VirtualBox

source: vbox/trunk/src/VBox/Runtime/r3/socket.cpp@ 43206

Last change on this file since 43206 was 43206, checked in by vboxsync, 13 years ago

More cleanups.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 58.1 KB
Line 
1/* $Id: socket.cpp 43206 2012-09-05 13:31:05Z vboxsync $ */
2/** @file
3 * IPRT - Network Sockets.
4 */
5
6/*
7 * Copyright (C) 2006-2012 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.215389.xyz. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*******************************************************************************
29* Header Files *
30*******************************************************************************/
31#ifdef RT_OS_WINDOWS
32# include <winsock2.h>
33# include <ws2tcpip.h>
34#else /* !RT_OS_WINDOWS */
35# include <errno.h>
36# include <sys/stat.h>
37# include <sys/socket.h>
38# include <netinet/in.h>
39# include <netinet/tcp.h>
40# include <arpa/inet.h>
41# ifdef IPRT_WITH_TCPIP_V6
42# include <netinet6/in6.h>
43# endif
44# include <sys/un.h>
45# include <netdb.h>
46# include <unistd.h>
47# include <fcntl.h>
48# include <sys/uio.h>
49#endif /* !RT_OS_WINDOWS */
50#include <limits.h>
51
52#include "internal/iprt.h"
53#include <iprt/socket.h>
54
55#include <iprt/alloca.h>
56#include <iprt/asm.h>
57#include <iprt/assert.h>
58#include <iprt/ctype.h>
59#include <iprt/err.h>
60#include <iprt/mempool.h>
61#include <iprt/poll.h>
62#include <iprt/string.h>
63#include <iprt/thread.h>
64#include <iprt/time.h>
65#include <iprt/mem.h>
66#include <iprt/sg.h>
67#include <iprt/log.h>
68
69#include "internal/magics.h"
70#include "internal/socket.h"
71#include "internal/string.h"
72
73
74/*******************************************************************************
75* Defined Constants And Macros *
76*******************************************************************************/
77/* non-standard linux stuff (it seems). */
78#ifndef MSG_NOSIGNAL
79# define MSG_NOSIGNAL 0
80#endif
81
82/* Windows has different names for SHUT_XXX. */
83#ifndef SHUT_RDWR
84# ifdef SD_BOTH
85# define SHUT_RDWR SD_BOTH
86# else
87# define SHUT_RDWR 2
88# endif
89#endif
90#ifndef SHUT_WR
91# ifdef SD_SEND
92# define SHUT_WR SD_SEND
93# else
94# define SHUT_WR 1
95# endif
96#endif
97#ifndef SHUT_RD
98# ifdef SD_RECEIVE
99# define SHUT_RD SD_RECEIVE
100# else
101# define SHUT_RD 0
102# endif
103#endif
104
105/* fixup backlevel OSes. */
106#if defined(RT_OS_OS2) || defined(RT_OS_WINDOWS)
107# define socklen_t int
108#endif
109
110/** How many pending connection. */
111#define RTTCP_SERVER_BACKLOG 10
112
113
114/*******************************************************************************
115* Structures and Typedefs *
116*******************************************************************************/
117/**
118 * Socket handle data.
119 *
120 * This is mainly required for implementing RTPollSet on Windows.
121 */
122typedef struct RTSOCKETINT
123{
124 /** Magic number (RTSOCKET_MAGIC). */
125 uint32_t u32Magic;
126 /** Exclusive user count.
127 * This is used to prevent two threads from accessing the handle concurrently.
128 * It can be higher than 1 if this handle is reference multiple times in a
129 * polling set (Windows). */
130 uint32_t volatile cUsers;
131 /** The native socket handle. */
132 RTSOCKETNATIVE hNative;
133 /** Indicates whether the handle has been closed or not. */
134 bool volatile fClosed;
135 /** Indicates whether the socket is operating in blocking or non-blocking mode
136 * currently. */
137 bool fBlocking;
138#ifdef RT_OS_WINDOWS
139 /** The event semaphore we've associated with the socket handle.
140 * This is WSA_INVALID_EVENT if not done. */
141 WSAEVENT hEvent;
142 /** The pollset currently polling this socket. This is NIL if no one is
143 * polling. */
144 RTPOLLSET hPollSet;
145 /** The events we're polling for. */
146 uint32_t fPollEvts;
147 /** The events we're currently subscribing to with WSAEventSelect.
148 * This is ZERO if we're currently not subscribing to anything. */
149 uint32_t fSubscribedEvts;
150 /** Saved events which are only posted once. */
151 uint32_t fEventsSaved;
152#endif /* RT_OS_WINDOWS */
153} RTSOCKETINT;
154
155
156/**
157 * Address union used internally for things like getpeername and getsockname.
158 */
159typedef union RTSOCKADDRUNION
160{
161 struct sockaddr Addr;
162 struct sockaddr_in IPv4;
163#ifdef IPRT_WITH_TCPIP_V6
164 struct sockaddr_in6 IPv6;
165#endif
166} RTSOCKADDRUNION;
167
168
169/**
170 * Get the last error as an iprt status code.
171 *
172 * @returns IPRT status code.
173 */
174DECLINLINE(int) rtSocketError(void)
175{
176#ifdef RT_OS_WINDOWS
177 return RTErrConvertFromWin32(WSAGetLastError());
178#else
179 return RTErrConvertFromErrno(errno);
180#endif
181}
182
183
184/**
185 * Resets the last error.
186 */
187DECLINLINE(void) rtSocketErrorReset(void)
188{
189#ifdef RT_OS_WINDOWS
190 WSASetLastError(0);
191#else
192 errno = 0;
193#endif
194}
195
196
197/**
198 * Get the last resolver error as an iprt status code.
199 *
200 * @returns iprt status code.
201 */
202int rtSocketResolverError(void)
203{
204#ifdef RT_OS_WINDOWS
205 return RTErrConvertFromWin32(WSAGetLastError());
206#else
207 switch (h_errno)
208 {
209 case HOST_NOT_FOUND:
210 return VERR_NET_HOST_NOT_FOUND;
211 case NO_DATA:
212 return VERR_NET_ADDRESS_NOT_AVAILABLE;
213 case NO_RECOVERY:
214 return VERR_IO_GEN_FAILURE;
215 case TRY_AGAIN:
216 return VERR_TRY_AGAIN;
217
218 default:
219 return VERR_UNRESOLVED_ERROR;
220 }
221#endif
222}
223
224
225/**
226 * Converts from a native socket address to a generic IPRT network address.
227 *
228 * @returns IPRT status code.
229 * @param pSrc The source address.
230 * @param cbSrc The size of the source address.
231 * @param pAddr Where to return the generic IPRT network
232 * address.
233 */
234static int rtSocketNetAddrFromAddr(RTSOCKADDRUNION const *pSrc, size_t cbSrc, PRTNETADDR pAddr)
235{
236 /*
237 * Convert the address.
238 */
239 if ( cbSrc == sizeof(struct sockaddr_in)
240 && pSrc->Addr.sa_family == AF_INET)
241 {
242 RT_ZERO(*pAddr);
243 pAddr->enmType = RTNETADDRTYPE_IPV4;
244 pAddr->uPort = RT_N2H_U16(pSrc->IPv4.sin_port);
245 pAddr->uAddr.IPv4.u = pSrc->IPv4.sin_addr.s_addr;
246 }
247#ifdef IPRT_WITH_TCPIP_V6
248 else if ( cbSrc == sizeof(struct sockaddr_in6)
249 && pSrc->Addr.sa_family == AF_INET6)
250 {
251 RT_ZERO(*pAddr);
252 pAddr->enmType = RTNETADDRTYPE_IPV6;
253 pAddr->uPort = RT_N2H_U16(pSrc->IPv6.sin6_port);
254 pAddr->uAddr.IPv6.au32[0] = pSrc->IPv6.sin6_addr.s6_addr32[0];
255 pAddr->uAddr.IPv6.au32[1] = pSrc->IPv6.sin6_addr.s6_addr32[1];
256 pAddr->uAddr.IPv6.au32[2] = pSrc->IPv6.sin6_addr.s6_addr32[2];
257 pAddr->uAddr.IPv6.au32[3] = pSrc->IPv6.sin6_addr.s6_addr32[3];
258 }
259#endif
260 else
261 return VERR_NET_ADDRESS_FAMILY_NOT_SUPPORTED;
262 return VINF_SUCCESS;
263}
264
265
266/**
267 * Converts from a generic IPRT network address to a native socket address.
268 *
269 * @returns IPRT status code.
270 * @param pAddr Pointer to the generic IPRT network address.
271 * @param pDst The source address.
272 * @param cbSrc The size of the source address.
273 * @param pcbAddr Where to store the size of the returned address.
274 * Optional
275 */
276static int rtSocketAddrFromNetAddr(PCRTNETADDR pAddr, RTSOCKADDRUNION *pDst, size_t cbDst, int *pcbAddr)
277{
278 RT_BZERO(pDst, cbDst);
279 if ( pAddr->enmType == RTNETADDRTYPE_IPV4
280 && cbDst >= sizeof(struct sockaddr_in))
281 {
282 pDst->Addr.sa_family = AF_INET;
283 pDst->IPv4.sin_port = RT_H2N_U16(pAddr->uPort);
284 pDst->IPv4.sin_addr.s_addr = pAddr->uAddr.IPv4.u;
285 if (pcbAddr)
286 *pcbAddr = sizeof(pDst->IPv4);
287 }
288#ifdef IPRT_WITH_TCPIP_V6
289 else if ( pAddr->enmType == RTNETADDRTYPE_IPV6
290 && cbDst >= sizeof(struct sockaddr_in6))
291 {
292 pDst->Addr.sa_family = AF_INET6;
293 pDst->IPv6.sin6_port = RT_H2N_U16(pAddr->uPort);
294 pSrc->IPv6.sin6_addr.s6_addr32[0] = pAddr->uAddr.IPv6.au32[0];
295 pSrc->IPv6.sin6_addr.s6_addr32[1] = pAddr->uAddr.IPv6.au32[1];
296 pSrc->IPv6.sin6_addr.s6_addr32[2] = pAddr->uAddr.IPv6.au32[2];
297 pSrc->IPv6.sin6_addr.s6_addr32[3] = pAddr->uAddr.IPv6.au32[3];
298 if (pcbAddr)
299 *pcbAddr = sizeof(pDst->IPv6);
300 }
301#endif
302 else
303 return VERR_NET_ADDRESS_FAMILY_NOT_SUPPORTED;
304 return VINF_SUCCESS;
305}
306
307
308/**
309 * Tries to lock the socket for exclusive usage by the calling thread.
310 *
311 * Call rtSocketUnlock() to unlock.
312 *
313 * @returns @c true if locked, @c false if not.
314 * @param pThis The socket structure.
315 */
316DECLINLINE(bool) rtSocketTryLock(RTSOCKETINT *pThis)
317{
318 return ASMAtomicCmpXchgU32(&pThis->cUsers, 1, 0);
319}
320
321
322/**
323 * Unlocks the socket.
324 *
325 * @param pThis The socket structure.
326 */
327DECLINLINE(void) rtSocketUnlock(RTSOCKETINT *pThis)
328{
329 ASMAtomicCmpXchgU32(&pThis->cUsers, 0, 1);
330}
331
332
333/**
334 * The slow path of rtSocketSwitchBlockingMode that does the actual switching.
335 *
336 * @returns IPRT status code.
337 * @param pThis The socket structure.
338 * @param fBlocking The desired mode of operation.
339 * @remarks Do not call directly.
340 */
341static int rtSocketSwitchBlockingModeSlow(RTSOCKETINT *pThis, bool fBlocking)
342{
343#ifdef RT_OS_WINDOWS
344 u_long uBlocking = fBlocking ? 0 : 1;
345 if (ioctlsocket(pThis->hNative, FIONBIO, &uBlocking))
346 return rtSocketError();
347
348#else
349 int fFlags = fcntl(pThis->hNative, F_GETFL, 0);
350 if (fFlags == -1)
351 return rtSocketError();
352
353 if (fBlocking)
354 fFlags &= ~O_NONBLOCK;
355 else
356 fFlags |= O_NONBLOCK;
357 if (fcntl(pThis->hNative, F_SETFL, fFlags) == -1)
358 return rtSocketError();
359#endif
360
361 pThis->fBlocking = fBlocking;
362 return VINF_SUCCESS;
363}
364
365
366/**
367 * Switches the socket to the desired blocking mode if necessary.
368 *
369 * The socket must be locked.
370 *
371 * @returns IPRT status code.
372 * @param pThis The socket structure.
373 * @param fBlocking The desired mode of operation.
374 */
375DECLINLINE(int) rtSocketSwitchBlockingMode(RTSOCKETINT *pThis, bool fBlocking)
376{
377 if (pThis->fBlocking != fBlocking)
378 return rtSocketSwitchBlockingModeSlow(pThis, fBlocking);
379 return VINF_SUCCESS;
380}
381
382
383/**
384 * Creates an IPRT socket handle for a native one.
385 *
386 * @returns IPRT status code.
387 * @param ppSocket Where to return the IPRT socket handle.
388 * @param hNative The native handle.
389 */
390int rtSocketCreateForNative(RTSOCKETINT **ppSocket, RTSOCKETNATIVE hNative)
391{
392 RTSOCKETINT *pThis = (RTSOCKETINT *)RTMemPoolAlloc(RTMEMPOOL_DEFAULT, sizeof(*pThis));
393 if (!pThis)
394 return VERR_NO_MEMORY;
395 pThis->u32Magic = RTSOCKET_MAGIC;
396 pThis->cUsers = 0;
397 pThis->hNative = hNative;
398 pThis->fClosed = false;
399 pThis->fBlocking = true;
400#ifdef RT_OS_WINDOWS
401 pThis->hEvent = WSA_INVALID_EVENT;
402 pThis->hPollSet = NIL_RTPOLLSET;
403 pThis->fPollEvts = 0;
404 pThis->fSubscribedEvts = 0;
405#endif
406 *ppSocket = pThis;
407 return VINF_SUCCESS;
408}
409
410
411RTDECL(int) RTSocketFromNative(PRTSOCKET phSocket, RTHCINTPTR uNative)
412{
413 AssertReturn(uNative != NIL_RTSOCKETNATIVE, VERR_INVALID_PARAMETER);
414#ifndef RT_OS_WINDOWS
415 AssertReturn(uNative >= 0, VERR_INVALID_PARAMETER);
416#endif
417 AssertPtrReturn(phSocket, VERR_INVALID_POINTER);
418 return rtSocketCreateForNative(phSocket, uNative);
419}
420
421
422/**
423 * Wrapper around socket().
424 *
425 * @returns IPRT status code.
426 * @param phSocket Where to store the handle to the socket on
427 * success.
428 * @param iDomain The protocol family (PF_XXX).
429 * @param iType The socket type (SOCK_XXX).
430 * @param iProtocol Socket parameter, usually 0.
431 */
432int rtSocketCreate(PRTSOCKET phSocket, int iDomain, int iType, int iProtocol)
433{
434 /*
435 * Create the socket.
436 */
437 RTSOCKETNATIVE hNative = socket(iDomain, iType, iProtocol);
438 if (hNative == NIL_RTSOCKETNATIVE)
439 return rtSocketError();
440
441 /*
442 * Wrap it.
443 */
444 int rc = rtSocketCreateForNative(phSocket, hNative);
445 if (RT_FAILURE(rc))
446 {
447#ifdef RT_OS_WINDOWS
448 closesocket(hNative);
449#else
450 close(hNative);
451#endif
452 }
453 return rc;
454}
455
456
457RTDECL(uint32_t) RTSocketRetain(RTSOCKET hSocket)
458{
459 RTSOCKETINT *pThis = hSocket;
460 AssertPtrReturn(pThis, UINT32_MAX);
461 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, UINT32_MAX);
462 return RTMemPoolRetain(pThis);
463}
464
465
466/**
467 * Worker for RTSocketRelease and RTSocketClose.
468 *
469 * @returns IPRT status code.
470 * @param pThis The socket handle instance data.
471 * @param fDestroy Whether we're reaching ref count zero.
472 */
473static int rtSocketCloseIt(RTSOCKETINT *pThis, bool fDestroy)
474{
475 /*
476 * Invalidate the handle structure on destroy.
477 */
478 if (fDestroy)
479 {
480 Assert(ASMAtomicReadU32(&pThis->u32Magic) == RTSOCKET_MAGIC);
481 ASMAtomicWriteU32(&pThis->u32Magic, RTSOCKET_MAGIC_DEAD);
482 }
483
484 int rc = VINF_SUCCESS;
485 if (ASMAtomicCmpXchgBool(&pThis->fClosed, true, false))
486 {
487 /*
488 * Close the native handle.
489 */
490 RTSOCKETNATIVE hNative = pThis->hNative;
491 if (hNative != NIL_RTSOCKETNATIVE)
492 {
493 pThis->hNative = NIL_RTSOCKETNATIVE;
494
495#ifdef RT_OS_WINDOWS
496 if (closesocket(hNative))
497#else
498 if (close(hNative))
499#endif
500 {
501 rc = rtSocketError();
502#ifdef RT_OS_WINDOWS
503 AssertMsgFailed(("\"%s\": closesocket(%p) -> %Rrc\n", (uintptr_t)hNative, rc));
504#else
505 AssertMsgFailed(("\"%s\": close(%d) -> %Rrc\n", hNative, rc));
506#endif
507 }
508 }
509
510#ifdef RT_OS_WINDOWS
511 /*
512 * Close the event.
513 */
514 WSAEVENT hEvent = pThis->hEvent;
515 if (hEvent == WSA_INVALID_EVENT)
516 {
517 pThis->hEvent = WSA_INVALID_EVENT;
518 WSACloseEvent(hEvent);
519 }
520#endif
521 }
522
523 return rc;
524}
525
526
527RTDECL(uint32_t) RTSocketRelease(RTSOCKET hSocket)
528{
529 RTSOCKETINT *pThis = hSocket;
530 if (pThis == NIL_RTSOCKET)
531 return 0;
532 AssertPtrReturn(pThis, UINT32_MAX);
533 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, UINT32_MAX);
534
535 /* get the refcount without killing it... */
536 uint32_t cRefs = RTMemPoolRefCount(pThis);
537 AssertReturn(cRefs != UINT32_MAX, UINT32_MAX);
538 if (cRefs == 1)
539 rtSocketCloseIt(pThis, true);
540
541 return RTMemPoolRelease(RTMEMPOOL_DEFAULT, pThis);
542}
543
544
545RTDECL(int) RTSocketClose(RTSOCKET hSocket)
546{
547 RTSOCKETINT *pThis = hSocket;
548 if (pThis == NIL_RTSOCKET)
549 return VINF_SUCCESS;
550 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
551 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
552
553 uint32_t cRefs = RTMemPoolRefCount(pThis);
554 AssertReturn(cRefs != UINT32_MAX, UINT32_MAX);
555
556 int rc = rtSocketCloseIt(pThis, cRefs == 1);
557
558 RTMemPoolRelease(RTMEMPOOL_DEFAULT, pThis);
559 return rc;
560}
561
562
563RTDECL(RTHCUINTPTR) RTSocketToNative(RTSOCKET hSocket)
564{
565 RTSOCKETINT *pThis = hSocket;
566 AssertPtrReturn(pThis, RTHCUINTPTR_MAX);
567 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, RTHCUINTPTR_MAX);
568 return (RTHCUINTPTR)pThis->hNative;
569}
570
571
572RTDECL(int) RTSocketSetInheritance(RTSOCKET hSocket, bool fInheritable)
573{
574 RTSOCKETINT *pThis = hSocket;
575 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
576 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
577 AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
578
579 int rc = VINF_SUCCESS;
580#ifdef RT_OS_WINDOWS
581 if (!SetHandleInformation((HANDLE)pThis->hNative, HANDLE_FLAG_INHERIT, fInheritable ? HANDLE_FLAG_INHERIT : 0))
582 rc = RTErrConvertFromWin32(GetLastError());
583#else
584 if (fcntl(pThis->hNative, F_SETFD, fInheritable ? 0 : FD_CLOEXEC) < 0)
585 rc = RTErrConvertFromErrno(errno);
586#endif
587
588 return rc;
589}
590
591
592static bool rtSocketIsIPv4Numerical(const char *pszAddress, PRTNETADDRIPV4 pAddr)
593{
594
595 /* Empty address resolves to the INADDR_ANY address (good for bind). */
596 if (!pszAddress || !*pszAddress)
597 {
598 pAddr->u = INADDR_ANY;
599 return true;
600 }
601
602 /* Four quads? */
603 char *psz = (char *)pszAddress;
604 for (int i = 0; i < 4; i++)
605 {
606 uint8_t u8;
607 int rc = RTStrToUInt8Ex(psz, &psz, 0, &u8);
608 if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS)
609 return false;
610 if (*psz != (i < 3 ? '.' : '\0'))
611 return false;
612 psz++;
613
614 pAddr->au8[i] = u8; /* big endian */
615 }
616
617 return true;
618}
619
620RTDECL(int) RTSocketParseInetAddress(const char *pszAddress, unsigned uPort, PRTNETADDR pAddr)
621{
622 int rc;
623
624 /*
625 * Validate input.
626 */
627 AssertReturn(uPort > 0, VERR_INVALID_PARAMETER);
628 AssertPtrNullReturn(pszAddress, VERR_INVALID_POINTER);
629
630#ifdef RT_OS_WINDOWS
631 /*
632 * Initialize WinSock and check version.
633 */
634 WORD wVersionRequested = MAKEWORD(1, 1);
635 WSADATA wsaData;
636 rc = WSAStartup(wVersionRequested, &wsaData);
637 if (wsaData.wVersion != wVersionRequested)
638 {
639 AssertMsgFailed(("Wrong winsock version\n"));
640 return VERR_NOT_SUPPORTED;
641 }
642#endif
643
644 /*
645 * Resolve the address. Pretty crude at the moment, but we have to make
646 * sure to not ask the NT 4 gethostbyname about an IPv4 address as it may
647 * give a wrong answer.
648 */
649 /** @todo this only supports IPv4, and IPv6 support needs to be added.
650 * It probably needs to be converted to getaddrinfo(). */
651 RTNETADDRIPV4 IPv4Quad;
652 if (rtSocketIsIPv4Numerical(pszAddress, &IPv4Quad))
653 {
654 Log3(("rtSocketIsIPv4Numerical: %#x (%RTnaipv4)\n", pszAddress, IPv4Quad.u, IPv4Quad));
655 RT_ZERO(*pAddr);
656 pAddr->enmType = RTNETADDRTYPE_IPV4;
657 pAddr->uPort = uPort;
658 pAddr->uAddr.IPv4 = IPv4Quad;
659 return VINF_SUCCESS;
660 }
661
662 struct hostent *pHostEnt;
663 pHostEnt = gethostbyname(pszAddress);
664 if (!pHostEnt)
665 {
666 rc = rtSocketResolverError();
667 AssertMsgFailed(("Could not resolve '%s', rc=%Rrc\n", pszAddress, rc));
668 return rc;
669 }
670
671 if (pHostEnt->h_addrtype == AF_INET)
672 {
673 RT_ZERO(*pAddr);
674 pAddr->enmType = RTNETADDRTYPE_IPV4;
675 pAddr->uPort = uPort;
676 pAddr->uAddr.IPv4.u = ((struct in_addr *)pHostEnt->h_addr)->s_addr;
677 Log3(("gethostbyname: %s -> %#x (%RTnaipv4)\n", pszAddress, pAddr->uAddr.IPv4.u, pAddr->uAddr.IPv4));
678 }
679 else
680 return VERR_NET_ADDRESS_FAMILY_NOT_SUPPORTED;
681
682 return VINF_SUCCESS;
683}
684
685
686/*
687 * new function to allow both ipv4 and ipv6 addresses to be resolved.
688 * breaks compatibility with windows before 2000
689 * will change when the new ipv6 struct will be added
690 * temporary solution
691 */
692RTDECL(int) RTSocketGetAddrInfo(const char *pszHost, char *pszResult, size_t *pcbResult, PRTNETADDRTYPE penmAddrType)
693{
694 AssertPtrReturn(pszHost, VERR_INVALID_POINTER);
695 AssertPtrReturn(pcbResult, VERR_INVALID_POINTER);
696 AssertPtrNullReturn(penmAddrType, VERR_INVALID_POINTER);
697 AssertPtrNullReturn(pszResult, VERR_INVALID_POINTER);
698
699#if defined(RT_OS_OS2) || defined(RT_OS_WINDOWS) /** @todo dynamically resolve the APIs not present in NT4! */
700 return VERR_NOT_SUPPORTED;
701
702#else
703 int rc;
704 if (*pcbResult < 16)
705 return VERR_NET_ADDRESS_NOT_AVAILABLE;
706
707 /* Setup the hint. */
708 struct addrinfo grHints;
709 RT_ZERO(grHints);
710 grHints.ai_socktype = 0;
711 grHints.ai_flags = 0;
712 grHints.ai_protocol = 0;
713 grHints.ai_family = AF_UNSPEC;
714 if (penmAddrType)
715 {
716 switch (*penmAddrType)
717 {
718 case RTNETADDRTYPE_INVALID:
719 /*grHints.ai_family = AF_UNSPEC;*/
720 break;
721 case RTNETADDRTYPE_IPV4:
722 grHints.ai_family = AF_INET;
723 break;
724 case RTNETADDRTYPE_IPV6:
725 grHints.ai_family = AF_INET6;
726 break;
727 default:
728 AssertFailedReturn(VERR_INVALID_PARAMETER);
729 }
730 }
731
732# ifdef RT_OS_WINDOWS
733 /*
734 * Winsock2 init
735 */
736 /** @todo someone should check if we really need 2, 2 here */
737 WORD wVersionRequested = MAKEWORD(2, 2);
738 WSADATA wsaData;
739 rc = WSAStartup(wVersionRequested, &wsaData);
740 if (wsaData.wVersion != wVersionRequested)
741 {
742 AssertMsgFailed(("Wrong winsock version\n"));
743 return VERR_NOT_SUPPORTED;
744 }
745# endif
746
747 /** @todo r=bird: getaddrinfo and freeaddrinfo breaks the additions on NT4. */
748 struct addrinfo *pgrResults = NULL;
749 rc = getaddrinfo(pszHost, "", &grHints, &pgrResults);
750 if (rc != 0)
751 return VERR_NET_ADDRESS_NOT_AVAILABLE;
752
753 // return data
754 // on multiple matches return only the first one
755
756 if (!pgrResults)
757 return VERR_NET_ADDRESS_NOT_AVAILABLE;
758
759 struct addrinfo const *pgrResult = pgrResults->ai_next;
760 if (!pgrResult)
761 {
762 freeaddrinfo(pgrResults);
763 return VERR_NET_ADDRESS_NOT_AVAILABLE;
764 }
765
766 uint8_t const *pbDummy;
767 RTNETADDRTYPE enmAddrType = RTNETADDRTYPE_INVALID;
768 size_t cchIpAddress;
769 char szIpAddress[48];
770 if (pgrResult->ai_family == AF_INET)
771 {
772 struct sockaddr_in const *pgrSa = (struct sockaddr_in const *)pgrResult->ai_addr;
773 pbDummy = (uint8_t const *)&pgrSa->sin_addr;
774 cchIpAddress = RTStrPrintf(szIpAddress, sizeof(szIpAddress), "%u.%u.%u.%u",
775 pbDummy[0], pbDummy[1], pbDummy[2], pbDummy[3]);
776 Assert(cchIpAddress >= 7 && cchIpAddress < sizeof(szIpAddress) - 1);
777 enmAddrType = RTNETADDRTYPE_IPV4;
778 rc = VINF_SUCCESS;
779 }
780 else if (pgrResult->ai_family == AF_INET6)
781 {
782 struct sockaddr_in6 const *pgrSa6 = (struct sockaddr_in6 const *)pgrResult->ai_addr;
783 pbDummy = (uint8_t const *) &pgrSa6->sin6_addr;
784 char szTmp[32+1];
785 size_t cchTmp = RTStrPrintf(szTmp, sizeof(szTmp),
786 "%02x%02x%02x%02x"
787 "%02x%02x%02x%02x"
788 "%02x%02x%02x%02x"
789 "%02x%02x%02x%02x",
790 pbDummy[0], pbDummy[1], pbDummy[2], pbDummy[3],
791 pbDummy[4], pbDummy[5], pbDummy[6], pbDummy[7],
792 pbDummy[8], pbDummy[9], pbDummy[10], pbDummy[11],
793 pbDummy[12], pbDummy[13], pbDummy[14], pbDummy[15]);
794 Assert(cchTmp == 32);
795 rc = rtStrToIpAddr6Str(szTmp, szIpAddress, sizeof(szIpAddress), NULL, 0, true);
796 if (RT_SUCCESS(rc))
797 cchIpAddress = strlen(szIpAddress);
798 else
799 {
800 szIpAddress[0] = '\0';
801 cchIpAddress = 0;
802 }
803 enmAddrType = RTNETADDRTYPE_IPV6;
804 }
805 else
806 {
807 rc = VERR_NET_ADDRESS_NOT_AVAILABLE;
808 szIpAddress[0] = '\0';
809 cchIpAddress = 0;
810 }
811 freeaddrinfo(pgrResults);
812
813 /*
814 * Copy out the result.
815 */
816 size_t const cbResult = *pcbResult;
817 *pcbResult = cchIpAddress + 1;
818 if (cchIpAddress < cbResult)
819 memcpy(pszResult, szIpAddress, cchIpAddress + 1);
820 else
821 {
822 RT_BZERO(pszResult, cbResult);
823 if (RT_SUCCESS(rc))
824 rc = VERR_BUFFER_OVERFLOW;
825 }
826 if (penmAddrType && RT_SUCCESS(rc))
827 *penmAddrType = enmAddrType;
828 return rc;
829#endif /* !RT_OS_OS2 */
830}
831
832
833RTDECL(int) RTSocketRead(RTSOCKET hSocket, void *pvBuffer, size_t cbBuffer, size_t *pcbRead)
834{
835 /*
836 * Validate input.
837 */
838 RTSOCKETINT *pThis = hSocket;
839 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
840 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
841 AssertReturn(cbBuffer > 0, VERR_INVALID_PARAMETER);
842 AssertPtr(pvBuffer);
843 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
844
845 int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
846 if (RT_FAILURE(rc))
847 return rc;
848
849 /*
850 * Read loop.
851 * If pcbRead is NULL we have to fill the entire buffer!
852 */
853 size_t cbRead = 0;
854 size_t cbToRead = cbBuffer;
855 for (;;)
856 {
857 rtSocketErrorReset();
858#ifdef RT_OS_WINDOWS
859 int cbNow = cbToRead >= INT_MAX/2 ? INT_MAX/2 : (int)cbToRead;
860#else
861 size_t cbNow = cbToRead;
862#endif
863 ssize_t cbBytesRead = recv(pThis->hNative, (char *)pvBuffer + cbRead, cbNow, MSG_NOSIGNAL);
864 if (cbBytesRead <= 0)
865 {
866 rc = rtSocketError();
867 Assert(RT_FAILURE_NP(rc) || cbBytesRead == 0);
868 if (RT_SUCCESS_NP(rc))
869 {
870 if (!pcbRead)
871 rc = VERR_NET_SHUTDOWN;
872 else
873 {
874 *pcbRead = 0;
875 rc = VINF_SUCCESS;
876 }
877 }
878 break;
879 }
880 if (pcbRead)
881 {
882 /* return partial data */
883 *pcbRead = cbBytesRead;
884 break;
885 }
886
887 /* read more? */
888 cbRead += cbBytesRead;
889 if (cbRead == cbBuffer)
890 break;
891
892 /* next */
893 cbToRead = cbBuffer - cbRead;
894 }
895
896 rtSocketUnlock(pThis);
897 return rc;
898}
899
900
901RTDECL(int) RTSocketReadFrom(RTSOCKET hSocket, void *pvBuffer, size_t cbBuffer, size_t *pcbRead, PRTNETADDR pSrcAddr)
902{
903 /*
904 * Validate input.
905 */
906 RTSOCKETINT *pThis = hSocket;
907 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
908 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
909 AssertReturn(cbBuffer > 0, VERR_INVALID_PARAMETER);
910 AssertPtr(pvBuffer);
911 AssertPtr(pcbRead);
912 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
913
914 int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
915 if (RT_FAILURE(rc))
916 return rc;
917
918 /*
919 * Read data.
920 */
921 size_t cbRead = 0;
922 size_t cbToRead = cbBuffer;
923 rtSocketErrorReset();
924 RTSOCKADDRUNION u;
925#ifdef RT_OS_WINDOWS
926 int cbNow = cbToRead >= INT_MAX/2 ? INT_MAX/2 : (int)cbToRead;
927 int cbAddr = sizeof(u);
928#else
929 size_t cbNow = cbToRead;
930 socklen_t cbAddr = sizeof(u);
931#endif
932 ssize_t cbBytesRead = recvfrom(pThis->hNative, (char *)pvBuffer + cbRead, cbNow, MSG_NOSIGNAL, &u.Addr, &cbAddr);
933 if (cbBytesRead <= 0)
934 {
935 rc = rtSocketError();
936 Assert(RT_FAILURE_NP(rc) || cbBytesRead == 0);
937 if (RT_SUCCESS_NP(rc))
938 {
939 *pcbRead = 0;
940 rc = VINF_SUCCESS;
941 }
942 }
943 else
944 {
945 if (pSrcAddr)
946 rc = rtSocketNetAddrFromAddr(&u, cbAddr, pSrcAddr);
947 *pcbRead = cbBytesRead;
948 }
949
950 rtSocketUnlock(pThis);
951 return rc;
952}
953
954
955RTDECL(int) RTSocketWrite(RTSOCKET hSocket, const void *pvBuffer, size_t cbBuffer)
956{
957 /*
958 * Validate input.
959 */
960 RTSOCKETINT *pThis = hSocket;
961 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
962 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
963 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
964
965 int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
966 if (RT_FAILURE(rc))
967 return rc;
968
969 /*
970 * Try write all at once.
971 */
972#ifdef RT_OS_WINDOWS
973 int cbNow = cbBuffer >= INT_MAX / 2 ? INT_MAX / 2 : (int)cbBuffer;
974#else
975 size_t cbNow = cbBuffer >= SSIZE_MAX ? SSIZE_MAX : cbBuffer;
976#endif
977 ssize_t cbWritten = send(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL);
978 if (RT_LIKELY((size_t)cbWritten == cbBuffer && cbWritten >= 0))
979 rc = VINF_SUCCESS;
980 else if (cbWritten < 0)
981 rc = rtSocketError();
982 else
983 {
984 /*
985 * Unfinished business, write the remainder of the request. Must ignore
986 * VERR_INTERRUPTED here if we've managed to send something.
987 */
988 size_t cbSentSoFar = 0;
989 for (;;)
990 {
991 /* advance */
992 cbBuffer -= (size_t)cbWritten;
993 if (!cbBuffer)
994 break;
995 cbSentSoFar += (size_t)cbWritten;
996 pvBuffer = (char const *)pvBuffer + cbWritten;
997
998 /* send */
999#ifdef RT_OS_WINDOWS
1000 cbNow = cbBuffer >= INT_MAX / 2 ? INT_MAX / 2 : (int)cbBuffer;
1001#else
1002 cbNow = cbBuffer >= SSIZE_MAX ? SSIZE_MAX : cbBuffer;
1003#endif
1004 cbWritten = send(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL);
1005 if (cbWritten >= 0)
1006 AssertMsg(cbBuffer >= (size_t)cbWritten, ("Wrote more than we requested!!! cbWritten=%zu cbBuffer=%zu rtSocketError()=%d\n",
1007 cbWritten, cbBuffer, rtSocketError()));
1008 else
1009 {
1010 rc = rtSocketError();
1011 if (rc != VERR_INTERNAL_ERROR || cbSentSoFar == 0)
1012 break;
1013 cbWritten = 0;
1014 rc = VINF_SUCCESS;
1015 }
1016 }
1017 }
1018
1019 rtSocketUnlock(pThis);
1020 return rc;
1021}
1022
1023
1024RTDECL(int) RTSocketWriteTo(RTSOCKET hSocket, const void *pvBuffer, size_t cbBuffer, PCRTNETADDR pAddr)
1025{
1026 /*
1027 * Validate input.
1028 */
1029 RTSOCKETINT *pThis = hSocket;
1030 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1031 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1032
1033 /* no locking since UDP reads may be done concurrently to writes, and
1034 * this is the normal use case of this code. */
1035
1036 int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
1037 if (RT_FAILURE(rc))
1038 return rc;
1039
1040 /* Figure out destination address. */
1041 struct sockaddr *pSA = NULL;
1042#ifdef RT_OS_WINDOWS
1043 int cbSA = 0;
1044#else
1045 socklen_t cbSA = 0;
1046#endif
1047 RTSOCKADDRUNION u;
1048 if (pAddr)
1049 {
1050 rc = rtSocketAddrFromNetAddr(pAddr, &u, sizeof(u), NULL);
1051 if (RT_FAILURE(rc))
1052 return rc;
1053 pSA = &u.Addr;
1054 cbSA = sizeof(u);
1055 }
1056
1057 /*
1058 * Must write all at once, otherwise it is a failure.
1059 */
1060#ifdef RT_OS_WINDOWS
1061 int cbNow = cbBuffer >= INT_MAX / 2 ? INT_MAX / 2 : (int)cbBuffer;
1062#else
1063 size_t cbNow = cbBuffer >= SSIZE_MAX ? SSIZE_MAX : cbBuffer;
1064#endif
1065 ssize_t cbWritten = sendto(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL, pSA, cbSA);
1066 if (RT_LIKELY((size_t)cbWritten == cbBuffer && cbWritten >= 0))
1067 rc = VINF_SUCCESS;
1068 else if (cbWritten < 0)
1069 rc = rtSocketError();
1070 else
1071 rc = VERR_TOO_MUCH_DATA;
1072
1073 rtSocketUnlock(pThis);
1074 return rc;
1075}
1076
1077
1078RTDECL(int) RTSocketSgWrite(RTSOCKET hSocket, PCRTSGBUF pSgBuf)
1079{
1080 /*
1081 * Validate input.
1082 */
1083 RTSOCKETINT *pThis = hSocket;
1084 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1085 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1086 AssertPtrReturn(pSgBuf, VERR_INVALID_PARAMETER);
1087 AssertReturn(pSgBuf->cSegs > 0, VERR_INVALID_PARAMETER);
1088 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1089
1090 int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
1091 if (RT_FAILURE(rc))
1092 return rc;
1093
1094 /*
1095 * Construct message descriptor (translate pSgBuf) and send it.
1096 */
1097 rc = VERR_NO_TMP_MEMORY;
1098#ifdef RT_OS_WINDOWS
1099 AssertCompileSize(WSABUF, sizeof(RTSGSEG));
1100 AssertCompileMemberSize(WSABUF, buf, RT_SIZEOFMEMB(RTSGSEG, pvSeg));
1101
1102 LPWSABUF paMsg = (LPWSABUF)RTMemTmpAllocZ(pSgBuf->cSegs * sizeof(WSABUF));
1103 if (paMsg)
1104 {
1105 for (unsigned i = 0; i < pSgBuf->cSegs; i++)
1106 {
1107 paMsg[i].buf = (char *)pSgBuf->paSegs[i].pvSeg;
1108 paMsg[i].len = (u_long)pSgBuf->paSegs[i].cbSeg;
1109 }
1110
1111 DWORD dwSent;
1112 int hrc = WSASend(pThis->hNative, paMsg, pSgBuf->cSegs, &dwSent,
1113 MSG_NOSIGNAL, NULL, NULL);
1114 if (!hrc)
1115 rc = VINF_SUCCESS;
1116/** @todo check for incomplete writes */
1117 else
1118 rc = rtSocketError();
1119
1120 RTMemTmpFree(paMsg);
1121 }
1122
1123#else /* !RT_OS_WINDOWS */
1124 AssertCompileSize(struct iovec, sizeof(RTSGSEG));
1125 AssertCompileMemberSize(struct iovec, iov_base, RT_SIZEOFMEMB(RTSGSEG, pvSeg));
1126 AssertCompileMemberSize(struct iovec, iov_len, RT_SIZEOFMEMB(RTSGSEG, cbSeg));
1127
1128 struct iovec *paMsg = (struct iovec *)RTMemTmpAllocZ(pSgBuf->cSegs * sizeof(struct iovec));
1129 if (paMsg)
1130 {
1131 for (unsigned i = 0; i < pSgBuf->cSegs; i++)
1132 {
1133 paMsg[i].iov_base = pSgBuf->paSegs[i].pvSeg;
1134 paMsg[i].iov_len = pSgBuf->paSegs[i].cbSeg;
1135 }
1136
1137 struct msghdr msgHdr;
1138 RT_ZERO(msgHdr);
1139 msgHdr.msg_iov = paMsg;
1140 msgHdr.msg_iovlen = pSgBuf->cSegs;
1141 ssize_t cbWritten = sendmsg(pThis->hNative, &msgHdr, MSG_NOSIGNAL);
1142 if (RT_LIKELY(cbWritten >= 0))
1143 rc = VINF_SUCCESS;
1144/** @todo check for incomplete writes */
1145 else
1146 rc = rtSocketError();
1147
1148 RTMemTmpFree(paMsg);
1149 }
1150#endif /* !RT_OS_WINDOWS */
1151
1152 rtSocketUnlock(pThis);
1153 return rc;
1154}
1155
1156
1157RTDECL(int) RTSocketSgWriteL(RTSOCKET hSocket, size_t cSegs, ...)
1158{
1159 va_list va;
1160 va_start(va, cSegs);
1161 int rc = RTSocketSgWriteLV(hSocket, cSegs, va);
1162 va_end(va);
1163 return rc;
1164}
1165
1166
1167RTDECL(int) RTSocketSgWriteLV(RTSOCKET hSocket, size_t cSegs, va_list va)
1168{
1169 /*
1170 * Set up a S/G segment array + buffer on the stack and pass it
1171 * on to RTSocketSgWrite.
1172 */
1173 Assert(cSegs <= 16);
1174 PRTSGSEG paSegs = (PRTSGSEG)alloca(cSegs * sizeof(RTSGSEG));
1175 AssertReturn(paSegs, VERR_NO_TMP_MEMORY);
1176 for (size_t i = 0; i < cSegs; i++)
1177 {
1178 paSegs[i].pvSeg = va_arg(va, void *);
1179 paSegs[i].cbSeg = va_arg(va, size_t);
1180 }
1181
1182 RTSGBUF SgBuf;
1183 RTSgBufInit(&SgBuf, paSegs, cSegs);
1184 return RTSocketSgWrite(hSocket, &SgBuf);
1185}
1186
1187
1188RTDECL(int) RTSocketReadNB(RTSOCKET hSocket, void *pvBuffer, size_t cbBuffer, size_t *pcbRead)
1189{
1190 /*
1191 * Validate input.
1192 */
1193 RTSOCKETINT *pThis = hSocket;
1194 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1195 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1196 AssertReturn(cbBuffer > 0, VERR_INVALID_PARAMETER);
1197 AssertPtr(pvBuffer);
1198 AssertPtrReturn(pcbRead, VERR_INVALID_PARAMETER);
1199 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1200
1201 int rc = rtSocketSwitchBlockingMode(pThis, false /* fBlocking */);
1202 if (RT_FAILURE(rc))
1203 return rc;
1204
1205 rtSocketErrorReset();
1206#ifdef RT_OS_WINDOWS
1207 int cbNow = cbBuffer >= INT_MAX/2 ? INT_MAX/2 : (int)cbBuffer;
1208
1209 int cbRead = recv(pThis->hNative, (char *)pvBuffer, cbNow, MSG_NOSIGNAL);
1210 if (cbRead >= 0)
1211 {
1212 *pcbRead = cbRead;
1213 rc = VINF_SUCCESS;
1214 }
1215 else
1216 rc = rtSocketError();
1217
1218 if (rc == VERR_TRY_AGAIN)
1219 rc = VINF_TRY_AGAIN;
1220#else
1221 ssize_t cbRead = recv(pThis->hNative, pvBuffer, cbBuffer, MSG_NOSIGNAL);
1222 if (cbRead >= 0)
1223 *pcbRead = cbRead;
1224 else if (errno == EAGAIN)
1225 {
1226 *pcbRead = 0;
1227 rc = VINF_TRY_AGAIN;
1228 }
1229 else
1230 rc = rtSocketError();
1231#endif
1232
1233 rtSocketUnlock(pThis);
1234 return rc;
1235}
1236
1237
1238RTDECL(int) RTSocketWriteNB(RTSOCKET hSocket, const void *pvBuffer, size_t cbBuffer, size_t *pcbWritten)
1239{
1240 /*
1241 * Validate input.
1242 */
1243 RTSOCKETINT *pThis = hSocket;
1244 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1245 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1246 AssertPtrReturn(pcbWritten, VERR_INVALID_PARAMETER);
1247 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1248
1249 int rc = rtSocketSwitchBlockingMode(pThis, false /* fBlocking */);
1250 if (RT_FAILURE(rc))
1251 return rc;
1252
1253 rtSocketErrorReset();
1254#ifdef RT_OS_WINDOWS
1255 int cbNow = RT_MIN((int)cbBuffer, INT_MAX/2);
1256
1257 int cbWritten = send(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL);
1258
1259 if (cbWritten >= 0)
1260 {
1261 *pcbWritten = cbWritten;
1262 rc = VINF_SUCCESS;
1263 }
1264 else
1265 rc = rtSocketError();
1266
1267 if (rc == VERR_TRY_AGAIN)
1268 rc = VINF_TRY_AGAIN;
1269#else
1270 ssize_t cbWritten = send(pThis->hNative, pvBuffer, cbBuffer, MSG_NOSIGNAL);
1271 if (cbWritten >= 0)
1272 *pcbWritten = cbWritten;
1273 else if (errno == EAGAIN)
1274 {
1275 *pcbWritten = 0;
1276 rc = VINF_TRY_AGAIN;
1277 }
1278 else
1279 rc = rtSocketError();
1280#endif
1281
1282 rtSocketUnlock(pThis);
1283 return rc;
1284}
1285
1286
1287RTDECL(int) RTSocketSgWriteNB(RTSOCKET hSocket, PCRTSGBUF pSgBuf, size_t *pcbWritten)
1288{
1289 /*
1290 * Validate input.
1291 */
1292 RTSOCKETINT *pThis = hSocket;
1293 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1294 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1295 AssertPtrReturn(pSgBuf, VERR_INVALID_PARAMETER);
1296 AssertPtrReturn(pcbWritten, VERR_INVALID_PARAMETER);
1297 AssertReturn(pSgBuf->cSegs > 0, VERR_INVALID_PARAMETER);
1298 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1299
1300 int rc = rtSocketSwitchBlockingMode(pThis, false /* fBlocking */);
1301 if (RT_FAILURE(rc))
1302 return rc;
1303
1304 unsigned cSegsToSend = 0;
1305 rc = VERR_NO_TMP_MEMORY;
1306#ifdef RT_OS_WINDOWS
1307 LPWSABUF paMsg = NULL;
1308
1309 RTSgBufMapToNative(paMsg, pSgBuf, WSABUF, buf, char *, len, u_long, cSegsToSend);
1310 if (paMsg)
1311 {
1312 DWORD dwSent = 0;
1313 int hrc = WSASend(pThis->hNative, paMsg, cSegsToSend, &dwSent,
1314 MSG_NOSIGNAL, NULL, NULL);
1315 if (!hrc)
1316 rc = VINF_SUCCESS;
1317 else
1318 rc = rtSocketError();
1319
1320 *pcbWritten = dwSent;
1321
1322 RTMemTmpFree(paMsg);
1323 }
1324
1325#else /* !RT_OS_WINDOWS */
1326 struct iovec *paMsg = NULL;
1327
1328 RTSgBufMapToNative(paMsg, pSgBuf, struct iovec, iov_base, void *, iov_len, size_t, cSegsToSend);
1329 if (paMsg)
1330 {
1331 struct msghdr msgHdr;
1332 RT_ZERO(msgHdr);
1333 msgHdr.msg_iov = paMsg;
1334 msgHdr.msg_iovlen = cSegsToSend;
1335 ssize_t cbWritten = sendmsg(pThis->hNative, &msgHdr, MSG_NOSIGNAL);
1336 if (RT_LIKELY(cbWritten >= 0))
1337 {
1338 rc = VINF_SUCCESS;
1339 *pcbWritten = cbWritten;
1340 }
1341 else
1342 rc = rtSocketError();
1343
1344 RTMemTmpFree(paMsg);
1345 }
1346#endif /* !RT_OS_WINDOWS */
1347
1348 rtSocketUnlock(pThis);
1349 return rc;
1350}
1351
1352
1353RTDECL(int) RTSocketSgWriteLNB(RTSOCKET hSocket, size_t cSegs, size_t *pcbWritten, ...)
1354{
1355 va_list va;
1356 va_start(va, pcbWritten);
1357 int rc = RTSocketSgWriteLVNB(hSocket, cSegs, pcbWritten, va);
1358 va_end(va);
1359 return rc;
1360}
1361
1362
1363RTDECL(int) RTSocketSgWriteLVNB(RTSOCKET hSocket, size_t cSegs, size_t *pcbWritten, va_list va)
1364{
1365 /*
1366 * Set up a S/G segment array + buffer on the stack and pass it
1367 * on to RTSocketSgWrite.
1368 */
1369 Assert(cSegs <= 16);
1370 PRTSGSEG paSegs = (PRTSGSEG)alloca(cSegs * sizeof(RTSGSEG));
1371 AssertReturn(paSegs, VERR_NO_TMP_MEMORY);
1372 for (size_t i = 0; i < cSegs; i++)
1373 {
1374 paSegs[i].pvSeg = va_arg(va, void *);
1375 paSegs[i].cbSeg = va_arg(va, size_t);
1376 }
1377
1378 RTSGBUF SgBuf;
1379 RTSgBufInit(&SgBuf, paSegs, cSegs);
1380 return RTSocketSgWriteNB(hSocket, &SgBuf, pcbWritten);
1381}
1382
1383
1384RTDECL(int) RTSocketSelectOne(RTSOCKET hSocket, RTMSINTERVAL cMillies)
1385{
1386 /*
1387 * Validate input.
1388 */
1389 RTSOCKETINT *pThis = hSocket;
1390 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1391 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1392 AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
1393 int const fdMax = (int)pThis->hNative + 1;
1394 AssertReturn(fdMax - 1 == pThis->hNative, VERR_INTERNAL_ERROR_5);
1395
1396 /*
1397 * Set up the file descriptor sets and do the select.
1398 */
1399 fd_set fdsetR;
1400 FD_ZERO(&fdsetR);
1401 FD_SET(pThis->hNative, &fdsetR);
1402
1403 fd_set fdsetE = fdsetR;
1404
1405 int rc;
1406 if (cMillies == RT_INDEFINITE_WAIT)
1407 rc = select(fdMax, &fdsetR, NULL, &fdsetE, NULL);
1408 else
1409 {
1410 struct timeval timeout;
1411 timeout.tv_sec = cMillies / 1000;
1412 timeout.tv_usec = (cMillies % 1000) * 1000;
1413 rc = select(fdMax, &fdsetR, NULL, &fdsetE, &timeout);
1414 }
1415 if (rc > 0)
1416 rc = VINF_SUCCESS;
1417 else if (rc == 0)
1418 rc = VERR_TIMEOUT;
1419 else
1420 rc = rtSocketError();
1421
1422 return rc;
1423}
1424
1425
1426RTDECL(int) RTSocketSelectOneEx(RTSOCKET hSocket, uint32_t fEvents, uint32_t *pfEvents,
1427 RTMSINTERVAL cMillies)
1428{
1429 /*
1430 * Validate input.
1431 */
1432 RTSOCKETINT *pThis = hSocket;
1433 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1434 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1435 AssertPtrReturn(pfEvents, VERR_INVALID_PARAMETER);
1436 AssertReturn(!(fEvents & ~RTSOCKET_EVT_VALID_MASK), VERR_INVALID_PARAMETER);
1437 AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
1438 int const fdMax = (int)pThis->hNative + 1;
1439 AssertReturn(fdMax - 1 == pThis->hNative, VERR_INTERNAL_ERROR_5);
1440
1441 *pfEvents = 0;
1442
1443 /*
1444 * Set up the file descriptor sets and do the select.
1445 */
1446 fd_set fdsetR;
1447 fd_set fdsetW;
1448 fd_set fdsetE;
1449 FD_ZERO(&fdsetR);
1450 FD_ZERO(&fdsetW);
1451 FD_ZERO(&fdsetE);
1452
1453 if (fEvents & RTSOCKET_EVT_READ)
1454 FD_SET(pThis->hNative, &fdsetR);
1455 if (fEvents & RTSOCKET_EVT_WRITE)
1456 FD_SET(pThis->hNative, &fdsetW);
1457 if (fEvents & RTSOCKET_EVT_ERROR)
1458 FD_SET(pThis->hNative, &fdsetE);
1459
1460 int rc;
1461 if (cMillies == RT_INDEFINITE_WAIT)
1462 rc = select(fdMax, &fdsetR, &fdsetW, &fdsetE, NULL);
1463 else
1464 {
1465 struct timeval timeout;
1466 timeout.tv_sec = cMillies / 1000;
1467 timeout.tv_usec = (cMillies % 1000) * 1000;
1468 rc = select(fdMax, &fdsetR, &fdsetW, &fdsetE, &timeout);
1469 }
1470 if (rc > 0)
1471 {
1472 if (FD_ISSET(pThis->hNative, &fdsetR))
1473 *pfEvents |= RTSOCKET_EVT_READ;
1474 if (FD_ISSET(pThis->hNative, &fdsetW))
1475 *pfEvents |= RTSOCKET_EVT_WRITE;
1476 if (FD_ISSET(pThis->hNative, &fdsetE))
1477 *pfEvents |= RTSOCKET_EVT_ERROR;
1478
1479 rc = VINF_SUCCESS;
1480 }
1481 else if (rc == 0)
1482 rc = VERR_TIMEOUT;
1483 else
1484 rc = rtSocketError();
1485
1486 return rc;
1487}
1488
1489
1490RTDECL(int) RTSocketShutdown(RTSOCKET hSocket, bool fRead, bool fWrite)
1491{
1492 /*
1493 * Validate input, don't lock it because we might want to interrupt a call
1494 * active on a different thread.
1495 */
1496 RTSOCKETINT *pThis = hSocket;
1497 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1498 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1499 AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
1500 AssertReturn(fRead || fWrite, VERR_INVALID_PARAMETER);
1501
1502 /*
1503 * Do the job.
1504 */
1505 int rc = VINF_SUCCESS;
1506 int fHow;
1507 if (fRead && fWrite)
1508 fHow = SHUT_RDWR;
1509 else if (fRead)
1510 fHow = SHUT_RD;
1511 else
1512 fHow = SHUT_WR;
1513 if (shutdown(pThis->hNative, fHow) == -1)
1514 rc = rtSocketError();
1515
1516 return rc;
1517}
1518
1519
1520RTDECL(int) RTSocketGetLocalAddress(RTSOCKET hSocket, PRTNETADDR pAddr)
1521{
1522 /*
1523 * Validate input.
1524 */
1525 RTSOCKETINT *pThis = hSocket;
1526 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1527 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1528 AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
1529
1530 /*
1531 * Get the address and convert it.
1532 */
1533 int rc;
1534 RTSOCKADDRUNION u;
1535#ifdef RT_OS_WINDOWS
1536 int cbAddr = sizeof(u);
1537#else
1538 socklen_t cbAddr = sizeof(u);
1539#endif
1540 RT_ZERO(u);
1541 if (getsockname(pThis->hNative, &u.Addr, &cbAddr) == 0)
1542 rc = rtSocketNetAddrFromAddr(&u, cbAddr, pAddr);
1543 else
1544 rc = rtSocketError();
1545
1546 return rc;
1547}
1548
1549
1550RTDECL(int) RTSocketGetPeerAddress(RTSOCKET hSocket, PRTNETADDR pAddr)
1551{
1552 /*
1553 * Validate input.
1554 */
1555 RTSOCKETINT *pThis = hSocket;
1556 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1557 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1558 AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
1559
1560 /*
1561 * Get the address and convert it.
1562 */
1563 int rc;
1564 RTSOCKADDRUNION u;
1565#ifdef RT_OS_WINDOWS
1566 int cbAddr = sizeof(u);
1567#else
1568 socklen_t cbAddr = sizeof(u);
1569#endif
1570 RT_ZERO(u);
1571 if (getpeername(pThis->hNative, &u.Addr, &cbAddr) == 0)
1572 rc = rtSocketNetAddrFromAddr(&u, cbAddr, pAddr);
1573 else
1574 rc = rtSocketError();
1575
1576 return rc;
1577}
1578
1579
1580
1581/**
1582 * Wrapper around bind.
1583 *
1584 * @returns IPRT status code.
1585 * @param hSocket The socket handle.
1586 * @param pAddr The address to bind to.
1587 */
1588int rtSocketBind(RTSOCKET hSocket, PCRTNETADDR pAddr)
1589{
1590 /*
1591 * Validate input.
1592 */
1593 RTSOCKETINT *pThis = hSocket;
1594 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1595 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1596 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1597
1598 RTSOCKADDRUNION u;
1599 int cbAddr;
1600 int rc = rtSocketAddrFromNetAddr(pAddr, &u, sizeof(u), &cbAddr);
1601 if (RT_SUCCESS(rc))
1602 {
1603 if (bind(pThis->hNative, &u.Addr, cbAddr) != 0)
1604 rc = rtSocketError();
1605 }
1606
1607 rtSocketUnlock(pThis);
1608 return rc;
1609}
1610
1611
1612/**
1613 * Wrapper around listen.
1614 *
1615 * @returns IPRT status code.
1616 * @param hSocket The socket handle.
1617 * @param cMaxPending The max number of pending connections.
1618 */
1619int rtSocketListen(RTSOCKET hSocket, int cMaxPending)
1620{
1621 /*
1622 * Validate input.
1623 */
1624 RTSOCKETINT *pThis = hSocket;
1625 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1626 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1627 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1628
1629 int rc = VINF_SUCCESS;
1630 if (listen(pThis->hNative, cMaxPending) != 0)
1631 rc = rtSocketError();
1632
1633 rtSocketUnlock(pThis);
1634 return rc;
1635}
1636
1637
1638/**
1639 * Wrapper around accept.
1640 *
1641 * @returns IPRT status code.
1642 * @param hSocket The socket handle.
1643 * @param phClient Where to return the client socket handle on
1644 * success.
1645 * @param pAddr Where to return the client address.
1646 * @param pcbAddr On input this gives the size buffer size of what
1647 * @a pAddr point to. On return this contains the
1648 * size of what's stored at @a pAddr.
1649 */
1650int rtSocketAccept(RTSOCKET hSocket, PRTSOCKET phClient, struct sockaddr *pAddr, size_t *pcbAddr)
1651{
1652 /*
1653 * Validate input.
1654 * Only lock the socket temporarily while we get the native handle, so that
1655 * we can safely shutdown and destroy the socket from a different thread.
1656 */
1657 RTSOCKETINT *pThis = hSocket;
1658 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1659 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1660 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1661
1662 /*
1663 * Call accept().
1664 */
1665 rtSocketErrorReset();
1666 int rc = VINF_SUCCESS;
1667#ifdef RT_OS_WINDOWS
1668 int cbAddr = (int)*pcbAddr;
1669#else
1670 socklen_t cbAddr = *pcbAddr;
1671#endif
1672 RTSOCKETNATIVE hNativeClient = accept(pThis->hNative, pAddr, &cbAddr);
1673 if (hNativeClient != NIL_RTSOCKETNATIVE)
1674 {
1675 *pcbAddr = cbAddr;
1676
1677 /*
1678 * Wrap the client socket.
1679 */
1680 rc = rtSocketCreateForNative(phClient, hNativeClient);
1681 if (RT_FAILURE(rc))
1682 {
1683#ifdef RT_OS_WINDOWS
1684 closesocket(hNativeClient);
1685#else
1686 close(hNativeClient);
1687#endif
1688 }
1689 }
1690 else
1691 rc = rtSocketError();
1692
1693 rtSocketUnlock(pThis);
1694 return rc;
1695}
1696
1697
1698/**
1699 * Wrapper around connect.
1700 *
1701 * @returns IPRT status code.
1702 * @param hSocket The socket handle.
1703 * @param pAddr The socket address to connect to.
1704 */
1705int rtSocketConnect(RTSOCKET hSocket, PCRTNETADDR pAddr)
1706{
1707 /*
1708 * Validate input.
1709 */
1710 RTSOCKETINT *pThis = hSocket;
1711 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1712 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1713 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1714
1715 RTSOCKADDRUNION u;
1716 int cbAddr;
1717 int rc = rtSocketAddrFromNetAddr(pAddr, &u, sizeof(u), &cbAddr);
1718 if (RT_SUCCESS(rc))
1719 {
1720 if (connect(pThis->hNative, &u.Addr, cbAddr) != 0)
1721 rc = rtSocketError();
1722 }
1723
1724 rtSocketUnlock(pThis);
1725 return rc;
1726}
1727
1728
1729/**
1730 * Wrapper around setsockopt.
1731 *
1732 * @returns IPRT status code.
1733 * @param hSocket The socket handle.
1734 * @param iLevel The protocol level, e.g. IPPORTO_TCP.
1735 * @param iOption The option, e.g. TCP_NODELAY.
1736 * @param pvValue The value buffer.
1737 * @param cbValue The size of the value pointed to by pvValue.
1738 */
1739int rtSocketSetOpt(RTSOCKET hSocket, int iLevel, int iOption, void const *pvValue, int cbValue)
1740{
1741 /*
1742 * Validate input.
1743 */
1744 RTSOCKETINT *pThis = hSocket;
1745 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1746 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1747 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1748
1749 int rc = VINF_SUCCESS;
1750 if (setsockopt(pThis->hNative, iLevel, iOption, (const char *)pvValue, cbValue) != 0)
1751 rc = rtSocketError();
1752
1753 rtSocketUnlock(pThis);
1754 return rc;
1755}
1756
1757#ifdef RT_OS_WINDOWS
1758
1759/**
1760 * Internal RTPollSetAdd helper that returns the handle that should be added to
1761 * the pollset.
1762 *
1763 * @returns Valid handle on success, INVALID_HANDLE_VALUE on failure.
1764 * @param hSocket The socket handle.
1765 * @param fEvents The events we're polling for.
1766 * @param ph where to put the primary handle.
1767 */
1768int rtSocketPollGetHandle(RTSOCKET hSocket, uint32_t fEvents, PHANDLE ph)
1769{
1770 RTSOCKETINT *pThis = hSocket;
1771 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1772 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1773 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1774
1775 int rc = VINF_SUCCESS;
1776 if (pThis->hEvent != WSA_INVALID_EVENT)
1777 *ph = pThis->hEvent;
1778 else
1779 {
1780 *ph = pThis->hEvent = WSACreateEvent();
1781 if (pThis->hEvent == WSA_INVALID_EVENT)
1782 rc = rtSocketError();
1783 }
1784
1785 rtSocketUnlock(pThis);
1786 return rc;
1787}
1788
1789
1790/**
1791 * Undos the harm done by WSAEventSelect.
1792 *
1793 * @returns IPRT status code.
1794 * @param pThis The socket handle.
1795 */
1796static int rtSocketPollClearEventAndRestoreBlocking(RTSOCKETINT *pThis)
1797{
1798 int rc = VINF_SUCCESS;
1799 if (pThis->fSubscribedEvts)
1800 {
1801 if (WSAEventSelect(pThis->hNative, WSA_INVALID_EVENT, 0) == 0)
1802 {
1803 pThis->fSubscribedEvts = 0;
1804
1805 /*
1806 * Switch back to blocking mode if that was the state before the
1807 * operation.
1808 */
1809 if (pThis->fBlocking)
1810 {
1811 u_long fNonBlocking = 0;
1812 int rc2 = ioctlsocket(pThis->hNative, FIONBIO, &fNonBlocking);
1813 if (rc2 != 0)
1814 {
1815 rc = rtSocketError();
1816 AssertMsgFailed(("%Rrc; rc2=%d\n", rc, rc2));
1817 }
1818 }
1819 }
1820 else
1821 {
1822 rc = rtSocketError();
1823 AssertMsgFailed(("%Rrc\n", rc));
1824 }
1825 }
1826 return rc;
1827}
1828
1829
1830/**
1831 * Updates the mask of events we're subscribing to.
1832 *
1833 * @returns IPRT status code.
1834 * @param pThis The socket handle.
1835 * @param fEvents The events we want to subscribe to.
1836 */
1837static int rtSocketPollUpdateEvents(RTSOCKETINT *pThis, uint32_t fEvents)
1838{
1839 LONG fNetworkEvents = 0;
1840 if (fEvents & RTPOLL_EVT_READ)
1841 fNetworkEvents |= FD_READ;
1842 if (fEvents & RTPOLL_EVT_WRITE)
1843 fNetworkEvents |= FD_WRITE;
1844 if (fEvents & RTPOLL_EVT_ERROR)
1845 fNetworkEvents |= FD_CLOSE;
1846 LogFlowFunc(("fNetworkEvents=%#x\n", fNetworkEvents));
1847 if (WSAEventSelect(pThis->hNative, pThis->hEvent, fNetworkEvents) == 0)
1848 {
1849 pThis->fSubscribedEvts = fEvents;
1850 return VINF_SUCCESS;
1851 }
1852
1853 int rc = rtSocketError();
1854 AssertMsgFailed(("fNetworkEvents=%#x rc=%Rrc\n", fNetworkEvents, rtSocketError()));
1855 return rc;
1856}
1857
1858
1859/**
1860 * Checks for pending events.
1861 *
1862 * @returns Event mask or 0.
1863 * @param pThis The socket handle.
1864 * @param fEvents The desired events.
1865 */
1866static uint32_t rtSocketPollCheck(RTSOCKETINT *pThis, uint32_t fEvents)
1867{
1868 int rc = VINF_SUCCESS;
1869 uint32_t fRetEvents = 0;
1870
1871 LogFlowFunc(("pThis=%#p fEvents=%#x\n", pThis, fEvents));
1872
1873 /* Make sure WSAEnumNetworkEvents returns what we want. */
1874 if ((pThis->fSubscribedEvts & fEvents) != fEvents)
1875 rc = rtSocketPollUpdateEvents(pThis, pThis->fSubscribedEvts | fEvents);
1876
1877 /* Get the event mask, ASSUMES that WSAEnumNetworkEvents doesn't clear stuff. */
1878 WSANETWORKEVENTS NetEvts;
1879 RT_ZERO(NetEvts);
1880 if (WSAEnumNetworkEvents(pThis->hNative, pThis->hEvent, &NetEvts) == 0)
1881 {
1882 if ( (NetEvts.lNetworkEvents & FD_READ)
1883 && (fEvents & RTPOLL_EVT_READ)
1884 && NetEvts.iErrorCode[FD_READ_BIT] == 0)
1885 fRetEvents |= RTPOLL_EVT_READ;
1886
1887 if ( (NetEvts.lNetworkEvents & FD_WRITE)
1888 && (fEvents & RTPOLL_EVT_WRITE)
1889 && NetEvts.iErrorCode[FD_WRITE_BIT] == 0)
1890 fRetEvents |= RTPOLL_EVT_WRITE;
1891
1892 if (fEvents & RTPOLL_EVT_ERROR)
1893 {
1894 if (NetEvts.lNetworkEvents & FD_CLOSE)
1895 fRetEvents |= RTPOLL_EVT_ERROR;
1896 else
1897 for (uint32_t i = 0; i < FD_MAX_EVENTS; i++)
1898 if ( (NetEvts.lNetworkEvents & (1L << i))
1899 && NetEvts.iErrorCode[i] != 0)
1900 fRetEvents |= RTPOLL_EVT_ERROR;
1901 }
1902 }
1903 else
1904 rc = rtSocketError();
1905
1906 /* Fall back on select if we hit an error above. */
1907 if (RT_FAILURE(rc))
1908 {
1909 /** @todo */
1910 }
1911
1912 LogFlowFunc(("fRetEvents=%#x\n", fRetEvents));
1913 return fRetEvents;
1914}
1915
1916
1917/**
1918 * Internal RTPoll helper that polls the socket handle and, if @a fNoWait is
1919 * clear, starts whatever actions we've got running during the poll call.
1920 *
1921 * @returns 0 if no pending events, actions initiated if @a fNoWait is clear.
1922 * Event mask (in @a fEvents) and no actions if the handle is ready
1923 * already.
1924 * UINT32_MAX (asserted) if the socket handle is busy in I/O or a
1925 * different poll set.
1926 *
1927 * @param hSocket The socket handle.
1928 * @param hPollSet The poll set handle (for access checks).
1929 * @param fEvents The events we're polling for.
1930 * @param fFinalEntry Set if this is the final entry for this handle
1931 * in this poll set. This can be used for dealing
1932 * with duplicate entries.
1933 * @param fNoWait Set if it's a zero-wait poll call. Clear if
1934 * we'll wait for an event to occur.
1935 *
1936 * @remarks There is a potential race wrt duplicate handles when @a fNoWait is
1937 * @c true, we don't currently care about that oddity...
1938 */
1939uint32_t rtSocketPollStart(RTSOCKET hSocket, RTPOLLSET hPollSet, uint32_t fEvents, bool fFinalEntry, bool fNoWait)
1940{
1941 RTSOCKETINT *pThis = hSocket;
1942 AssertPtrReturn(pThis, UINT32_MAX);
1943 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, UINT32_MAX);
1944 if (rtSocketTryLock(pThis))
1945 pThis->hPollSet = hPollSet;
1946 else
1947 {
1948 AssertReturn(pThis->hPollSet == hPollSet, UINT32_MAX);
1949 ASMAtomicIncU32(&pThis->cUsers);
1950 }
1951
1952 /* (rtSocketPollCheck will reset the event object). */
1953 uint32_t fRetEvents = pThis->fEventsSaved;
1954 pThis->fEventsSaved = 0; /* Reset */
1955 fRetEvents |= rtSocketPollCheck(pThis, fEvents);
1956
1957 if ( !fRetEvents
1958 && !fNoWait)
1959 {
1960 pThis->fPollEvts |= fEvents;
1961 if ( fFinalEntry
1962 && pThis->fSubscribedEvts != pThis->fPollEvts)
1963 {
1964 int rc = rtSocketPollUpdateEvents(pThis, pThis->fPollEvts);
1965 if (RT_FAILURE(rc))
1966 {
1967 pThis->fPollEvts = 0;
1968 fRetEvents = UINT32_MAX;
1969 }
1970 }
1971 }
1972
1973 if (fRetEvents || fNoWait)
1974 {
1975 if (pThis->cUsers == 1)
1976 {
1977 rtSocketPollClearEventAndRestoreBlocking(pThis);
1978 pThis->hPollSet = NIL_RTPOLLSET;
1979 }
1980 ASMAtomicDecU32(&pThis->cUsers);
1981 }
1982
1983 return fRetEvents;
1984}
1985
1986
1987/**
1988 * Called after a WaitForMultipleObjects returned in order to check for pending
1989 * events and stop whatever actions that rtSocketPollStart() initiated.
1990 *
1991 * @returns Event mask or 0.
1992 *
1993 * @param hSocket The socket handle.
1994 * @param fEvents The events we're polling for.
1995 * @param fFinalEntry Set if this is the final entry for this handle
1996 * in this poll set. This can be used for dealing
1997 * with duplicate entries. Only keep in mind that
1998 * this method is called in reverse order, so the
1999 * first call will have this set (when the entire
2000 * set was processed).
2001 * @param fHarvestEvents Set if we should check for pending events.
2002 */
2003uint32_t rtSocketPollDone(RTSOCKET hSocket, uint32_t fEvents, bool fFinalEntry, bool fHarvestEvents)
2004{
2005 RTSOCKETINT *pThis = hSocket;
2006 AssertPtrReturn(pThis, 0);
2007 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, 0);
2008 Assert(pThis->cUsers > 0);
2009 Assert(pThis->hPollSet != NIL_RTPOLLSET);
2010
2011 /* Harvest events and clear the event mask for the next round of polling. */
2012 uint32_t fRetEvents = rtSocketPollCheck(pThis, fEvents);
2013 pThis->fPollEvts = 0;
2014
2015 /*
2016 * Save the write event if required.
2017 * It is only posted once and might get lost if the another source in the
2018 * pollset with a higher priority has pending events.
2019 */
2020 if ( !fHarvestEvents
2021 && fRetEvents)
2022 {
2023 pThis->fEventsSaved = fRetEvents;
2024 fRetEvents = 0;
2025 }
2026
2027 /* Make the socket blocking again and unlock the handle. */
2028 if (pThis->cUsers == 1)
2029 {
2030 rtSocketPollClearEventAndRestoreBlocking(pThis);
2031 pThis->hPollSet = NIL_RTPOLLSET;
2032 }
2033 ASMAtomicDecU32(&pThis->cUsers);
2034 return fRetEvents;
2035}
2036
2037#endif /* RT_OS_WINDOWS */
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette