VirtualBox

source: vbox/trunk/src/VBox/Runtime/r3/socket.cpp@ 43183

Last change on this file since 43183 was 43183, checked in by vboxsync, 13 years ago

Runtime breakage for OS/2

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 58.1 KB
Line 
1/* $Id: socket.cpp 43183 2012-09-05 06:32:57Z vboxsync $ */
2/** @file
3 * IPRT - Network Sockets.
4 */
5
6/*
7 * Copyright (C) 2006-2012 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.215389.xyz. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*******************************************************************************
29* Header Files *
30*******************************************************************************/
31#ifdef RT_OS_WINDOWS
32# include <winsock2.h>
33# include <ws2tcpip.h>
34#else /* !RT_OS_WINDOWS */
35# include <errno.h>
36# include <sys/stat.h>
37# include <sys/socket.h>
38# include <netinet/in.h>
39# include <netinet/tcp.h>
40# include <arpa/inet.h>
41# ifdef IPRT_WITH_TCPIP_V6
42# include <netinet6/in6.h>
43# endif
44# include <sys/un.h>
45# include <netdb.h>
46# include <unistd.h>
47# include <fcntl.h>
48# include <sys/uio.h>
49#endif /* !RT_OS_WINDOWS */
50#include <limits.h>
51
52#include "internal/iprt.h"
53#include <iprt/socket.h>
54
55#include <iprt/alloca.h>
56#include <iprt/asm.h>
57#include <iprt/assert.h>
58#include <iprt/ctype.h>
59#include <iprt/err.h>
60#include <iprt/mempool.h>
61#include <iprt/poll.h>
62#include <iprt/string.h>
63#include <iprt/thread.h>
64#include <iprt/time.h>
65#include <iprt/mem.h>
66#include <iprt/sg.h>
67#include <iprt/log.h>
68
69#include "internal/magics.h"
70#include "internal/socket.h"
71#include "internal/string.h"
72
73
74/*******************************************************************************
75* Defined Constants And Macros *
76*******************************************************************************/
77/* non-standard linux stuff (it seems). */
78#ifndef MSG_NOSIGNAL
79# define MSG_NOSIGNAL 0
80#endif
81
82/* Windows has different names for SHUT_XXX. */
83#ifndef SHUT_RDWR
84# ifdef SD_BOTH
85# define SHUT_RDWR SD_BOTH
86# else
87# define SHUT_RDWR 2
88# endif
89#endif
90#ifndef SHUT_WR
91# ifdef SD_SEND
92# define SHUT_WR SD_SEND
93# else
94# define SHUT_WR 1
95# endif
96#endif
97#ifndef SHUT_RD
98# ifdef SD_RECEIVE
99# define SHUT_RD SD_RECEIVE
100# else
101# define SHUT_RD 0
102# endif
103#endif
104
105/* fixup backlevel OSes. */
106#if defined(RT_OS_OS2) || defined(RT_OS_WINDOWS)
107# define socklen_t int
108#endif
109
110/** How many pending connection. */
111#define RTTCP_SERVER_BACKLOG 10
112
113
114/*******************************************************************************
115* Structures and Typedefs *
116*******************************************************************************/
117/**
118 * Socket handle data.
119 *
120 * This is mainly required for implementing RTPollSet on Windows.
121 */
122typedef struct RTSOCKETINT
123{
124 /** Magic number (RTSOCKET_MAGIC). */
125 uint32_t u32Magic;
126 /** Exclusive user count.
127 * This is used to prevent two threads from accessing the handle concurrently.
128 * It can be higher than 1 if this handle is reference multiple times in a
129 * polling set (Windows). */
130 uint32_t volatile cUsers;
131 /** The native socket handle. */
132 RTSOCKETNATIVE hNative;
133 /** Indicates whether the handle has been closed or not. */
134 bool volatile fClosed;
135 /** Indicates whether the socket is operating in blocking or non-blocking mode
136 * currently. */
137 bool fBlocking;
138#ifdef RT_OS_WINDOWS
139 /** The event semaphore we've associated with the socket handle.
140 * This is WSA_INVALID_EVENT if not done. */
141 WSAEVENT hEvent;
142 /** The pollset currently polling this socket. This is NIL if no one is
143 * polling. */
144 RTPOLLSET hPollSet;
145 /** The events we're polling for. */
146 uint32_t fPollEvts;
147 /** The events we're currently subscribing to with WSAEventSelect.
148 * This is ZERO if we're currently not subscribing to anything. */
149 uint32_t fSubscribedEvts;
150 /** Saved events which are only posted once. */
151 uint32_t fEventsSaved;
152#endif /* RT_OS_WINDOWS */
153} RTSOCKETINT;
154
155
156/**
157 * Address union used internally for things like getpeername and getsockname.
158 */
159typedef union RTSOCKADDRUNION
160{
161 struct sockaddr Addr;
162 struct sockaddr_in IPv4;
163#ifdef IPRT_WITH_TCPIP_V6
164 struct sockaddr_in6 IPv6;
165#endif
166} RTSOCKADDRUNION;
167
168
169/**
170 * Get the last error as an iprt status code.
171 *
172 * @returns IPRT status code.
173 */
174DECLINLINE(int) rtSocketError(void)
175{
176#ifdef RT_OS_WINDOWS
177 return RTErrConvertFromWin32(WSAGetLastError());
178#else
179 return RTErrConvertFromErrno(errno);
180#endif
181}
182
183
184/**
185 * Resets the last error.
186 */
187DECLINLINE(void) rtSocketErrorReset(void)
188{
189#ifdef RT_OS_WINDOWS
190 WSASetLastError(0);
191#else
192 errno = 0;
193#endif
194}
195
196
197/**
198 * Get the last resolver error as an iprt status code.
199 *
200 * @returns iprt status code.
201 */
202int rtSocketResolverError(void)
203{
204#ifdef RT_OS_WINDOWS
205 return RTErrConvertFromWin32(WSAGetLastError());
206#else
207 switch (h_errno)
208 {
209 case HOST_NOT_FOUND:
210 return VERR_NET_HOST_NOT_FOUND;
211 case NO_DATA:
212 return VERR_NET_ADDRESS_NOT_AVAILABLE;
213 case NO_RECOVERY:
214 return VERR_IO_GEN_FAILURE;
215 case TRY_AGAIN:
216 return VERR_TRY_AGAIN;
217
218 default:
219 return VERR_UNRESOLVED_ERROR;
220 }
221#endif
222}
223
224
225/**
226 * Converts from a native socket address to a generic IPRT network address.
227 *
228 * @returns IPRT status code.
229 * @param pSrc The source address.
230 * @param cbSrc The size of the source address.
231 * @param pAddr Where to return the generic IPRT network
232 * address.
233 */
234static int rtSocketNetAddrFromAddr(RTSOCKADDRUNION const *pSrc, size_t cbSrc, PRTNETADDR pAddr)
235{
236 /*
237 * Convert the address.
238 */
239 if ( cbSrc == sizeof(struct sockaddr_in)
240 && pSrc->Addr.sa_family == AF_INET)
241 {
242 RT_ZERO(*pAddr);
243 pAddr->enmType = RTNETADDRTYPE_IPV4;
244 pAddr->uPort = RT_N2H_U16(pSrc->IPv4.sin_port);
245 pAddr->uAddr.IPv4.u = pSrc->IPv4.sin_addr.s_addr;
246 }
247#ifdef IPRT_WITH_TCPIP_V6
248 else if ( cbSrc == sizeof(struct sockaddr_in6)
249 && pSrc->Addr.sa_family == AF_INET6)
250 {
251 RT_ZERO(*pAddr);
252 pAddr->enmType = RTNETADDRTYPE_IPV6;
253 pAddr->uPort = RT_N2H_U16(pSrc->IPv6.sin6_port);
254 pAddr->uAddr.IPv6.au32[0] = pSrc->IPv6.sin6_addr.s6_addr32[0];
255 pAddr->uAddr.IPv6.au32[1] = pSrc->IPv6.sin6_addr.s6_addr32[1];
256 pAddr->uAddr.IPv6.au32[2] = pSrc->IPv6.sin6_addr.s6_addr32[2];
257 pAddr->uAddr.IPv6.au32[3] = pSrc->IPv6.sin6_addr.s6_addr32[3];
258 }
259#endif
260 else
261 return VERR_NET_ADDRESS_FAMILY_NOT_SUPPORTED;
262 return VINF_SUCCESS;
263}
264
265
266/**
267 * Converts from a generic IPRT network address to a native socket address.
268 *
269 * @returns IPRT status code.
270 * @param pAddr Pointer to the generic IPRT network address.
271 * @param pDst The source address.
272 * @param cbSrc The size of the source address.
273 * @param pcbAddr Where to store the size of the returned address.
274 * Optional
275 */
276static int rtSocketAddrFromNetAddr(PCRTNETADDR pAddr, RTSOCKADDRUNION *pDst, size_t cbDst, int *pcbAddr)
277{
278 RT_BZERO(pDst, cbDst);
279 if ( pAddr->enmType == RTNETADDRTYPE_IPV4
280 && cbDst >= sizeof(struct sockaddr_in))
281 {
282 pDst->Addr.sa_family = AF_INET;
283 pDst->IPv4.sin_port = RT_H2N_U16(pAddr->uPort);
284 pDst->IPv4.sin_addr.s_addr = pAddr->uAddr.IPv4.u;
285 if (pcbAddr)
286 *pcbAddr = sizeof(pDst->IPv4);
287 }
288#ifdef IPRT_WITH_TCPIP_V6
289 else if ( pAddr->enmType == RTNETADDRTYPE_IPV6
290 && cbDst >= sizeof(struct sockaddr_in6))
291 {
292 pDst->Addr.sa_family = AF_INET6;
293 pDst->IPv6.sin6_port = RT_H2N_U16(pAddr->uPort);
294 pSrc->IPv6.sin6_addr.s6_addr32[0] = pAddr->uAddr.IPv6.au32[0];
295 pSrc->IPv6.sin6_addr.s6_addr32[1] = pAddr->uAddr.IPv6.au32[1];
296 pSrc->IPv6.sin6_addr.s6_addr32[2] = pAddr->uAddr.IPv6.au32[2];
297 pSrc->IPv6.sin6_addr.s6_addr32[3] = pAddr->uAddr.IPv6.au32[3];
298 if (pcbAddr)
299 *pcbAddr = sizeof(pDst->IPv6);
300 }
301#endif
302 else
303 return VERR_NET_ADDRESS_FAMILY_NOT_SUPPORTED;
304 return VINF_SUCCESS;
305}
306
307
308/**
309 * Tries to lock the socket for exclusive usage by the calling thread.
310 *
311 * Call rtSocketUnlock() to unlock.
312 *
313 * @returns @c true if locked, @c false if not.
314 * @param pThis The socket structure.
315 */
316DECLINLINE(bool) rtSocketTryLock(RTSOCKETINT *pThis)
317{
318 return ASMAtomicCmpXchgU32(&pThis->cUsers, 1, 0);
319}
320
321
322/**
323 * Unlocks the socket.
324 *
325 * @param pThis The socket structure.
326 */
327DECLINLINE(void) rtSocketUnlock(RTSOCKETINT *pThis)
328{
329 ASMAtomicCmpXchgU32(&pThis->cUsers, 0, 1);
330}
331
332
333/**
334 * The slow path of rtSocketSwitchBlockingMode that does the actual switching.
335 *
336 * @returns IPRT status code.
337 * @param pThis The socket structure.
338 * @param fBlocking The desired mode of operation.
339 * @remarks Do not call directly.
340 */
341static int rtSocketSwitchBlockingModeSlow(RTSOCKETINT *pThis, bool fBlocking)
342{
343#ifdef RT_OS_WINDOWS
344 u_long uBlocking = fBlocking ? 0 : 1;
345 if (ioctlsocket(pThis->hNative, FIONBIO, &uBlocking))
346 return rtSocketError();
347
348#else
349 int fFlags = fcntl(pThis->hNative, F_GETFL, 0);
350 if (fFlags == -1)
351 return rtSocketError();
352
353 if (fBlocking)
354 fFlags &= ~O_NONBLOCK;
355 else
356 fFlags |= O_NONBLOCK;
357 if (fcntl(pThis->hNative, F_SETFL, fFlags) == -1)
358 return rtSocketError();
359#endif
360
361 pThis->fBlocking = fBlocking;
362 return VINF_SUCCESS;
363}
364
365
366/**
367 * Switches the socket to the desired blocking mode if necessary.
368 *
369 * The socket must be locked.
370 *
371 * @returns IPRT status code.
372 * @param pThis The socket structure.
373 * @param fBlocking The desired mode of operation.
374 */
375DECLINLINE(int) rtSocketSwitchBlockingMode(RTSOCKETINT *pThis, bool fBlocking)
376{
377 if (pThis->fBlocking != fBlocking)
378 return rtSocketSwitchBlockingModeSlow(pThis, fBlocking);
379 return VINF_SUCCESS;
380}
381
382
383/**
384 * Creates an IPRT socket handle for a native one.
385 *
386 * @returns IPRT status code.
387 * @param ppSocket Where to return the IPRT socket handle.
388 * @param hNative The native handle.
389 */
390int rtSocketCreateForNative(RTSOCKETINT **ppSocket, RTSOCKETNATIVE hNative)
391{
392 RTSOCKETINT *pThis = (RTSOCKETINT *)RTMemPoolAlloc(RTMEMPOOL_DEFAULT, sizeof(*pThis));
393 if (!pThis)
394 return VERR_NO_MEMORY;
395 pThis->u32Magic = RTSOCKET_MAGIC;
396 pThis->cUsers = 0;
397 pThis->hNative = hNative;
398 pThis->fClosed = false;
399 pThis->fBlocking = true;
400#ifdef RT_OS_WINDOWS
401 pThis->hEvent = WSA_INVALID_EVENT;
402 pThis->hPollSet = NIL_RTPOLLSET;
403 pThis->fPollEvts = 0;
404 pThis->fSubscribedEvts = 0;
405#endif
406 *ppSocket = pThis;
407 return VINF_SUCCESS;
408}
409
410
411RTDECL(int) RTSocketFromNative(PRTSOCKET phSocket, RTHCINTPTR uNative)
412{
413 AssertReturn(uNative != NIL_RTSOCKETNATIVE, VERR_INVALID_PARAMETER);
414#ifndef RT_OS_WINDOWS
415 AssertReturn(uNative >= 0, VERR_INVALID_PARAMETER);
416#endif
417 AssertPtrReturn(phSocket, VERR_INVALID_POINTER);
418 return rtSocketCreateForNative(phSocket, uNative);
419}
420
421
422/**
423 * Wrapper around socket().
424 *
425 * @returns IPRT status code.
426 * @param phSocket Where to store the handle to the socket on
427 * success.
428 * @param iDomain The protocol family (PF_XXX).
429 * @param iType The socket type (SOCK_XXX).
430 * @param iProtocol Socket parameter, usually 0.
431 */
432int rtSocketCreate(PRTSOCKET phSocket, int iDomain, int iType, int iProtocol)
433{
434 /*
435 * Create the socket.
436 */
437 RTSOCKETNATIVE hNative = socket(iDomain, iType, iProtocol);
438 if (hNative == NIL_RTSOCKETNATIVE)
439 return rtSocketError();
440
441 /*
442 * Wrap it.
443 */
444 int rc = rtSocketCreateForNative(phSocket, hNative);
445 if (RT_FAILURE(rc))
446 {
447#ifdef RT_OS_WINDOWS
448 closesocket(hNative);
449#else
450 close(hNative);
451#endif
452 }
453 return rc;
454}
455
456
457RTDECL(uint32_t) RTSocketRetain(RTSOCKET hSocket)
458{
459 RTSOCKETINT *pThis = hSocket;
460 AssertPtrReturn(pThis, UINT32_MAX);
461 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, UINT32_MAX);
462 return RTMemPoolRetain(pThis);
463}
464
465
466/**
467 * Worker for RTSocketRelease and RTSocketClose.
468 *
469 * @returns IPRT status code.
470 * @param pThis The socket handle instance data.
471 * @param fDestroy Whether we're reaching ref count zero.
472 */
473static int rtSocketCloseIt(RTSOCKETINT *pThis, bool fDestroy)
474{
475 /*
476 * Invalidate the handle structure on destroy.
477 */
478 if (fDestroy)
479 {
480 Assert(ASMAtomicReadU32(&pThis->u32Magic) == RTSOCKET_MAGIC);
481 ASMAtomicWriteU32(&pThis->u32Magic, RTSOCKET_MAGIC_DEAD);
482 }
483
484 int rc = VINF_SUCCESS;
485 if (ASMAtomicCmpXchgBool(&pThis->fClosed, true, false))
486 {
487 /*
488 * Close the native handle.
489 */
490 RTSOCKETNATIVE hNative = pThis->hNative;
491 if (hNative != NIL_RTSOCKETNATIVE)
492 {
493 pThis->hNative = NIL_RTSOCKETNATIVE;
494
495#ifdef RT_OS_WINDOWS
496 if (closesocket(hNative))
497#else
498 if (close(hNative))
499#endif
500 {
501 rc = rtSocketError();
502#ifdef RT_OS_WINDOWS
503 AssertMsgFailed(("\"%s\": closesocket(%p) -> %Rrc\n", (uintptr_t)hNative, rc));
504#else
505 AssertMsgFailed(("\"%s\": close(%d) -> %Rrc\n", hNative, rc));
506#endif
507 }
508 }
509
510#ifdef RT_OS_WINDOWS
511 /*
512 * Close the event.
513 */
514 WSAEVENT hEvent = pThis->hEvent;
515 if (hEvent == WSA_INVALID_EVENT)
516 {
517 pThis->hEvent = WSA_INVALID_EVENT;
518 WSACloseEvent(hEvent);
519 }
520#endif
521 }
522
523 return rc;
524}
525
526
527RTDECL(uint32_t) RTSocketRelease(RTSOCKET hSocket)
528{
529 RTSOCKETINT *pThis = hSocket;
530 if (pThis == NIL_RTSOCKET)
531 return 0;
532 AssertPtrReturn(pThis, UINT32_MAX);
533 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, UINT32_MAX);
534
535 /* get the refcount without killing it... */
536 uint32_t cRefs = RTMemPoolRefCount(pThis);
537 AssertReturn(cRefs != UINT32_MAX, UINT32_MAX);
538 if (cRefs == 1)
539 rtSocketCloseIt(pThis, true);
540
541 return RTMemPoolRelease(RTMEMPOOL_DEFAULT, pThis);
542}
543
544
545RTDECL(int) RTSocketClose(RTSOCKET hSocket)
546{
547 RTSOCKETINT *pThis = hSocket;
548 if (pThis == NIL_RTSOCKET)
549 return VINF_SUCCESS;
550 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
551 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
552
553 uint32_t cRefs = RTMemPoolRefCount(pThis);
554 AssertReturn(cRefs != UINT32_MAX, UINT32_MAX);
555
556 int rc = rtSocketCloseIt(pThis, cRefs == 1);
557
558 RTMemPoolRelease(RTMEMPOOL_DEFAULT, pThis);
559 return rc;
560}
561
562
563RTDECL(RTHCUINTPTR) RTSocketToNative(RTSOCKET hSocket)
564{
565 RTSOCKETINT *pThis = hSocket;
566 AssertPtrReturn(pThis, RTHCUINTPTR_MAX);
567 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, RTHCUINTPTR_MAX);
568 return (RTHCUINTPTR)pThis->hNative;
569}
570
571
572RTDECL(int) RTSocketSetInheritance(RTSOCKET hSocket, bool fInheritable)
573{
574 RTSOCKETINT *pThis = hSocket;
575 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
576 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
577 AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
578
579 int rc = VINF_SUCCESS;
580#ifdef RT_OS_WINDOWS
581 if (!SetHandleInformation((HANDLE)pThis->hNative, HANDLE_FLAG_INHERIT, fInheritable ? HANDLE_FLAG_INHERIT : 0))
582 rc = RTErrConvertFromWin32(GetLastError());
583#else
584 if (fcntl(pThis->hNative, F_SETFD, fInheritable ? 0 : FD_CLOEXEC) < 0)
585 rc = RTErrConvertFromErrno(errno);
586#endif
587
588 return rc;
589}
590
591
592static bool rtSocketIsIPv4Numerical(const char *pszAddress, PRTNETADDRIPV4 pAddr)
593{
594
595 /* Empty address resolves to the INADDR_ANY address (good for bind). */
596 if (!pszAddress || !*pszAddress)
597 {
598 pAddr->u = INADDR_ANY;
599 return true;
600 }
601
602 /* Four quads? */
603 char *psz = (char *)pszAddress;
604 for (int i = 0; i < 4; i++)
605 {
606 uint8_t u8;
607 int rc = RTStrToUInt8Ex(psz, &psz, 0, &u8);
608 if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS)
609 return false;
610 if (*psz != (i < 3 ? '.' : '\0'))
611 return false;
612 psz++;
613
614 pAddr->au8[i] = u8; /* big endian */
615 }
616
617 return true;
618}
619
620RTDECL(int) RTSocketParseInetAddress(const char *pszAddress, unsigned uPort, PRTNETADDR pAddr)
621{
622 int rc;
623
624 /*
625 * Validate input.
626 */
627 AssertReturn(uPort > 0, VERR_INVALID_PARAMETER);
628 AssertPtrNullReturn(pszAddress, VERR_INVALID_POINTER);
629
630#ifdef RT_OS_WINDOWS
631 /*
632 * Initialize WinSock and check version.
633 */
634 WORD wVersionRequested = MAKEWORD(1, 1);
635 WSADATA wsaData;
636 rc = WSAStartup(wVersionRequested, &wsaData);
637 if (wsaData.wVersion != wVersionRequested)
638 {
639 AssertMsgFailed(("Wrong winsock version\n"));
640 return VERR_NOT_SUPPORTED;
641 }
642#endif
643
644 /*
645 * Resolve the address. Pretty crude at the moment, but we have to make
646 * sure to not ask the NT 4 gethostbyname about an IPv4 address as it may
647 * give a wrong answer.
648 */
649 /** @todo this only supports IPv4, and IPv6 support needs to be added.
650 * It probably needs to be converted to getaddrinfo(). */
651 RTNETADDRIPV4 IPv4Quad;
652 if (rtSocketIsIPv4Numerical(pszAddress, &IPv4Quad))
653 {
654 Log3(("rtSocketIsIPv4Numerical: %#x (%RTnaipv4)\n", pszAddress, IPv4Quad.u, IPv4Quad));
655 RT_ZERO(*pAddr);
656 pAddr->enmType = RTNETADDRTYPE_IPV4;
657 pAddr->uPort = uPort;
658 pAddr->uAddr.IPv4 = IPv4Quad;
659 return VINF_SUCCESS;
660 }
661
662 struct hostent *pHostEnt;
663 pHostEnt = gethostbyname(pszAddress);
664 if (!pHostEnt)
665 {
666 rc = rtSocketResolverError();
667 AssertMsgFailed(("Could not resolve '%s', rc=%Rrc\n", pszAddress, rc));
668 return rc;
669 }
670
671 if (pHostEnt->h_addrtype == AF_INET)
672 {
673 RT_ZERO(*pAddr);
674 pAddr->enmType = RTNETADDRTYPE_IPV4;
675 pAddr->uPort = uPort;
676 pAddr->uAddr.IPv4.u = ((struct in_addr *)pHostEnt->h_addr)->s_addr;
677 Log3(("gethostbyname: %s -> %#x (%RTnaipv4)\n", pszAddress, pAddr->uAddr.IPv4.u, pAddr->uAddr.IPv4));
678 }
679 else
680 return VERR_NET_ADDRESS_FAMILY_NOT_SUPPORTED;
681
682 return VINF_SUCCESS;
683}
684
685
686/*
687 * new function to allow ipv4 and ipv6 addresses to be resolved.
688 * breaks compatibility with windows before 2000
689 * will change when the new ipv6 struct will be added
690 * temporary solution
691 */
692RTDECL(int) RTSocketGetAddrInfo(const char *psz, char *pszResult, size_t *resultSize, PRTNETADDRTYPE pAddrType)
693{
694#if defined(RT_OS_OS2)
695 return VERR_NOT_SUPPORTED;
696#else
697 int rc = 0;
698 size_t resSize = 0;
699 uint8_t *pubDummy = NULL;
700
701 struct sockaddr_in *pgrSa = NULL;
702 struct sockaddr_in6 *pgrSa6 = NULL;
703
704 struct addrinfo grHints;
705 struct addrinfo *pgrResults = NULL, *pgrResult = NULL;
706
707 char szIpV4Address[16];
708 char szIpV6Address[40];
709 char szDummy[10];
710
711 char *pszIpV4Address = NULL, *pszIpV6Address = NULL;
712
713 memset(szIpV4Address, '\0', 16);
714 memset(szIpV6Address, '\0', 40);
715 memset(szDummy, '\0', 10);
716
717 memset(&grHints, 0, sizeof(struct addrinfo));
718
719 if (*resultSize < 16)
720 return VERR_NET_ADDRESS_NOT_AVAILABLE;
721
722 resSize = *resultSize;
723
724 grHints.ai_family = AF_UNSPEC;
725
726 if (*pAddrType == RTNETADDRTYPE_IPV6)
727 grHints.ai_family = AF_INET6;
728
729 if (*pAddrType == RTNETADDRTYPE_IPV4)
730 grHints.ai_family = AF_INET;
731
732 if (*pAddrType == RTNETADDRTYPE_INVALID || !pAddrType) // yes, it's been set before...
733 grHints.ai_family = AF_UNSPEC;
734
735 grHints.ai_socktype = 0;
736 grHints.ai_flags = 0;
737 grHints.ai_protocol = 0;
738
739#ifdef RT_OS_WINDOWS
740 /*
741 * Winsock2 init
742 */
743 // *FIXME* someone should check if we really need 2, 2 here
744 WORD wVersionRequested = MAKEWORD(2, 2);
745 WSADATA wsaData;
746
747 rc = WSAStartup(wVersionRequested, &wsaData);
748
749 if (wsaData.wVersion != wVersionRequested)
750 {
751 AssertMsgFailed(("Wrong winsock version\n"));
752 return VERR_NOT_SUPPORTED;
753 }
754#endif
755
756 rc = getaddrinfo(psz, "", &grHints, &pgrResults);
757
758 if (rc != 0)
759 return VERR_NET_ADDRESS_NOT_AVAILABLE;
760
761 // return data
762 // on multiple matches return only the first one
763
764 if (!pgrResults)
765 return VERR_NET_ADDRESS_NOT_AVAILABLE;
766
767 pgrResult = pgrResults->ai_next;
768
769 if (!pgrResult)
770 return VERR_NET_ADDRESS_NOT_AVAILABLE;
771
772 if (pgrResult->ai_family == AF_INET)
773 {
774 pgrSa = (sockaddr_in *)pgrResult->ai_addr;
775
776 pszIpV4Address = &szIpV4Address[0];
777
778 pubDummy = (uint8_t *)&pgrSa->sin_addr;
779
780 for (int i = 0; i < 4; i++)
781 {
782 memset(szDummy, '\0', 10);
783
784 size_t cb = RTStrPrintf(szDummy, 10, "%u", *pubDummy);
785
786 if (!cb || cb > 3 || cb < 1)
787 return VERR_NET_ADDRESS_NOT_AVAILABLE;
788
789 memcpy(pszIpV4Address, szDummy, cb);
790
791 pszIpV4Address = (pszIpV4Address + cb);
792
793 if (i < 3)
794 {
795 *pszIpV4Address = '.';
796 pszIpV4Address++;
797 }
798 pubDummy++;
799 }
800
801 pgrResult = NULL;
802 pgrSa = NULL;
803 pubDummy = NULL;
804 freeaddrinfo(pgrResults);
805
806 if (strlen(szIpV4Address) >= resSize)
807 {
808 memset(pszResult, 0, resSize);
809 *resultSize = strlen(szIpV4Address) + 1;
810 return VERR_BUFFER_OVERFLOW;
811 }
812 else
813 {
814 memcpy(pszResult, szIpV4Address, strlen(szIpV4Address));
815 *resultSize = strlen(szIpV4Address);
816 return VINF_SUCCESS;
817 }
818 }
819
820 if (pgrResult->ai_family == AF_INET6)
821 {
822 pgrSa6 = (sockaddr_in6 *) pgrResult->ai_addr;
823
824 pszIpV6Address = &szIpV6Address[0];
825
826 pubDummy = (uint8_t *) &pgrSa6->sin6_addr;
827
828 for (int i = 0; i < 16; i++)
829 {
830 memset(szDummy, '\0', 10);
831
832 size_t cb = RTStrPrintf(szDummy, 10, "%02x", *pubDummy);
833
834 if (cb != 2)
835 return VERR_NET_ADDRESS_NOT_AVAILABLE;
836
837 memcpy(pszIpV6Address, szDummy, cb);
838
839 pszIpV6Address = pszIpV6Address + cb;
840 pubDummy++;
841 }
842
843 pubDummy = NULL;
844 pgrSa6 = NULL;
845 pgrResult = NULL;
846 freeaddrinfo(pgrResults);
847
848 if (strlen(szIpV6Address) == 32)
849 {
850 if (strlen(szIpV6Address) + 8 >= resSize)
851 {
852 *resultSize = 41;
853 memset(pszResult, 0, resSize);
854 return VERR_BUFFER_OVERFLOW;
855 }
856 else
857 {
858 memset(pszResult, '\0', resSize);
859 rc = rtStrToIpAddr6Str(szIpV6Address, pszResult, resSize, NULL, 0, true);
860
861 if (rc != 0)
862 return VERR_NET_ADDRESS_NOT_AVAILABLE;
863
864 *resultSize = strlen(pszResult);
865
866 return VINF_SUCCESS;
867 }
868 }
869 else
870 {
871 return VERR_NET_ADDRESS_NOT_AVAILABLE;
872 }
873
874 } // AF_INET6
875 return VERR_NET_ADDRESS_NOT_AVAILABLE;
876#endif /* !RT_OS_OS2 */
877}
878
879
880RTDECL(int) RTSocketRead(RTSOCKET hSocket, void *pvBuffer, size_t cbBuffer, size_t *pcbRead)
881{
882 /*
883 * Validate input.
884 */
885 RTSOCKETINT *pThis = hSocket;
886 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
887 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
888 AssertReturn(cbBuffer > 0, VERR_INVALID_PARAMETER);
889 AssertPtr(pvBuffer);
890 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
891
892 int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
893 if (RT_FAILURE(rc))
894 return rc;
895
896 /*
897 * Read loop.
898 * If pcbRead is NULL we have to fill the entire buffer!
899 */
900 size_t cbRead = 0;
901 size_t cbToRead = cbBuffer;
902 for (;;)
903 {
904 rtSocketErrorReset();
905#ifdef RT_OS_WINDOWS
906 int cbNow = cbToRead >= INT_MAX/2 ? INT_MAX/2 : (int)cbToRead;
907#else
908 size_t cbNow = cbToRead;
909#endif
910 ssize_t cbBytesRead = recv(pThis->hNative, (char *)pvBuffer + cbRead, cbNow, MSG_NOSIGNAL);
911 if (cbBytesRead <= 0)
912 {
913 rc = rtSocketError();
914 Assert(RT_FAILURE_NP(rc) || cbBytesRead == 0);
915 if (RT_SUCCESS_NP(rc))
916 {
917 if (!pcbRead)
918 rc = VERR_NET_SHUTDOWN;
919 else
920 {
921 *pcbRead = 0;
922 rc = VINF_SUCCESS;
923 }
924 }
925 break;
926 }
927 if (pcbRead)
928 {
929 /* return partial data */
930 *pcbRead = cbBytesRead;
931 break;
932 }
933
934 /* read more? */
935 cbRead += cbBytesRead;
936 if (cbRead == cbBuffer)
937 break;
938
939 /* next */
940 cbToRead = cbBuffer - cbRead;
941 }
942
943 rtSocketUnlock(pThis);
944 return rc;
945}
946
947
948RTDECL(int) RTSocketReadFrom(RTSOCKET hSocket, void *pvBuffer, size_t cbBuffer, size_t *pcbRead, PRTNETADDR pSrcAddr)
949{
950 /*
951 * Validate input.
952 */
953 RTSOCKETINT *pThis = hSocket;
954 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
955 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
956 AssertReturn(cbBuffer > 0, VERR_INVALID_PARAMETER);
957 AssertPtr(pvBuffer);
958 AssertPtr(pcbRead);
959 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
960
961 int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
962 if (RT_FAILURE(rc))
963 return rc;
964
965 /*
966 * Read data.
967 */
968 size_t cbRead = 0;
969 size_t cbToRead = cbBuffer;
970 rtSocketErrorReset();
971 RTSOCKADDRUNION u;
972#ifdef RT_OS_WINDOWS
973 int cbNow = cbToRead >= INT_MAX/2 ? INT_MAX/2 : (int)cbToRead;
974 int cbAddr = sizeof(u);
975#else
976 size_t cbNow = cbToRead;
977 socklen_t cbAddr = sizeof(u);
978#endif
979 ssize_t cbBytesRead = recvfrom(pThis->hNative, (char *)pvBuffer + cbRead, cbNow, MSG_NOSIGNAL, &u.Addr, &cbAddr);
980 if (cbBytesRead <= 0)
981 {
982 rc = rtSocketError();
983 Assert(RT_FAILURE_NP(rc) || cbBytesRead == 0);
984 if (RT_SUCCESS_NP(rc))
985 {
986 *pcbRead = 0;
987 rc = VINF_SUCCESS;
988 }
989 }
990 else
991 {
992 if (pSrcAddr)
993 rc = rtSocketNetAddrFromAddr(&u, cbAddr, pSrcAddr);
994 *pcbRead = cbBytesRead;
995 }
996
997 rtSocketUnlock(pThis);
998 return rc;
999}
1000
1001
1002RTDECL(int) RTSocketWrite(RTSOCKET hSocket, const void *pvBuffer, size_t cbBuffer)
1003{
1004 /*
1005 * Validate input.
1006 */
1007 RTSOCKETINT *pThis = hSocket;
1008 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1009 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1010 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1011
1012 int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
1013 if (RT_FAILURE(rc))
1014 return rc;
1015
1016 /*
1017 * Try write all at once.
1018 */
1019#ifdef RT_OS_WINDOWS
1020 int cbNow = cbBuffer >= INT_MAX / 2 ? INT_MAX / 2 : (int)cbBuffer;
1021#else
1022 size_t cbNow = cbBuffer >= SSIZE_MAX ? SSIZE_MAX : cbBuffer;
1023#endif
1024 ssize_t cbWritten = send(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL);
1025 if (RT_LIKELY((size_t)cbWritten == cbBuffer && cbWritten >= 0))
1026 rc = VINF_SUCCESS;
1027 else if (cbWritten < 0)
1028 rc = rtSocketError();
1029 else
1030 {
1031 /*
1032 * Unfinished business, write the remainder of the request. Must ignore
1033 * VERR_INTERRUPTED here if we've managed to send something.
1034 */
1035 size_t cbSentSoFar = 0;
1036 for (;;)
1037 {
1038 /* advance */
1039 cbBuffer -= (size_t)cbWritten;
1040 if (!cbBuffer)
1041 break;
1042 cbSentSoFar += (size_t)cbWritten;
1043 pvBuffer = (char const *)pvBuffer + cbWritten;
1044
1045 /* send */
1046#ifdef RT_OS_WINDOWS
1047 cbNow = cbBuffer >= INT_MAX / 2 ? INT_MAX / 2 : (int)cbBuffer;
1048#else
1049 cbNow = cbBuffer >= SSIZE_MAX ? SSIZE_MAX : cbBuffer;
1050#endif
1051 cbWritten = send(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL);
1052 if (cbWritten >= 0)
1053 AssertMsg(cbBuffer >= (size_t)cbWritten, ("Wrote more than we requested!!! cbWritten=%zu cbBuffer=%zu rtSocketError()=%d\n",
1054 cbWritten, cbBuffer, rtSocketError()));
1055 else
1056 {
1057 rc = rtSocketError();
1058 if (rc != VERR_INTERNAL_ERROR || cbSentSoFar == 0)
1059 break;
1060 cbWritten = 0;
1061 rc = VINF_SUCCESS;
1062 }
1063 }
1064 }
1065
1066 rtSocketUnlock(pThis);
1067 return rc;
1068}
1069
1070
1071RTDECL(int) RTSocketWriteTo(RTSOCKET hSocket, const void *pvBuffer, size_t cbBuffer, PCRTNETADDR pAddr)
1072{
1073 /*
1074 * Validate input.
1075 */
1076 RTSOCKETINT *pThis = hSocket;
1077 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1078 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1079
1080 /* no locking since UDP reads may be done concurrently to writes, and
1081 * this is the normal use case of this code. */
1082
1083 int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
1084 if (RT_FAILURE(rc))
1085 return rc;
1086
1087 /* Figure out destination address. */
1088 struct sockaddr *pSA = NULL;
1089#ifdef RT_OS_WINDOWS
1090 int cbSA = 0;
1091#else
1092 socklen_t cbSA = 0;
1093#endif
1094 RTSOCKADDRUNION u;
1095 if (pAddr)
1096 {
1097 rc = rtSocketAddrFromNetAddr(pAddr, &u, sizeof(u), NULL);
1098 if (RT_FAILURE(rc))
1099 return rc;
1100 pSA = &u.Addr;
1101 cbSA = sizeof(u);
1102 }
1103
1104 /*
1105 * Must write all at once, otherwise it is a failure.
1106 */
1107#ifdef RT_OS_WINDOWS
1108 int cbNow = cbBuffer >= INT_MAX / 2 ? INT_MAX / 2 : (int)cbBuffer;
1109#else
1110 size_t cbNow = cbBuffer >= SSIZE_MAX ? SSIZE_MAX : cbBuffer;
1111#endif
1112 ssize_t cbWritten = sendto(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL, pSA, cbSA);
1113 if (RT_LIKELY((size_t)cbWritten == cbBuffer && cbWritten >= 0))
1114 rc = VINF_SUCCESS;
1115 else if (cbWritten < 0)
1116 rc = rtSocketError();
1117 else
1118 rc = VERR_TOO_MUCH_DATA;
1119
1120 rtSocketUnlock(pThis);
1121 return rc;
1122}
1123
1124
1125RTDECL(int) RTSocketSgWrite(RTSOCKET hSocket, PCRTSGBUF pSgBuf)
1126{
1127 /*
1128 * Validate input.
1129 */
1130 RTSOCKETINT *pThis = hSocket;
1131 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1132 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1133 AssertPtrReturn(pSgBuf, VERR_INVALID_PARAMETER);
1134 AssertReturn(pSgBuf->cSegs > 0, VERR_INVALID_PARAMETER);
1135 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1136
1137 int rc = rtSocketSwitchBlockingMode(pThis, true /* fBlocking */);
1138 if (RT_FAILURE(rc))
1139 return rc;
1140
1141 /*
1142 * Construct message descriptor (translate pSgBuf) and send it.
1143 */
1144 rc = VERR_NO_TMP_MEMORY;
1145#ifdef RT_OS_WINDOWS
1146 AssertCompileSize(WSABUF, sizeof(RTSGSEG));
1147 AssertCompileMemberSize(WSABUF, buf, RT_SIZEOFMEMB(RTSGSEG, pvSeg));
1148
1149 LPWSABUF paMsg = (LPWSABUF)RTMemTmpAllocZ(pSgBuf->cSegs * sizeof(WSABUF));
1150 if (paMsg)
1151 {
1152 for (unsigned i = 0; i < pSgBuf->cSegs; i++)
1153 {
1154 paMsg[i].buf = (char *)pSgBuf->paSegs[i].pvSeg;
1155 paMsg[i].len = (u_long)pSgBuf->paSegs[i].cbSeg;
1156 }
1157
1158 DWORD dwSent;
1159 int hrc = WSASend(pThis->hNative, paMsg, pSgBuf->cSegs, &dwSent,
1160 MSG_NOSIGNAL, NULL, NULL);
1161 if (!hrc)
1162 rc = VINF_SUCCESS;
1163/** @todo check for incomplete writes */
1164 else
1165 rc = rtSocketError();
1166
1167 RTMemTmpFree(paMsg);
1168 }
1169
1170#else /* !RT_OS_WINDOWS */
1171 AssertCompileSize(struct iovec, sizeof(RTSGSEG));
1172 AssertCompileMemberSize(struct iovec, iov_base, RT_SIZEOFMEMB(RTSGSEG, pvSeg));
1173 AssertCompileMemberSize(struct iovec, iov_len, RT_SIZEOFMEMB(RTSGSEG, cbSeg));
1174
1175 struct iovec *paMsg = (struct iovec *)RTMemTmpAllocZ(pSgBuf->cSegs * sizeof(struct iovec));
1176 if (paMsg)
1177 {
1178 for (unsigned i = 0; i < pSgBuf->cSegs; i++)
1179 {
1180 paMsg[i].iov_base = pSgBuf->paSegs[i].pvSeg;
1181 paMsg[i].iov_len = pSgBuf->paSegs[i].cbSeg;
1182 }
1183
1184 struct msghdr msgHdr;
1185 RT_ZERO(msgHdr);
1186 msgHdr.msg_iov = paMsg;
1187 msgHdr.msg_iovlen = pSgBuf->cSegs;
1188 ssize_t cbWritten = sendmsg(pThis->hNative, &msgHdr, MSG_NOSIGNAL);
1189 if (RT_LIKELY(cbWritten >= 0))
1190 rc = VINF_SUCCESS;
1191/** @todo check for incomplete writes */
1192 else
1193 rc = rtSocketError();
1194
1195 RTMemTmpFree(paMsg);
1196 }
1197#endif /* !RT_OS_WINDOWS */
1198
1199 rtSocketUnlock(pThis);
1200 return rc;
1201}
1202
1203
1204RTDECL(int) RTSocketSgWriteL(RTSOCKET hSocket, size_t cSegs, ...)
1205{
1206 va_list va;
1207 va_start(va, cSegs);
1208 int rc = RTSocketSgWriteLV(hSocket, cSegs, va);
1209 va_end(va);
1210 return rc;
1211}
1212
1213
1214RTDECL(int) RTSocketSgWriteLV(RTSOCKET hSocket, size_t cSegs, va_list va)
1215{
1216 /*
1217 * Set up a S/G segment array + buffer on the stack and pass it
1218 * on to RTSocketSgWrite.
1219 */
1220 Assert(cSegs <= 16);
1221 PRTSGSEG paSegs = (PRTSGSEG)alloca(cSegs * sizeof(RTSGSEG));
1222 AssertReturn(paSegs, VERR_NO_TMP_MEMORY);
1223 for (size_t i = 0; i < cSegs; i++)
1224 {
1225 paSegs[i].pvSeg = va_arg(va, void *);
1226 paSegs[i].cbSeg = va_arg(va, size_t);
1227 }
1228
1229 RTSGBUF SgBuf;
1230 RTSgBufInit(&SgBuf, paSegs, cSegs);
1231 return RTSocketSgWrite(hSocket, &SgBuf);
1232}
1233
1234
1235RTDECL(int) RTSocketReadNB(RTSOCKET hSocket, void *pvBuffer, size_t cbBuffer, size_t *pcbRead)
1236{
1237 /*
1238 * Validate input.
1239 */
1240 RTSOCKETINT *pThis = hSocket;
1241 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1242 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1243 AssertReturn(cbBuffer > 0, VERR_INVALID_PARAMETER);
1244 AssertPtr(pvBuffer);
1245 AssertPtrReturn(pcbRead, VERR_INVALID_PARAMETER);
1246 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1247
1248 int rc = rtSocketSwitchBlockingMode(pThis, false /* fBlocking */);
1249 if (RT_FAILURE(rc))
1250 return rc;
1251
1252 rtSocketErrorReset();
1253#ifdef RT_OS_WINDOWS
1254 int cbNow = cbBuffer >= INT_MAX/2 ? INT_MAX/2 : (int)cbBuffer;
1255
1256 int cbRead = recv(pThis->hNative, (char *)pvBuffer, cbNow, MSG_NOSIGNAL);
1257 if (cbRead >= 0)
1258 {
1259 *pcbRead = cbRead;
1260 rc = VINF_SUCCESS;
1261 }
1262 else
1263 rc = rtSocketError();
1264
1265 if (rc == VERR_TRY_AGAIN)
1266 rc = VINF_TRY_AGAIN;
1267#else
1268 ssize_t cbRead = recv(pThis->hNative, pvBuffer, cbBuffer, MSG_NOSIGNAL);
1269 if (cbRead >= 0)
1270 *pcbRead = cbRead;
1271 else if (errno == EAGAIN)
1272 {
1273 *pcbRead = 0;
1274 rc = VINF_TRY_AGAIN;
1275 }
1276 else
1277 rc = rtSocketError();
1278#endif
1279
1280 rtSocketUnlock(pThis);
1281 return rc;
1282}
1283
1284
1285RTDECL(int) RTSocketWriteNB(RTSOCKET hSocket, const void *pvBuffer, size_t cbBuffer, size_t *pcbWritten)
1286{
1287 /*
1288 * Validate input.
1289 */
1290 RTSOCKETINT *pThis = hSocket;
1291 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1292 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1293 AssertPtrReturn(pcbWritten, VERR_INVALID_PARAMETER);
1294 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1295
1296 int rc = rtSocketSwitchBlockingMode(pThis, false /* fBlocking */);
1297 if (RT_FAILURE(rc))
1298 return rc;
1299
1300 rtSocketErrorReset();
1301#ifdef RT_OS_WINDOWS
1302 int cbNow = RT_MIN((int)cbBuffer, INT_MAX/2);
1303
1304 int cbWritten = send(pThis->hNative, (const char *)pvBuffer, cbNow, MSG_NOSIGNAL);
1305
1306 if (cbWritten >= 0)
1307 {
1308 *pcbWritten = cbWritten;
1309 rc = VINF_SUCCESS;
1310 }
1311 else
1312 rc = rtSocketError();
1313
1314 if (rc == VERR_TRY_AGAIN)
1315 rc = VINF_TRY_AGAIN;
1316#else
1317 ssize_t cbWritten = send(pThis->hNative, pvBuffer, cbBuffer, MSG_NOSIGNAL);
1318 if (cbWritten >= 0)
1319 *pcbWritten = cbWritten;
1320 else if (errno == EAGAIN)
1321 {
1322 *pcbWritten = 0;
1323 rc = VINF_TRY_AGAIN;
1324 }
1325 else
1326 rc = rtSocketError();
1327#endif
1328
1329 rtSocketUnlock(pThis);
1330 return rc;
1331}
1332
1333
1334RTDECL(int) RTSocketSgWriteNB(RTSOCKET hSocket, PCRTSGBUF pSgBuf, size_t *pcbWritten)
1335{
1336 /*
1337 * Validate input.
1338 */
1339 RTSOCKETINT *pThis = hSocket;
1340 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1341 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1342 AssertPtrReturn(pSgBuf, VERR_INVALID_PARAMETER);
1343 AssertPtrReturn(pcbWritten, VERR_INVALID_PARAMETER);
1344 AssertReturn(pSgBuf->cSegs > 0, VERR_INVALID_PARAMETER);
1345 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1346
1347 int rc = rtSocketSwitchBlockingMode(pThis, false /* fBlocking */);
1348 if (RT_FAILURE(rc))
1349 return rc;
1350
1351 unsigned cSegsToSend = 0;
1352 rc = VERR_NO_TMP_MEMORY;
1353#ifdef RT_OS_WINDOWS
1354 LPWSABUF paMsg = NULL;
1355
1356 RTSgBufMapToNative(paMsg, pSgBuf, WSABUF, buf, char *, len, u_long, cSegsToSend);
1357 if (paMsg)
1358 {
1359 DWORD dwSent = 0;
1360 int hrc = WSASend(pThis->hNative, paMsg, cSegsToSend, &dwSent,
1361 MSG_NOSIGNAL, NULL, NULL);
1362 if (!hrc)
1363 rc = VINF_SUCCESS;
1364 else
1365 rc = rtSocketError();
1366
1367 *pcbWritten = dwSent;
1368
1369 RTMemTmpFree(paMsg);
1370 }
1371
1372#else /* !RT_OS_WINDOWS */
1373 struct iovec *paMsg = NULL;
1374
1375 RTSgBufMapToNative(paMsg, pSgBuf, struct iovec, iov_base, void *, iov_len, size_t, cSegsToSend);
1376 if (paMsg)
1377 {
1378 struct msghdr msgHdr;
1379 RT_ZERO(msgHdr);
1380 msgHdr.msg_iov = paMsg;
1381 msgHdr.msg_iovlen = cSegsToSend;
1382 ssize_t cbWritten = sendmsg(pThis->hNative, &msgHdr, MSG_NOSIGNAL);
1383 if (RT_LIKELY(cbWritten >= 0))
1384 {
1385 rc = VINF_SUCCESS;
1386 *pcbWritten = cbWritten;
1387 }
1388 else
1389 rc = rtSocketError();
1390
1391 RTMemTmpFree(paMsg);
1392 }
1393#endif /* !RT_OS_WINDOWS */
1394
1395 rtSocketUnlock(pThis);
1396 return rc;
1397}
1398
1399
1400RTDECL(int) RTSocketSgWriteLNB(RTSOCKET hSocket, size_t cSegs, size_t *pcbWritten, ...)
1401{
1402 va_list va;
1403 va_start(va, pcbWritten);
1404 int rc = RTSocketSgWriteLVNB(hSocket, cSegs, pcbWritten, va);
1405 va_end(va);
1406 return rc;
1407}
1408
1409
1410RTDECL(int) RTSocketSgWriteLVNB(RTSOCKET hSocket, size_t cSegs, size_t *pcbWritten, va_list va)
1411{
1412 /*
1413 * Set up a S/G segment array + buffer on the stack and pass it
1414 * on to RTSocketSgWrite.
1415 */
1416 Assert(cSegs <= 16);
1417 PRTSGSEG paSegs = (PRTSGSEG)alloca(cSegs * sizeof(RTSGSEG));
1418 AssertReturn(paSegs, VERR_NO_TMP_MEMORY);
1419 for (size_t i = 0; i < cSegs; i++)
1420 {
1421 paSegs[i].pvSeg = va_arg(va, void *);
1422 paSegs[i].cbSeg = va_arg(va, size_t);
1423 }
1424
1425 RTSGBUF SgBuf;
1426 RTSgBufInit(&SgBuf, paSegs, cSegs);
1427 return RTSocketSgWriteNB(hSocket, &SgBuf, pcbWritten);
1428}
1429
1430
1431RTDECL(int) RTSocketSelectOne(RTSOCKET hSocket, RTMSINTERVAL cMillies)
1432{
1433 /*
1434 * Validate input.
1435 */
1436 RTSOCKETINT *pThis = hSocket;
1437 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1438 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1439 AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
1440 int const fdMax = (int)pThis->hNative + 1;
1441 AssertReturn(fdMax - 1 == pThis->hNative, VERR_INTERNAL_ERROR_5);
1442
1443 /*
1444 * Set up the file descriptor sets and do the select.
1445 */
1446 fd_set fdsetR;
1447 FD_ZERO(&fdsetR);
1448 FD_SET(pThis->hNative, &fdsetR);
1449
1450 fd_set fdsetE = fdsetR;
1451
1452 int rc;
1453 if (cMillies == RT_INDEFINITE_WAIT)
1454 rc = select(fdMax, &fdsetR, NULL, &fdsetE, NULL);
1455 else
1456 {
1457 struct timeval timeout;
1458 timeout.tv_sec = cMillies / 1000;
1459 timeout.tv_usec = (cMillies % 1000) * 1000;
1460 rc = select(fdMax, &fdsetR, NULL, &fdsetE, &timeout);
1461 }
1462 if (rc > 0)
1463 rc = VINF_SUCCESS;
1464 else if (rc == 0)
1465 rc = VERR_TIMEOUT;
1466 else
1467 rc = rtSocketError();
1468
1469 return rc;
1470}
1471
1472
1473RTDECL(int) RTSocketSelectOneEx(RTSOCKET hSocket, uint32_t fEvents, uint32_t *pfEvents,
1474 RTMSINTERVAL cMillies)
1475{
1476 /*
1477 * Validate input.
1478 */
1479 RTSOCKETINT *pThis = hSocket;
1480 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1481 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1482 AssertPtrReturn(pfEvents, VERR_INVALID_PARAMETER);
1483 AssertReturn(!(fEvents & ~RTSOCKET_EVT_VALID_MASK), VERR_INVALID_PARAMETER);
1484 AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
1485 int const fdMax = (int)pThis->hNative + 1;
1486 AssertReturn(fdMax - 1 == pThis->hNative, VERR_INTERNAL_ERROR_5);
1487
1488 *pfEvents = 0;
1489
1490 /*
1491 * Set up the file descriptor sets and do the select.
1492 */
1493 fd_set fdsetR;
1494 fd_set fdsetW;
1495 fd_set fdsetE;
1496 FD_ZERO(&fdsetR);
1497 FD_ZERO(&fdsetW);
1498 FD_ZERO(&fdsetE);
1499
1500 if (fEvents & RTSOCKET_EVT_READ)
1501 FD_SET(pThis->hNative, &fdsetR);
1502 if (fEvents & RTSOCKET_EVT_WRITE)
1503 FD_SET(pThis->hNative, &fdsetW);
1504 if (fEvents & RTSOCKET_EVT_ERROR)
1505 FD_SET(pThis->hNative, &fdsetE);
1506
1507 int rc;
1508 if (cMillies == RT_INDEFINITE_WAIT)
1509 rc = select(fdMax, &fdsetR, &fdsetW, &fdsetE, NULL);
1510 else
1511 {
1512 struct timeval timeout;
1513 timeout.tv_sec = cMillies / 1000;
1514 timeout.tv_usec = (cMillies % 1000) * 1000;
1515 rc = select(fdMax, &fdsetR, &fdsetW, &fdsetE, &timeout);
1516 }
1517 if (rc > 0)
1518 {
1519 if (FD_ISSET(pThis->hNative, &fdsetR))
1520 *pfEvents |= RTSOCKET_EVT_READ;
1521 if (FD_ISSET(pThis->hNative, &fdsetW))
1522 *pfEvents |= RTSOCKET_EVT_WRITE;
1523 if (FD_ISSET(pThis->hNative, &fdsetE))
1524 *pfEvents |= RTSOCKET_EVT_ERROR;
1525
1526 rc = VINF_SUCCESS;
1527 }
1528 else if (rc == 0)
1529 rc = VERR_TIMEOUT;
1530 else
1531 rc = rtSocketError();
1532
1533 return rc;
1534}
1535
1536
1537RTDECL(int) RTSocketShutdown(RTSOCKET hSocket, bool fRead, bool fWrite)
1538{
1539 /*
1540 * Validate input, don't lock it because we might want to interrupt a call
1541 * active on a different thread.
1542 */
1543 RTSOCKETINT *pThis = hSocket;
1544 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1545 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1546 AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
1547 AssertReturn(fRead || fWrite, VERR_INVALID_PARAMETER);
1548
1549 /*
1550 * Do the job.
1551 */
1552 int rc = VINF_SUCCESS;
1553 int fHow;
1554 if (fRead && fWrite)
1555 fHow = SHUT_RDWR;
1556 else if (fRead)
1557 fHow = SHUT_RD;
1558 else
1559 fHow = SHUT_WR;
1560 if (shutdown(pThis->hNative, fHow) == -1)
1561 rc = rtSocketError();
1562
1563 return rc;
1564}
1565
1566
1567RTDECL(int) RTSocketGetLocalAddress(RTSOCKET hSocket, PRTNETADDR pAddr)
1568{
1569 /*
1570 * Validate input.
1571 */
1572 RTSOCKETINT *pThis = hSocket;
1573 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1574 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1575 AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
1576
1577 /*
1578 * Get the address and convert it.
1579 */
1580 int rc;
1581 RTSOCKADDRUNION u;
1582#ifdef RT_OS_WINDOWS
1583 int cbAddr = sizeof(u);
1584#else
1585 socklen_t cbAddr = sizeof(u);
1586#endif
1587 RT_ZERO(u);
1588 if (getsockname(pThis->hNative, &u.Addr, &cbAddr) == 0)
1589 rc = rtSocketNetAddrFromAddr(&u, cbAddr, pAddr);
1590 else
1591 rc = rtSocketError();
1592
1593 return rc;
1594}
1595
1596
1597RTDECL(int) RTSocketGetPeerAddress(RTSOCKET hSocket, PRTNETADDR pAddr)
1598{
1599 /*
1600 * Validate input.
1601 */
1602 RTSOCKETINT *pThis = hSocket;
1603 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1604 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1605 AssertReturn(RTMemPoolRefCount(pThis) >= (pThis->cUsers ? 2U : 1U), VERR_CALLER_NO_REFERENCE);
1606
1607 /*
1608 * Get the address and convert it.
1609 */
1610 int rc;
1611 RTSOCKADDRUNION u;
1612#ifdef RT_OS_WINDOWS
1613 int cbAddr = sizeof(u);
1614#else
1615 socklen_t cbAddr = sizeof(u);
1616#endif
1617 RT_ZERO(u);
1618 if (getpeername(pThis->hNative, &u.Addr, &cbAddr) == 0)
1619 rc = rtSocketNetAddrFromAddr(&u, cbAddr, pAddr);
1620 else
1621 rc = rtSocketError();
1622
1623 return rc;
1624}
1625
1626
1627
1628/**
1629 * Wrapper around bind.
1630 *
1631 * @returns IPRT status code.
1632 * @param hSocket The socket handle.
1633 * @param pAddr The address to bind to.
1634 */
1635int rtSocketBind(RTSOCKET hSocket, PCRTNETADDR pAddr)
1636{
1637 /*
1638 * Validate input.
1639 */
1640 RTSOCKETINT *pThis = hSocket;
1641 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1642 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1643 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1644
1645 RTSOCKADDRUNION u;
1646 int cbAddr;
1647 int rc = rtSocketAddrFromNetAddr(pAddr, &u, sizeof(u), &cbAddr);
1648 if (RT_SUCCESS(rc))
1649 {
1650 if (bind(pThis->hNative, &u.Addr, cbAddr) != 0)
1651 rc = rtSocketError();
1652 }
1653
1654 rtSocketUnlock(pThis);
1655 return rc;
1656}
1657
1658
1659/**
1660 * Wrapper around listen.
1661 *
1662 * @returns IPRT status code.
1663 * @param hSocket The socket handle.
1664 * @param cMaxPending The max number of pending connections.
1665 */
1666int rtSocketListen(RTSOCKET hSocket, int cMaxPending)
1667{
1668 /*
1669 * Validate input.
1670 */
1671 RTSOCKETINT *pThis = hSocket;
1672 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1673 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1674 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1675
1676 int rc = VINF_SUCCESS;
1677 if (listen(pThis->hNative, cMaxPending) != 0)
1678 rc = rtSocketError();
1679
1680 rtSocketUnlock(pThis);
1681 return rc;
1682}
1683
1684
1685/**
1686 * Wrapper around accept.
1687 *
1688 * @returns IPRT status code.
1689 * @param hSocket The socket handle.
1690 * @param phClient Where to return the client socket handle on
1691 * success.
1692 * @param pAddr Where to return the client address.
1693 * @param pcbAddr On input this gives the size buffer size of what
1694 * @a pAddr point to. On return this contains the
1695 * size of what's stored at @a pAddr.
1696 */
1697int rtSocketAccept(RTSOCKET hSocket, PRTSOCKET phClient, struct sockaddr *pAddr, size_t *pcbAddr)
1698{
1699 /*
1700 * Validate input.
1701 * Only lock the socket temporarily while we get the native handle, so that
1702 * we can safely shutdown and destroy the socket from a different thread.
1703 */
1704 RTSOCKETINT *pThis = hSocket;
1705 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1706 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1707 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1708
1709 /*
1710 * Call accept().
1711 */
1712 rtSocketErrorReset();
1713 int rc = VINF_SUCCESS;
1714#ifdef RT_OS_WINDOWS
1715 int cbAddr = (int)*pcbAddr;
1716#else
1717 socklen_t cbAddr = *pcbAddr;
1718#endif
1719 RTSOCKETNATIVE hNativeClient = accept(pThis->hNative, pAddr, &cbAddr);
1720 if (hNativeClient != NIL_RTSOCKETNATIVE)
1721 {
1722 *pcbAddr = cbAddr;
1723
1724 /*
1725 * Wrap the client socket.
1726 */
1727 rc = rtSocketCreateForNative(phClient, hNativeClient);
1728 if (RT_FAILURE(rc))
1729 {
1730#ifdef RT_OS_WINDOWS
1731 closesocket(hNativeClient);
1732#else
1733 close(hNativeClient);
1734#endif
1735 }
1736 }
1737 else
1738 rc = rtSocketError();
1739
1740 rtSocketUnlock(pThis);
1741 return rc;
1742}
1743
1744
1745/**
1746 * Wrapper around connect.
1747 *
1748 * @returns IPRT status code.
1749 * @param hSocket The socket handle.
1750 * @param pAddr The socket address to connect to.
1751 */
1752int rtSocketConnect(RTSOCKET hSocket, PCRTNETADDR pAddr)
1753{
1754 /*
1755 * Validate input.
1756 */
1757 RTSOCKETINT *pThis = hSocket;
1758 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1759 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1760 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1761
1762 RTSOCKADDRUNION u;
1763 int cbAddr;
1764 int rc = rtSocketAddrFromNetAddr(pAddr, &u, sizeof(u), &cbAddr);
1765 if (RT_SUCCESS(rc))
1766 {
1767 if (connect(pThis->hNative, &u.Addr, cbAddr) != 0)
1768 rc = rtSocketError();
1769 }
1770
1771 rtSocketUnlock(pThis);
1772 return rc;
1773}
1774
1775
1776/**
1777 * Wrapper around setsockopt.
1778 *
1779 * @returns IPRT status code.
1780 * @param hSocket The socket handle.
1781 * @param iLevel The protocol level, e.g. IPPORTO_TCP.
1782 * @param iOption The option, e.g. TCP_NODELAY.
1783 * @param pvValue The value buffer.
1784 * @param cbValue The size of the value pointed to by pvValue.
1785 */
1786int rtSocketSetOpt(RTSOCKET hSocket, int iLevel, int iOption, void const *pvValue, int cbValue)
1787{
1788 /*
1789 * Validate input.
1790 */
1791 RTSOCKETINT *pThis = hSocket;
1792 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1793 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1794 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1795
1796 int rc = VINF_SUCCESS;
1797 if (setsockopt(pThis->hNative, iLevel, iOption, (const char *)pvValue, cbValue) != 0)
1798 rc = rtSocketError();
1799
1800 rtSocketUnlock(pThis);
1801 return rc;
1802}
1803
1804#ifdef RT_OS_WINDOWS
1805
1806/**
1807 * Internal RTPollSetAdd helper that returns the handle that should be added to
1808 * the pollset.
1809 *
1810 * @returns Valid handle on success, INVALID_HANDLE_VALUE on failure.
1811 * @param hSocket The socket handle.
1812 * @param fEvents The events we're polling for.
1813 * @param ph where to put the primary handle.
1814 */
1815int rtSocketPollGetHandle(RTSOCKET hSocket, uint32_t fEvents, PHANDLE ph)
1816{
1817 RTSOCKETINT *pThis = hSocket;
1818 AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
1819 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, VERR_INVALID_HANDLE);
1820 AssertReturn(rtSocketTryLock(pThis), VERR_CONCURRENT_ACCESS);
1821
1822 int rc = VINF_SUCCESS;
1823 if (pThis->hEvent != WSA_INVALID_EVENT)
1824 *ph = pThis->hEvent;
1825 else
1826 {
1827 *ph = pThis->hEvent = WSACreateEvent();
1828 if (pThis->hEvent == WSA_INVALID_EVENT)
1829 rc = rtSocketError();
1830 }
1831
1832 rtSocketUnlock(pThis);
1833 return rc;
1834}
1835
1836
1837/**
1838 * Undos the harm done by WSAEventSelect.
1839 *
1840 * @returns IPRT status code.
1841 * @param pThis The socket handle.
1842 */
1843static int rtSocketPollClearEventAndRestoreBlocking(RTSOCKETINT *pThis)
1844{
1845 int rc = VINF_SUCCESS;
1846 if (pThis->fSubscribedEvts)
1847 {
1848 if (WSAEventSelect(pThis->hNative, WSA_INVALID_EVENT, 0) == 0)
1849 {
1850 pThis->fSubscribedEvts = 0;
1851
1852 /*
1853 * Switch back to blocking mode if that was the state before the
1854 * operation.
1855 */
1856 if (pThis->fBlocking)
1857 {
1858 u_long fNonBlocking = 0;
1859 int rc2 = ioctlsocket(pThis->hNative, FIONBIO, &fNonBlocking);
1860 if (rc2 != 0)
1861 {
1862 rc = rtSocketError();
1863 AssertMsgFailed(("%Rrc; rc2=%d\n", rc, rc2));
1864 }
1865 }
1866 }
1867 else
1868 {
1869 rc = rtSocketError();
1870 AssertMsgFailed(("%Rrc\n", rc));
1871 }
1872 }
1873 return rc;
1874}
1875
1876
1877/**
1878 * Updates the mask of events we're subscribing to.
1879 *
1880 * @returns IPRT status code.
1881 * @param pThis The socket handle.
1882 * @param fEvents The events we want to subscribe to.
1883 */
1884static int rtSocketPollUpdateEvents(RTSOCKETINT *pThis, uint32_t fEvents)
1885{
1886 LONG fNetworkEvents = 0;
1887 if (fEvents & RTPOLL_EVT_READ)
1888 fNetworkEvents |= FD_READ;
1889 if (fEvents & RTPOLL_EVT_WRITE)
1890 fNetworkEvents |= FD_WRITE;
1891 if (fEvents & RTPOLL_EVT_ERROR)
1892 fNetworkEvents |= FD_CLOSE;
1893 LogFlowFunc(("fNetworkEvents=%#x\n", fNetworkEvents));
1894 if (WSAEventSelect(pThis->hNative, pThis->hEvent, fNetworkEvents) == 0)
1895 {
1896 pThis->fSubscribedEvts = fEvents;
1897 return VINF_SUCCESS;
1898 }
1899
1900 int rc = rtSocketError();
1901 AssertMsgFailed(("fNetworkEvents=%#x rc=%Rrc\n", fNetworkEvents, rtSocketError()));
1902 return rc;
1903}
1904
1905
1906/**
1907 * Checks for pending events.
1908 *
1909 * @returns Event mask or 0.
1910 * @param pThis The socket handle.
1911 * @param fEvents The desired events.
1912 */
1913static uint32_t rtSocketPollCheck(RTSOCKETINT *pThis, uint32_t fEvents)
1914{
1915 int rc = VINF_SUCCESS;
1916 uint32_t fRetEvents = 0;
1917
1918 LogFlowFunc(("pThis=%#p fEvents=%#x\n", pThis, fEvents));
1919
1920 /* Make sure WSAEnumNetworkEvents returns what we want. */
1921 if ((pThis->fSubscribedEvts & fEvents) != fEvents)
1922 rc = rtSocketPollUpdateEvents(pThis, pThis->fSubscribedEvts | fEvents);
1923
1924 /* Get the event mask, ASSUMES that WSAEnumNetworkEvents doesn't clear stuff. */
1925 WSANETWORKEVENTS NetEvts;
1926 RT_ZERO(NetEvts);
1927 if (WSAEnumNetworkEvents(pThis->hNative, pThis->hEvent, &NetEvts) == 0)
1928 {
1929 if ( (NetEvts.lNetworkEvents & FD_READ)
1930 && (fEvents & RTPOLL_EVT_READ)
1931 && NetEvts.iErrorCode[FD_READ_BIT] == 0)
1932 fRetEvents |= RTPOLL_EVT_READ;
1933
1934 if ( (NetEvts.lNetworkEvents & FD_WRITE)
1935 && (fEvents & RTPOLL_EVT_WRITE)
1936 && NetEvts.iErrorCode[FD_WRITE_BIT] == 0)
1937 fRetEvents |= RTPOLL_EVT_WRITE;
1938
1939 if (fEvents & RTPOLL_EVT_ERROR)
1940 {
1941 if (NetEvts.lNetworkEvents & FD_CLOSE)
1942 fRetEvents |= RTPOLL_EVT_ERROR;
1943 else
1944 for (uint32_t i = 0; i < FD_MAX_EVENTS; i++)
1945 if ( (NetEvts.lNetworkEvents & (1L << i))
1946 && NetEvts.iErrorCode[i] != 0)
1947 fRetEvents |= RTPOLL_EVT_ERROR;
1948 }
1949 }
1950 else
1951 rc = rtSocketError();
1952
1953 /* Fall back on select if we hit an error above. */
1954 if (RT_FAILURE(rc))
1955 {
1956 /** @todo */
1957 }
1958
1959 LogFlowFunc(("fRetEvents=%#x\n", fRetEvents));
1960 return fRetEvents;
1961}
1962
1963
1964/**
1965 * Internal RTPoll helper that polls the socket handle and, if @a fNoWait is
1966 * clear, starts whatever actions we've got running during the poll call.
1967 *
1968 * @returns 0 if no pending events, actions initiated if @a fNoWait is clear.
1969 * Event mask (in @a fEvents) and no actions if the handle is ready
1970 * already.
1971 * UINT32_MAX (asserted) if the socket handle is busy in I/O or a
1972 * different poll set.
1973 *
1974 * @param hSocket The socket handle.
1975 * @param hPollSet The poll set handle (for access checks).
1976 * @param fEvents The events we're polling for.
1977 * @param fFinalEntry Set if this is the final entry for this handle
1978 * in this poll set. This can be used for dealing
1979 * with duplicate entries.
1980 * @param fNoWait Set if it's a zero-wait poll call. Clear if
1981 * we'll wait for an event to occur.
1982 *
1983 * @remarks There is a potential race wrt duplicate handles when @a fNoWait is
1984 * @c true, we don't currently care about that oddity...
1985 */
1986uint32_t rtSocketPollStart(RTSOCKET hSocket, RTPOLLSET hPollSet, uint32_t fEvents, bool fFinalEntry, bool fNoWait)
1987{
1988 RTSOCKETINT *pThis = hSocket;
1989 AssertPtrReturn(pThis, UINT32_MAX);
1990 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, UINT32_MAX);
1991 if (rtSocketTryLock(pThis))
1992 pThis->hPollSet = hPollSet;
1993 else
1994 {
1995 AssertReturn(pThis->hPollSet == hPollSet, UINT32_MAX);
1996 ASMAtomicIncU32(&pThis->cUsers);
1997 }
1998
1999 /* (rtSocketPollCheck will reset the event object). */
2000 uint32_t fRetEvents = pThis->fEventsSaved;
2001 pThis->fEventsSaved = 0; /* Reset */
2002 fRetEvents |= rtSocketPollCheck(pThis, fEvents);
2003
2004 if ( !fRetEvents
2005 && !fNoWait)
2006 {
2007 pThis->fPollEvts |= fEvents;
2008 if ( fFinalEntry
2009 && pThis->fSubscribedEvts != pThis->fPollEvts)
2010 {
2011 int rc = rtSocketPollUpdateEvents(pThis, pThis->fPollEvts);
2012 if (RT_FAILURE(rc))
2013 {
2014 pThis->fPollEvts = 0;
2015 fRetEvents = UINT32_MAX;
2016 }
2017 }
2018 }
2019
2020 if (fRetEvents || fNoWait)
2021 {
2022 if (pThis->cUsers == 1)
2023 {
2024 rtSocketPollClearEventAndRestoreBlocking(pThis);
2025 pThis->hPollSet = NIL_RTPOLLSET;
2026 }
2027 ASMAtomicDecU32(&pThis->cUsers);
2028 }
2029
2030 return fRetEvents;
2031}
2032
2033
2034/**
2035 * Called after a WaitForMultipleObjects returned in order to check for pending
2036 * events and stop whatever actions that rtSocketPollStart() initiated.
2037 *
2038 * @returns Event mask or 0.
2039 *
2040 * @param hSocket The socket handle.
2041 * @param fEvents The events we're polling for.
2042 * @param fFinalEntry Set if this is the final entry for this handle
2043 * in this poll set. This can be used for dealing
2044 * with duplicate entries. Only keep in mind that
2045 * this method is called in reverse order, so the
2046 * first call will have this set (when the entire
2047 * set was processed).
2048 * @param fHarvestEvents Set if we should check for pending events.
2049 */
2050uint32_t rtSocketPollDone(RTSOCKET hSocket, uint32_t fEvents, bool fFinalEntry, bool fHarvestEvents)
2051{
2052 RTSOCKETINT *pThis = hSocket;
2053 AssertPtrReturn(pThis, 0);
2054 AssertReturn(pThis->u32Magic == RTSOCKET_MAGIC, 0);
2055 Assert(pThis->cUsers > 0);
2056 Assert(pThis->hPollSet != NIL_RTPOLLSET);
2057
2058 /* Harvest events and clear the event mask for the next round of polling. */
2059 uint32_t fRetEvents = rtSocketPollCheck(pThis, fEvents);
2060 pThis->fPollEvts = 0;
2061
2062 /*
2063 * Save the write event if required.
2064 * It is only posted once and might get lost if the another source in the
2065 * pollset with a higher priority has pending events.
2066 */
2067 if ( !fHarvestEvents
2068 && fRetEvents)
2069 {
2070 pThis->fEventsSaved = fRetEvents;
2071 fRetEvents = 0;
2072 }
2073
2074 /* Make the socket blocking again and unlock the handle. */
2075 if (pThis->cUsers == 1)
2076 {
2077 rtSocketPollClearEventAndRestoreBlocking(pThis);
2078 pThis->hPollSet = NIL_RTPOLLSET;
2079 }
2080 ASMAtomicDecU32(&pThis->cUsers);
2081 return fRetEvents;
2082}
2083
2084#endif /* RT_OS_WINDOWS */
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette