/* $Id: semeventmulti-r0drv-solaris.c 33070 2010-10-12 14:43:05Z vboxsync $ */ /** @file * IPRT - Multiple Release Event Semaphores, Ring-0 Driver, Solaris. */ /* * Copyright (C) 2006-2010 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. */ /******************************************************************************* * Header Files * *******************************************************************************/ #include "the-solaris-kernel.h" #include "internal/iprt.h" #include #include #include #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) # include #endif #include #include #include #include #include #include #include "internal/magics.h" /******************************************************************************* * Defined Constants And Macros * *******************************************************************************/ /** @name fStateAndGen values * @{ */ /** The state bit number. */ #define RTSEMEVENTMULTISOL_STATE_BIT 0 /** The state mask. */ #define RTSEMEVENTMULTISOL_STATE_MASK RT_BIT_32(RTSEMEVENTMULTISOL_STATE_BIT) /** The generation mask. */ #define RTSEMEVENTMULTISOL_GEN_MASK ~RTSEMEVENTMULTISOL_STATE_MASK /** The generation shift. */ #define RTSEMEVENTMULTISOL_GEN_SHIFT 1 /** The initial variable value. */ #define RTSEMEVENTMULTISOL_STATE_GEN_INIT UINT32_C(0xfffffffc) /** @} */ /******************************************************************************* * Structures and Typedefs * *******************************************************************************/ /** * Solaris multiple release event semaphore. */ typedef struct RTSEMEVENTMULTIINTERNAL { /** Magic value (RTSEMEVENTMULTI_MAGIC). */ uint32_t volatile u32Magic; /** The number of references. */ uint32_t volatile cRefs; /** The object state bit and generation counter. * The generation counter is incremented every time the object is * signalled. */ uint32_t volatile fStateAndGen; /** The Solaris mutex protecting this structure and pairing up the with the cv. */ kmutex_t Mtx; /** The Solaris condition variable. */ kcondvar_t Cnd; } RTSEMEVENTMULTIINTERNAL, *PRTSEMEVENTMULTIINTERNAL; RTDECL(int) RTSemEventMultiCreate(PRTSEMEVENTMULTI phEventMultiSem) { return RTSemEventMultiCreateEx(phEventMultiSem, 0 /*fFlags*/, NIL_RTLOCKVALCLASS, NULL); } RTDECL(int) RTSemEventMultiCreateEx(PRTSEMEVENTMULTI phEventMultiSem, uint32_t fFlags, RTLOCKVALCLASS hClass, const char *pszNameFmt, ...) { AssertReturn(!(fFlags & ~RTSEMEVENTMULTI_FLAGS_NO_LOCK_VAL), VERR_INVALID_PARAMETER); AssertPtrReturn(phEventMultiSem, VERR_INVALID_POINTER); RT_ASSERT_PREEMPTIBLE(); AssertCompile(sizeof(RTSEMEVENTMULTIINTERNAL) > sizeof(void *)); PRTSEMEVENTMULTIINTERNAL pThis = (PRTSEMEVENTMULTIINTERNAL)RTMemAlloc(sizeof(*pThis)); if (pThis) { pThis->u32Magic = RTSEMEVENTMULTI_MAGIC; pThis->cRefs = 1; pThis->fStateAndGen = RTSEMEVENTMULTISOL_STATE_GEN_INIT; mutex_init(&pThis->Mtx, "IPRT Multiple Release Event Semaphore", MUTEX_DRIVER, (void *)ipltospl(DISP_LEVEL)); cv_init(&pThis->Cnd, "IPRT CV", CV_DRIVER, NULL); *phEventMultiSem = pThis; return VINF_SUCCESS; } return VERR_NO_MEMORY; } /** * Retain a reference to the semaphore. * * @param pThis The semaphore. */ DECLINLINE(void) rtR0SemEventMultiSolRetain(PRTSEMEVENTMULTIINTERNAL pThis) { uint32_t cRefs = ASMAtomicIncU32(&pThis->cRefs); Assert(cRefs && cRefs < 100000); } /** * Destructor that is called when cRefs == 0. * * @param pThis The instance to destroy. */ static void rtSemEventMultiDtor(PRTSEMEVENTMULTIINTERNAL pThis) { Assert(pThis->u32Magic != RTSEMEVENTMULTI_MAGIC); cv_destroy(&pThis->Cnd); mutex_destroy(&pThis->Mtx); RTMemFree(pThis); } /** * Release a reference, destroy the thing if necessary. * * @param pThis The semaphore. */ DECLINLINE(void) rtR0SemEventMultiSolRelease(PRTSEMEVENTMULTIINTERNAL pThis) { if (RT_UNLIKELY(ASMAtomicDecU32(&pThis->cRefs) == 0)) rtSemEventMultiDtor(pThis); } RTDECL(int) RTSemEventMultiDestroy(RTSEMEVENTMULTI hEventMultiSem) { PRTSEMEVENTMULTIINTERNAL pThis = (PRTSEMEVENTMULTIINTERNAL)hEventMultiSem; if (pThis == NIL_RTSEMEVENTMULTI) return VINF_SUCCESS; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertMsgReturn(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC, ("pThis=%p u32Magic=%#x\n", pThis, pThis->u32Magic), VERR_INVALID_HANDLE); AssertMsgReturn(pThis->cRefs > 0, ("pThis=%p cRefs=%d\n", pThis, pThis->cRefs), VERR_INVALID_HANDLE); RT_ASSERT_INTS_ON(); mutex_enter(&pThis->Mtx); /* Invalidate the handle and wake up all threads that might be waiting on the semaphore. */ Assert(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC); ASMAtomicWriteU32(&pThis->u32Magic, RTSEMEVENTMULTI_MAGIC_DEAD); ASMAtomicAndU32(&pThis->fStateAndGen, RTSEMEVENTMULTISOL_GEN_MASK); cv_broadcast(&pThis->Cnd); /* Drop the reference from RTSemEventMultiCreateEx. */ mutex_exit(&pThis->Mtx); rtR0SemEventMultiSolRelease(pThis); return VINF_SUCCESS; } RTDECL(int) RTSemEventMultiSignal(RTSEMEVENTMULTI hEventMultiSem) { PRTSEMEVENTMULTIINTERNAL pThis = (PRTSEMEVENTMULTIINTERNAL)hEventMultiSem; RT_ASSERT_PREEMPT_CPUID_VAR(); AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertMsgReturn(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC, ("pThis=%p u32Magic=%#x\n", pThis, pThis->u32Magic), VERR_INVALID_HANDLE); RT_ASSERT_INTS_ON(); rtR0SemEventMultiSolRetain(pThis); /* * If we're in interrupt context we need to unpin the underlying current * thread as this could lead to a deadlock (see #4259 for the full explanation) * * Note! See remarks about preemption in RTSemEventSignal. */ int fAcquired = mutex_tryenter(&pThis->Mtx); if (!fAcquired) { if (curthread->t_intr && getpil() < DISP_LEVEL) { RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER; RTThreadPreemptDisable(&PreemptState); preempt(); RTThreadPreemptRestore(&PreemptState); } mutex_enter(&pThis->Mtx); } Assert(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC); /* * Do the job. */ uint32_t fNew = ASMAtomicUoReadU32(&pThis->fStateAndGen); fNew += 1 << RTSEMEVENTMULTISOL_GEN_SHIFT; fNew |= RTSEMEVENTMULTISOL_STATE_MASK; ASMAtomicWriteU32(&pThis->fStateAndGen, fNew); cv_broadcast(&pThis->Cnd); mutex_exit(&pThis->Mtx); rtR0SemEventMultiSolRelease(pThis); RT_ASSERT_PREEMPT_CPUID(); return VINF_SUCCESS; } RTDECL(int) RTSemEventMultiReset(RTSEMEVENTMULTI hEventMultiSem) { PRTSEMEVENTMULTIINTERNAL pThis = (PRTSEMEVENTMULTIINTERNAL)hEventMultiSem; RT_ASSERT_PREEMPT_CPUID_VAR(); AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertMsgReturn(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC, ("pThis=%p u32Magic=%#x\n", pThis, pThis->u32Magic), VERR_INVALID_HANDLE); RT_ASSERT_INTS_ON(); rtR0SemEventMultiSolRetain(pThis); /* * If we're in interrupt context we need to unpin the underlying current * thread as this could lead to a deadlock (see #4259 for the full explanation) * * Note! See remarks about preemption in RTSemEventSignal. */ int fAcquired = mutex_tryenter(&pThis->Mtx); if (!fAcquired) { if (curthread->t_intr && getpil() < DISP_LEVEL) { RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER; RTThreadPreemptDisable(&PreemptState); preempt(); RTThreadPreemptRestore(&PreemptState); } mutex_enter(&pThis->Mtx); } Assert(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC); /* * Do the job (could be done without the lock, but play safe). */ ASMAtomicAndU32(&pThis->fStateAndGen, ~RTSEMEVENTMULTISOL_STATE_MASK); mutex_exit(&pThis->Mtx); rtR0SemEventMultiSolRelease(pThis); RT_ASSERT_PREEMPT_CPUID(); return VINF_SUCCESS; } #if 0 /* NEW_STUFF - not working yet :-) */ typedef struct RTR0SEMSOLWAIT { /** The absolute timeout given as nano seconds since the start of the * monotonic clock. */ uint64_t uNsAbsTimeout; /** The timeout in nano seconds relative to the start of the wait. */ uint64_t cNsRelTimeout; /** The native timeout value. */ union { /** The timeout (abs lbolt) when fHighRes is false. */ clock_t lTimeout; } u; /** Set if we use high resolution timeouts. */ bool fHighRes; /** Set if it's an indefinite wait. */ bool fIndefinite; /** Set if we've already timed out. * Set by rtR0SemSolWaitDoIt or rtR0SemSolWaitHighResTimeout, read by * rtR0SemSolWaitHasTimedOut. */ bool volatile fTimedOut; /** Whether the wait was interrupted. */ bool fInterrupted; /** Interruptible or uninterruptible wait. */ bool fInterruptible; /** The thread to wake up. */ kthread_t *pThread; } RTR0SEMSOLWAIT; typedef RTR0SEMSOLWAIT *PRTR0SEMSOLWAIT; /** * Initializes a wait. * * The caller MUST check the wait condition BEFORE calling this function or the * timeout logic will be flawed. * * @returns VINF_SUCCESS or VERR_TIMEOUT. * @param pWait The wait structure. * @param fFlags The wait flags. * @param uTimeout The timeout. * @param pWaitQueue The wait queue head. */ DECLINLINE(int) rtR0SemSolWaitInit(PRTR0SEMSOLWAIT pWait, uint32_t fFlags, uint64_t uTimeout) { /* * Process the flags and timeout. */ if (!(fFlags & RTSEMWAIT_FLAGS_INDEFINITE)) { if (fFlags & RTSEMWAIT_FLAGS_MILLISECS) uTimeout = uTimeout < UINT64_MAX / UINT32_C(1000000) * UINT32_C(1000000) ? uTimeout * UINT32_C(1000000) : UINT64_MAX; if (uTimeout == UINT64_MAX) fFlags |= RTSEMWAIT_FLAGS_INDEFINITE; else { uint64_t u64Now; if (fFlags & RTSEMWAIT_FLAGS_RELATIVE) { if (uTimeout == 0) return VERR_TIMEOUT; u64Now = RTTimeSystemNanoTS(); pWait->cNsRelTimeout = uTimeout; pWait->uNsAbsTimeout = u64Now + uTimeout; if (pWait->uNsAbsTimeout < u64Now) /* overflow */ fFlags |= RTSEMWAIT_FLAGS_INDEFINITE; } else { u64Now = RTTimeSystemNanoTS(); if (u64Now >= uTimeout) return VERR_TIMEOUT; pWait->cNsRelTimeout = uTimeout - u64Now; pWait->uNsAbsTimeout = uTimeout; } } } if (!(fFlags & RTSEMWAIT_FLAGS_INDEFINITE)) { pWait->fIndefinite = false; if ( (fFlags & (RTSEMWAIT_FLAGS_NANOSECS | RTSEMWAIT_FLAGS_ABSOLUTE)) || pWait->cNsRelTimeout < UINT32_C(1000000000) / 100 /*Hz*/ * 4) pWait->fHighRes = true; else { #if 1 uint64_t cTicks = NSEC_TO_TICK_ROUNDUP(uTimeout); #else uint64_t cTicks = drv_usectohz((clock_t)(uTimeout / 1000)); #endif if (cTicks >= LONG_MAX) fFlags |= RTSEMWAIT_FLAGS_INDEFINITE; else { pWait->u.lTimeout = ddi_get_lbolt() + cTicks; pWait->fHighRes = false; } } } if (fFlags & RTSEMWAIT_FLAGS_INDEFINITE) { pWait->fIndefinite = true; pWait->fHighRes = false; pWait->uNsAbsTimeout = UINT64_MAX; pWait->cNsRelTimeout = UINT64_MAX; pWait->u.lTimeout = LONG_MAX; } pWait->fTimedOut = false; pWait->fInterrupted = false; pWait->fInterruptible = !!(fFlags & RTSEMWAIT_FLAGS_INTERRUPTIBLE); pWait->pThread = curthread; return VINF_SUCCESS; } /** * Cyclic timeout callback that sets the timeout indicator and wakes up the * waiting thread. * * @param pvUser The wait structure. */ static void rtR0SemSolWaitHighResTimeout(void *pvUser) { PRTR0SEMSOLWAIT pWait = (PRTR0SEMSOLWAIT)pvUser; kthread_t *pThread = pWait->pThread; if (VALID_PTR(pThread)) /* paranoia */ { ASMAtomicWriteBool(&pWait->fTimedOut, true); setrun(pThread); } } /** * Do the actual wait. * * @param pWait The wait structure. * @param pCnd The condition variable to wait on. * @param pMtx The mutex related to the condition variable. * The caller has entered this. */ DECLINLINE(void) rtR0SemSolWaitDoIt(PRTR0SEMSOLWAIT pWait, kcondvar_t *pCnd, kmutex_t *pMtx) { int rc = 1; if (pWait->fIndefinite) { /* * No timeout - easy. */ if (pWait->fInterruptible) rc = cv_wait_sig(pCnd, pMtx); else cv_wait(pCnd, pMtx); } else if (pWait->fHighRes) { /* * High resolution timeout - arm a one-shot cyclic for waking up * the thread at the desired time. */ cyc_handler_t Cyh; Cyh.cyh_arg = pWait; Cyh.cyh_func = rtR0SemSolWaitHighResTimeout; Cyh.cyh_level = CY_LOW_LEVEL; /// @todo try CY_LOCK_LEVEL and CY_HIGH_LEVEL? cyc_time_t Cyt; Cyt.cyt_when = pWait->uNsAbsTimeout; Cyt.cyt_interval = 0; mutex_enter(&cpu_lock); cyclic_id_t idCy = cyclic_add(&Cyh, &Cyt); mutex_exit(&cpu_lock); if (pWait->fInterruptible) rc = cv_wait_sig(pCnd, pMtx); else cv_wait(pCnd, pMtx); mutex_enter(&cpu_lock); cyclic_remove(idCy); mutex_exit(&cpu_lock); } else { /* * Normal timeout. */ if (pWait->fInterruptible) rc = cv_timedwait_sig(pCnd, pMtx, pWait->u.lTimeout); else rc = cv_timedwait(pCnd, pMtx, pWait->u.lTimeout); } /* Above zero means normal wake-up. */ if (rc > 0) return; /* Timeout is signalled by -1. */ if (rc == -1) pWait->fTimedOut = true; /* Interruption is signalled by 0. */ else { AssertMsg(rc == 0, ("rc=%d\n", rc)); pWait->fInterrupted = true; } } /** * Checks if a solaris wait was interrupted. * * @returns true / false * @param pWait The wait structure. * @remarks This shall be called before the first rtR0SemSolWaitDoIt(). */ DECLINLINE(bool) rtR0SemSolWaitWasInterrupted(PRTR0SEMSOLWAIT pWait) { return pWait->fInterrupted; } /** * Checks if a solaris wait has timed out. * * @returns true / false * @param pWait The wait structure. */ DECLINLINE(bool) rtR0SemSolWaitHasTimedOut(PRTR0SEMSOLWAIT pWait) { return pWait->fTimedOut; } /** * Deletes a solaris wait. * * @param pWait The wait structure. */ DECLINLINE(void) rtR0SemSolWaitDelete(PRTR0SEMSOLWAIT pWait) { pWait->pThread = NULL; } /** * Worker for RTSemEventMultiWaitEx and RTSemEventMultiWaitExDebug. * * @returns VBox status code. * @param pThis The event semaphore. * @param fFlags See RTSemEventMultiWaitEx. * @param uTimeout See RTSemEventMultiWaitEx. * @param pSrcPos The source code position of the wait. */ static int rtR0SemEventMultiSolWait(PRTSEMEVENTMULTIINTERNAL pThis, uint32_t fFlags, uint64_t uTimeout, PCRTLOCKVALSRCPOS pSrcPos) { uint32_t fOrgStateAndGen; int rc; /* * Validate the input. */ AssertPtrReturn(pThis, VERR_INVALID_PARAMETER); AssertMsgReturn(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC, ("%p u32Magic=%RX32\n", pThis, pThis->u32Magic), VERR_INVALID_PARAMETER); AssertReturn(RTSEMWAIT_FLAGS_ARE_VALID(fFlags), VERR_INVALID_PARAMETER); rtR0SemEventMultiSolRetain(pThis); mutex_enter(&pThis->Mtx); /* this could be moved down to the else, but play safe for now. */ /* * Is the event already signalled or do we have to wait? */ fOrgStateAndGen = ASMAtomicUoReadU32(&pThis->fStateAndGen); if (fOrgStateAndGen & RTSEMEVENTMULTISOL_STATE_MASK) rc = VINF_SUCCESS; else { /* * We have to wait. */ RTR0SEMSOLWAIT Wait; rtR0SemSolWaitInit(&Wait, fFlags, uTimeout); for (;;) { /* The destruction test. */ if (RT_UNLIKELY(pThis->u32Magic != RTSEMEVENTMULTI_MAGIC)) rc = VERR_SEM_DESTROYED; else { /* Check the exit conditions. */ if (RT_UNLIKELY(pThis->u32Magic != RTSEMEVENTMULTI_MAGIC)) rc = VERR_SEM_DESTROYED; else if (ASMAtomicUoReadU32(&pThis->fStateAndGen) != fOrgStateAndGen) rc = VINF_SUCCESS; else if (rtR0SemSolWaitHasTimedOut(&Wait)) rc = VERR_TIMEOUT; else if (rtR0SemSolWaitWasInterrupted(&Wait)) rc = VERR_INTERRUPTED; else { /* Do the wait and then recheck the conditions. */ rtR0SemSolWaitDoIt(&Wait, &pThis->Cnd, &pThis->Mtx); continue; } } break; } rtR0SemSolWaitDelete(&Wait); } mutex_exit(&pThis->Mtx); rtR0SemEventMultiSolRelease(pThis); return rc; } #undef RTSemEventMultiWaitEx RTDECL(int) RTSemEventMultiWaitEx(RTSEMEVENTMULTI hEventMultiSem, uint32_t fFlags, uint64_t uTimeout) { #ifndef RTSEMEVENT_STRICT return rtR0SemEventMultiSolWait(hEventMultiSem, fFlags, uTimeout, NULL); #else RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_NORMAL_API(); return rtR0SemEventMultiSolWait(hEventMultiSem, fFlags, uTimeout, &SrcPos); #endif } RTDECL(int) RTSemEventMultiWaitExDebug(RTSEMEVENTMULTI hEventMultiSem, uint32_t fFlags, uint64_t uTimeout, RTHCUINTPTR uId, RT_SRC_POS_DECL) { RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_DEBUG_API(); return rtR0SemEventMultiSolWait(hEventMultiSem, fFlags, uTimeout, &SrcPos); } #include "../../generic/RTSemEventMultiWait-2-ex-generic.cpp" #include "../../generic/RTSemEventMultiWaitNoResume-2-ex-generic.cpp" #else /* OLD_STUFF */ /** * Translate milliseconds into ticks and go to sleep using the right method. * * @retval >0 on normal or spurious wake-up. * @retval -1 on timeout. * @retval 0 on signal. */ static int rtSemEventMultiWaitWorker(PRTSEMEVENTMULTIINTERNAL pThis, RTMSINTERVAL cMillies, bool fInterruptible) { int rc; if (cMillies != RT_INDEFINITE_WAIT) { clock_t cTicks = drv_usectohz((clock_t)(cMillies * 1000L)); clock_t cTimeout = ddi_get_lbolt(); cTimeout += cTicks; if (fInterruptible) rc = cv_timedwait_sig(&pThis->Cnd, &pThis->Mtx, cTimeout); else rc = cv_timedwait(&pThis->Cnd, &pThis->Mtx, cTimeout); } else { if (fInterruptible) rc = cv_wait_sig(&pThis->Cnd, &pThis->Mtx); else { cv_wait(&pThis->Cnd, &pThis->Mtx); rc = 1; } } return rc; } static int rtSemEventMultiWait(RTSEMEVENTMULTI hEventMultiSem, RTMSINTERVAL cMillies, bool fInterruptible) { int rc; PRTSEMEVENTMULTIINTERNAL pThis = (PRTSEMEVENTMULTIINTERNAL)hEventMultiSem; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertMsgReturn(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC, ("pThis=%p u32Magic=%#x\n", pThis, pThis->u32Magic), VERR_INVALID_HANDLE); rtR0SemEventMultiSolRetain(pThis); if (cMillies) RT_ASSERT_PREEMPTIBLE(); mutex_enter(&pThis->Mtx); Assert(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC); if (pThis->fStateAndGen & RTSEMEVENTMULTISOL_STATE_MASK) rc = VINF_SUCCESS; else if (!cMillies) rc = VERR_TIMEOUT; else { /* This loop is only for continuing after a spurious wake-up. */ for (;;) { uint32_t const uSignalGenBeforeWait = pThis->fStateAndGen; rc = rtSemEventMultiWaitWorker(pThis, cMillies, fInterruptible); if (rc > 0) { if (RT_LIKELY(pThis->u32Magic == RTSEMEVENTMULTI_MAGIC)) { if (pThis->fStateAndGen == uSignalGenBeforeWait) continue; /* Spurious wake-up, go back to waiting. */ /* Retured due to call to cv_signal() or cv_broadcast(). */ rc = VINF_SUCCESS; } else /* We're being destroyed. */ rc = VERR_SEM_DESTROYED; } else if (rc == -1) /* Returned due to timeout being reached. */ rc = VERR_TIMEOUT; else rc = VERR_INTERRUPTED; /* Returned due to pending signal. */ break; } } mutex_exit(&pThis->Mtx); rtR0SemEventMultiSolRelease(pThis); return rc; } RTDECL(int) RTSemEventMultiWait(RTSEMEVENTMULTI hEventMultiSem, RTMSINTERVAL cMillies) { return rtSemEventMultiWait(hEventMultiSem, cMillies, false /* not interruptible */); } RTDECL(int) RTSemEventMultiWaitNoResume(RTSEMEVENTMULTI hEventMultiSem, RTMSINTERVAL cMillies) { return rtSemEventMultiWait(hEventMultiSem, cMillies, true /* interruptible */); } #endif