavy stuff done. */
3892 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
3893#endif
3894
3895#ifdef PGMPOOL_WITH_MONITORING
3896 /*
3897 * Deregistering the monitoring.
3898 */
3899 if (pPage->fMonitored)
3900 rc = pgmPoolMonitorFlush(pPool, pPage);
3901#endif
3902
3903 /*
3904 * Free the page.
3905 */
3906 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
3907 pPage->iNext = pPool->iFreeHead;
3908 pPool->iFreeHead = pPage->idx;
3909 pPage->enmKind = PGMPOOLKIND_FREE;
3910 pPage->GCPhys = NIL_RTGCPHYS;
3911 pPage->fReusedFlushPending = false;
3912
3913 pPool->cUsedPages--;
3914 pgmUnlock(pVM);
3915 STAM_PROFILE_STOP(&pPool->StatFlushPage, f);
3916 return rc;
3917}
3918
3919
3920/**
3921 * Frees a usage of a pool page.
3922 *
3923 * The caller is responsible to updating the user table so that it no longer
3924 * references the shadow page.
3925 *
3926 * @param pPool The pool.
3927 * @param HCPhys The HC physical address of the shadow page.
3928 * @param iUser The shadow page pool index of the user table.
3929 * @param iUserTable The index into the user table (shadowed).
3930 */
3931void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
3932{
3933 PVM pVM = pPool->CTX_SUFF(pVM);
3934
3935 STAM_PROFILE_START(&pPool->StatFree, a);
3936 LogFlow(("pgmPoolFreeByPage: pPage=%p:{.Key=%RHp, .idx=%d, enmKind=%s} iUser=%#x iUserTable=%#x\n",
3937 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), iUser, iUserTable));
3938 Assert(pPage->idx >= PGMPOOL_IDX_FIRST);
3939 pgmLock(pVM);
3940#ifdef PGMPOOL_WITH_USER_TRACKING
3941 pgmPoolTrackFreeUser(pPool, pPage, iUser, iUserTable);
3942#endif
3943#ifdef PGMPOOL_WITH_CACHE
3944 if (!pPage->fCached)
3945#endif
3946 pgmPoolFlushPage(pPool, pPage);
3947 pgmUnlock(pVM);
3948 STAM_PROFILE_STOP(&pPool->StatFree, a);
3949}
3950
3951
3952/**
3953 * Makes one or more free page free.
3954 *
3955 * @returns VBox status code.
3956 * @retval VINF_SUCCESS on success.
3957 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
3958 *
3959 * @param pPool The pool.
3960 * @param enmKind Page table kind
3961 * @param iUser The user of the page.
3962 */
3963static int pgmPoolMakeMoreFreePages(PPGMPOOL pPool, PGMPOOLKIND enmKind, uint16_t iUser)
3964{
3965 LogFlow(("pgmPoolMakeMoreFreePages: iUser=%#x\n", iUser));
3966
3967 /*
3968 * If the pool isn't full grown yet, expand it.
3969 */
3970 if ( pPool->cCurPages < pPool->cMaxPages
3971#if defined(IN_RC)
3972 /* Hack alert: we can't deal with jumps to ring 3 when called from MapCR3 and allocating pages for PAE PDs. */
3973 && enmKind != PGMPOOLKIND_PAE_PD_FOR_PAE_PD
3974 && (enmKind < PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD || enmKind > PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD)
3975#endif
3976 )
3977 {
3978 STAM_PROFILE_ADV_SUSPEND(&pPool->StatAlloc, a);
3979#ifdef IN_RING3
3980 int rc = PGMR3PoolGrow(pPool->pVMR3);
3981#else
3982 int rc = CTXALLMID(VMM, CallHost)(pPool->CTX_SUFF(pVM), VMMCALLHOST_PGM_POOL_GROW, 0);
3983#endif
3984 if (RT_FAILURE(rc))
3985 return rc;
3986 STAM_PROFILE_ADV_RESUME(&pPool->StatAlloc, a);
3987 if (pPool->iFreeHead != NIL_PGMPOOL_IDX)
3988 return VINF_SUCCESS;
3989 }
3990
3991#ifdef PGMPOOL_WITH_CACHE
3992 /*
3993 * Free one cached page.
3994 */
3995 return pgmPoolCacheFreeOne(pPool, iUser);
3996#else
3997 /*
3998 * Flush the pool.
3999 *
4000 * If we have tracking enabled, it should be possible to come up with
4001 * a cheap replacement strategy...
4002 */
4003 /* @todo This path no longer works (CR3 root pages will be flushed)!! */
4004 AssertCompileFailed();
4005 Assert(!CPUMIsGuestInLongMode(pVM));
4006 pgmPoolFlushAllInt(pPool);
4007 return VERR_PGM_POOL_FLUSHED;
4008#endif
4009}
4010
4011
4012/**
4013 * Allocates a page from the pool.
4014 *
4015 * This page may actually be a cached page and not in need of any processing
4016 * on the callers part.
4017 *
4018 * @returns VBox status code.
4019 * @retval VINF_SUCCESS if a NEW page was allocated.
4020 * @retval VINF_PGM_CACHED_PAGE if a CACHED page was returned.
4021 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
4022 * @param pVM The VM handle.
4023 * @param GCPhys The GC physical address of the page we're gonna shadow.
4024 * For 4MB and 2MB PD entries, it's the first address the
4025 * shadow PT is covering.
4026 * @param enmKind The kind of mapping.
4027 * @param iUser The shadow page pool index of the user table.
4028 * @param iUserTable The index into the user table (shadowed).
4029 * @param ppPage Where to store the pointer to the page. NULL is stored here on failure.
4030 */
4031int pgmPoolAlloc(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage)
4032{
4033 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4034 STAM_PROFILE_ADV_START(&pPool->StatAlloc, a);
4035 LogFlow(("pgmPoolAlloc: GCPhys=%RGp enmKind=%s iUser=%#x iUserTable=%#x\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable));
4036 *ppPage = NULL;
4037 /** @todo CSAM/PGMPrefetchPage messes up here during CSAMR3CheckGates
4038 * (TRPMR3SyncIDT) because of FF priority. Try fix that?
4039 * Assert(!(pVM->pgm.s.fGlobalSyncFlags & PGM_GLOBAL_SYNC_CLEAR_PGM_POOL)); */
4040
4041 pgmLock(pVM);
4042
4043#ifdef PGMPOOL_WITH_CACHE
4044 if (pPool->fCacheEnabled)
4045 {
4046 int rc2 = pgmPoolCacheAlloc(pPool, GCPhys, enmKind, iUser, iUserTable, ppPage);
4047 if (RT_SUCCESS(rc2))
4048 {
4049 pgmUnlock(pVM);
4050 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4051 LogFlow(("pgmPoolAlloc: cached returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d}\n", rc2, *ppPage, (*ppPage)->Core.Key, (*ppPage)->idx));
4052 return rc2;
4053 }
4054 }
4055#endif
4056
4057 /*
4058 * Allocate a new one.
4059 */
4060 int rc = VINF_SUCCESS;
4061 uint16_t iNew = pPool->iFreeHead;
4062 if (iNew == NIL_PGMPOOL_IDX)
4063 {
4064 rc = pgmPoolMakeMoreFreePages(pPool, enmKind, iUser);
4065 if (RT_FAILURE(rc))
4066 {
4067 pgmUnlock(pVM);
4068 Log(("pgmPoolAlloc: returns %Rrc (Free)\n", rc));
4069 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4070 return rc;
4071 }
4072 iNew = pPool->iFreeHead;
4073 AssertReleaseReturn(iNew != NIL_PGMPOOL_IDX, VERR_INTERNAL_ERROR);
4074 }
4075
4076 /* unlink the free head */
4077 PPGMPOOLPAGE pPage = &pPool->aPages[iNew];
4078 pPool->iFreeHead = pPage->iNext;
4079 pPage->iNext = NIL_PGMPOOL_IDX;
4080
4081 /*
4082 * Initialize it.
4083 */
4084 pPool->cUsedPages++; /* physical handler registration / pgmPoolTrackFlushGCPhysPTsSlow requirement. */
4085 pPage->enmKind = enmKind;
4086 pPage->GCPhys = GCPhys;
4087 pPage->fSeenNonGlobal = false; /* Set this to 'true' to disable this feature. */
4088 pPage->fMonitored = false;
4089 pPage->fCached = false;
4090 pPage->fReusedFlushPending = false;
4091#ifdef PGMPOOL_WITH_MONITORING
4092 pPage->cModifications = 0;
4093 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
4094 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
4095#else
4096 pPage->fCR3Mix = false;
4097#endif
4098#ifdef PGMPOOL_WITH_USER_TRACKING
4099 pPage->cPresent = 0;
4100 pPage->iFirstPresent = ~0;
4101
4102 /*
4103 * Insert into the tracking and cache. If this fails, free the page.
4104 */
4105 int rc3 = pgmPoolTrackInsert(pPool, pPage, GCPhys, iUser, iUserTable);
4106 if (RT_FAILURE(rc3))
4107 {
4108 pPool->cUsedPages--;
4109 pPage->enmKind = PGMPOOLKIND_FREE;
4110 pPage->GCPhys = NIL_RTGCPHYS;
4111 pPage->iNext = pPool->iFreeHead;
4112 pPool->iFreeHead = pPage->idx;
4113 pgmUnlock(pVM);
4114 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4115 Log(("pgmPoolAlloc: returns %Rrc (Insert)\n", rc3));
4116 return rc3;
4117 }
4118#endif /* PGMPOOL_WITH_USER_TRACKING */
4119
4120 /*
4121 * Commit the allocation, clear the page and return.
4122 */
4123#ifdef VBOX_WITH_STATISTICS
4124 if (pPool->cUsedPages > pPool->cUsedPagesHigh)
4125 pPool->cUsedPagesHigh = pPool->cUsedPages;
4126#endif
4127
4128 if (!pPage->fZeroed)
4129 {
4130 STAM_PROFILE_START(&pPool->StatZeroPage, z);
4131 void *pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
4132 ASMMemZeroPage(pv);
4133 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
4134 }
4135
4136 *ppPage = pPage;
4137 pgmUnlock(pVM);
4138 LogFlow(("pgmPoolAlloc: returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d, .fCached=%RTbool, .fMonitored=%RTbool}\n",
4139 rc, pPage, pPage->Core.Key, pPage->idx, pPage->fCached, pPage->fMonitored));
4140 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4141 return rc;
4142}
4143
4144
4145/**
4146 * Frees a usage of a pool page.
4147 *
4148 * @param pVM The VM handle.
4149 * @param HCPhys The HC physical address of the shadow page.
4150 * @param iUser The shadow page pool index of the user table.
4151 * @param iUserTable The index into the user table (shadowed).
4152 */
4153void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable)
4154{
4155 LogFlow(("pgmPoolFree: HCPhys=%RHp iUser=%#x iUserTable=%#x\n", HCPhys, iUser, iUserTable));
4156 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4157 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, HCPhys), iUser, iUserTable);
4158}
4159
4160/**
4161 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
4162 *
4163 * @returns Pointer to the shadow page structure.
4164 * @param pPool The pool.
4165 * @param HCPhys The HC physical address of the shadow page.
4166 */
4167PPGMPOOLPAGE pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys)
4168{
4169 PVM pVM = pPool->CTX_SUFF(pVM);
4170
4171 /*
4172 * Look up the page.
4173 */
4174 pgmLock(pVM);
4175 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
4176 pgmUnlock(pVM);
4177
4178 AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0));
4179 return pPage;
4180}
4181
4182
4183#ifdef IN_RING3
4184/**
4185 * Flushes the entire cache.
4186 *
4187 * It will assert a global CR3 flush (FF) and assumes the caller is aware of this
4188 * and execute this CR3 flush.
4189 *
4190 * @param pPool The pool.
4191 */
4192void pgmR3PoolReset(PVM pVM)
4193{
4194 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4195
4196 Assert(PGMIsLockOwner(pVM));
4197 STAM_PROFILE_START(&pPool->StatFlushAllInt, a);
4198 LogFlow(("pgmPoolFlushAllInt:\n"));
4199
4200 /*
4201 * If there are no pages in the pool, there is nothing to do.
4202 */
4203 if (pPool->cCurPages <= PGMPOOL_IDX_FIRST)
4204 {
4205 STAM_PROFILE_STOP(&pPool->StatFlushAllInt, a);
4206 return;
4207 }
4208
4209 /*
4210 * Exit the shadow mode since we're going to clear everything,
4211 * including the root page.
4212 */
4213 for (unsigned i=0;i<pVM->cCPUs;i++)
4214 {
4215 PVMCPU pVCpu = &pVM->aCpus[i];
4216 pgmR3ExitShadowModeBeforePoolFlush(pVM, pVCpu);
4217 }
4218
4219 /*
4220 * Nuke the free list and reinsert all pages into it.
4221 */
4222 for (unsigned i = pPool->cCurPages - 1; i >= PGMPOOL_IDX_FIRST; i--)
4223 {
4224 PPGMPOOLPAGE pPage = &pPool->aPages[i];
4225
4226 Assert(pPage->Core.Key == MMPage2Phys(pVM, pPage->pvPageR3));
4227#ifdef PGMPOOL_WITH_MONITORING
4228 if (pPage->fMonitored)
4229 pgmPoolMonitorFlush(pPool, pPage);
4230 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
4231 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
4232 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
4233 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
4234 pPage->cModifications = 0;
4235#endif
4236 pPage->GCPhys = NIL_RTGCPHYS;
4237 pPage->enmKind = PGMPOOLKIND_FREE;
4238 Assert(pPage->idx == i);
4239 pPage->iNext = i + 1;
4240 pPage->fZeroed = false; /* This could probably be optimized, but better safe than sorry. */
4241 pPage->fSeenNonGlobal = false;
4242 pPage->fMonitored= false;
4243 pPage->fCached = false;
4244 pPage->fReusedFlushPending = false;
4245#ifdef PGMPOOL_WITH_USER_TRACKING
4246 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
4247#else
4248 pPage->fCR3Mix = false;
4249#endif
4250#ifdef PGMPOOL_WITH_CACHE
4251 pPage->iAgeNext = NIL_PGMPOOL_IDX;
4252 pPage->iAgePrev = NIL_PGMPOOL_IDX;
4253#endif
4254 pPage->cLocked = 0;
4255 }
4256 pPool->aPages[pPool->cCurPages - 1].iNext = NIL_PGMPOOL_IDX;
4257 pPool->iFreeHead = PGMPOOL_IDX_FIRST;
4258 pPool->cUsedPages = 0;
4259
4260#ifdef PGMPOOL_WITH_USER_TRACKING
4261 /*
4262 * Zap and reinitialize the user records.
4263 */
4264 pPool->cPresent = 0;
4265 pPool->iUserFreeHead = 0;
4266 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
4267 const unsigned cMaxUsers = pPool->cMaxUsers;
4268 for (unsigned i = 0; i < cMaxUsers; i++)
4269 {
4270 paUsers[i].iNext = i + 1;
4271 paUsers[i].iUser = NIL_PGMPOOL_IDX;
4272 paUsers[i].iUserTable = 0xfffffffe;
4273 }
4274 paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
4275#endif
4276
4277#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
4278 /*
4279 * Clear all the GCPhys links and rebuild the phys ext free list.
4280 */
4281 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
4282 pRam;
4283 pRam = pRam->CTX_SUFF(pNext))
4284 {
4285 unsigned iPage = pRam->cb >> PAGE_SHIFT;
4286 while (iPage-- > 0)
4287 PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0);
4288 }
4289
4290 pPool->iPhysExtFreeHead = 0;
4291 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
4292 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
4293 for (unsigned i = 0; i < cMaxPhysExts; i++)
4294 {
4295 paPhysExts[i].iNext = i + 1;
4296 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
4297 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
4298 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
4299 }
4300 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
4301#endif
4302
4303#ifdef PGMPOOL_WITH_MONITORING
4304 /*
4305 * Just zap the modified list.
4306 */
4307 pPool->cModifiedPages = 0;
4308 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
4309#endif
4310
4311#ifdef PGMPOOL_WITH_CACHE
4312 /*
4313 * Clear the GCPhys hash and the age list.
4314 */
4315 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
4316 pPool->aiHash[i] = NIL_PGMPOOL_IDX;
4317 pPool->iAgeHead = NIL_PGMPOOL_IDX;
4318 pPool->iAgeTail = NIL_PGMPOOL_IDX;
4319#endif
4320
4321 /*
4322 * Reinsert active pages into the hash and ensure monitoring chains are correct.
4323 */
4324 for (unsigned i = PGMPOOL_IDX_FIRST_SPECIAL; i < PGMPOOL_IDX_FIRST; i++)
4325 {
4326 PPGMPOOLPAGE pPage = &pPool->aPages[i];
4327 pPage->iNext = NIL_PGMPOOL_IDX;
4328#ifdef PGMPOOL_WITH_MONITORING
4329 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
4330 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
4331 pPage->cModifications = 0;
4332 /* ASSUMES that we're not sharing with any of the other special pages (safe for now). */
4333 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
4334 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
4335 if (pPage->fMonitored)
4336 {
4337 int rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1),
4338 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage),
4339 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage),
4340 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pPage),
4341 pPool->pszAccessHandler);
4342 AssertFatalRCSuccess(rc);
4343# ifdef PGMPOOL_WITH_CACHE
4344 pgmPoolHashInsert(pPool, pPage);
4345# endif
4346 }
4347#endif
4348#ifdef PGMPOOL_WITH_USER_TRACKING
4349 Assert(pPage->iUserHead == NIL_PGMPOOL_USER_INDEX); /* for now */
4350#endif
4351#ifdef PGMPOOL_WITH_CACHE
4352 Assert(pPage->iAgeNext == NIL_PGMPOOL_IDX);
4353 Assert(pPage->iAgePrev == NIL_PGMPOOL_IDX);
4354#endif
4355 }
4356
4357 for (unsigned i=0;i<pVM->cCPUs;i++)
4358 {
4359 PVMCPU pVCpu = &pVM->aCpus[i];
4360 /*
4361 * Re-enter the shadowing mode and assert Sync CR3 FF.
4362 */
4363 pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu);
4364 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4365 }
4366
4367 STAM_PROFILE_STOP(&pPool->StatFlushAllInt, a);
4368}
4369#endif /* IN_RING3 */
4370
4371#ifdef LOG_ENABLED
4372static const char *pgmPoolPoolKindToStr(uint8_t enmKind)
4373{
4374 switch(enmKind)
4375 {
4376 case PGMPOOLKIND_INVALID:
4377 return "PGMPOOLKIND_INVALID";
4378 case PGMPOOLKIND_FREE:
4379 return "PGMPOOLKIND_FREE";
4380 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
4381 return "PGMPOOLKIND_32BIT_PT_FOR_PHYS";
4382 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
4383 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT";
4384 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
4385 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB";
4386 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
4387 return "PGMPOOLKIND_PAE_PT_FOR_PHYS";
4388 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
4389 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_PT";
4390 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
4391 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB";
4392 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
4393 return "PGMPOOLKIND_PAE_PT_FOR_PAE_PT";
4394 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
4395 return "PGMPOOLKIND_PAE_PT_FOR_PAE_2MB";
4396 case PGMPOOLKIND_32BIT_PD:
4397 return "PGMPOOLKIND_32BIT_PD";
4398 case PGMPOOLKIND_32BIT_PD_PHYS:
4399 return "PGMPOOLKIND_32BIT_PD_PHYS";
4400 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
4401 return "PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD";
4402 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
4403 return "PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD";
4404 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
4405 return "PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD";
4406 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
4407 return "PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD";
4408 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
4409 return "PGMPOOLKIND_PAE_PD_FOR_PAE_PD";
4410 case PGMPOOLKIND_PAE_PD_PHYS:
4411 return "PGMPOOLKIND_PAE_PD_PHYS";
4412 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
4413 return "PGMPOOLKIND_PAE_PDPT_FOR_32BIT";
4414 case PGMPOOLKIND_PAE_PDPT:
4415 return "PGMPOOLKIND_PAE_PDPT";
4416 case PGMPOOLKIND_PAE_PDPT_PHYS:
4417 return "PGMPOOLKIND_PAE_PDPT_PHYS";
4418 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
4419 return "PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT";
4420 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
4421 return "PGMPOOLKIND_64BIT_PDPT_FOR_PHYS";
4422 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
4423 return "PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD";
4424 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
4425 return "PGMPOOLKIND_64BIT_PD_FOR_PHYS";
4426 case PGMPOOLKIND_64BIT_PML4:
4427 return "PGMPOOLKIND_64BIT_PML4";
4428 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
4429 return "PGMPOOLKIND_EPT_PDPT_FOR_PHYS";
4430 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
4431 return "PGMPOOLKIND_EPT_PD_FOR_PHYS";
4432 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
4433 return "PGMPOOLKIND_EPT_PT_FOR_PHYS";
4434 case PGMPOOLKIND_ROOT_NESTED:
4435 return "PGMPOOLKIND_ROOT_NESTED";
4436 }
4437 return "Unknown kind!";
4438}
4439#endif /* LOG_ENABLED*/
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette