VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/linux/memobj-r0drv-linux.c@ 6416

Last change on this file since 6416 was 6416, checked in by vboxsync, 17 years ago

Applied [27227] to the trunk: make it compile with older 2.6 kernels, missing initialization.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Rev
File size: 36.6 KB
Line 
1/* $Revision: 6416 $ */
2/** @file
3 * innotek Portable Runtime - Ring-0 Memory Objects, Linux.
4 */
5
6/*
7 * Copyright (C) 2006-2007 innotek GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.215389.xyz. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*******************************************************************************
29* Header Files *
30*******************************************************************************/
31#include "the-linux-kernel.h"
32
33#include <iprt/memobj.h>
34#include <iprt/alloc.h>
35#include <iprt/assert.h>
36#include <iprt/log.h>
37#include <iprt/string.h>
38#include <iprt/process.h>
39#include "internal/memobj.h"
40
41/* early 2.6 kernels */
42#ifndef PAGE_SHARED_EXEC
43# define PAGE_SHARED_EXEC PAGE_SHARED
44#endif
45#ifndef PAGE_READONLY_EXEC
46# define PAGE_READONLY_EXEC PAGE_READONLY
47#endif
48
49
50/*******************************************************************************
51* Structures and Typedefs *
52*******************************************************************************/
53/**
54 * The Darwin version of the memory object structure.
55 */
56typedef struct RTR0MEMOBJLNX
57{
58 /** The core structure. */
59 RTR0MEMOBJINTERNAL Core;
60 /** Set if the allocation is contiguous.
61 * This means it has to be given back as one chunk. */
62 bool fContiguous;
63 /** Set if we've vmap'ed thed memory into ring-0. */
64 bool fMappedToRing0;
65 /** The pages in the apPages array. */
66 size_t cPages;
67 /** Array of struct page pointers. (variable size) */
68 struct page *apPages[1];
69} RTR0MEMOBJLNX, *PRTR0MEMOBJLNX;
70
71
72/**
73 * Helper that converts from a RTR0PROCESS handle to a linux task.
74 *
75 * @returns The corresponding Linux task.
76 * @param R0Process IPRT ring-0 process handle.
77 */
78struct task_struct *rtR0ProcessToLinuxTask(RTR0PROCESS R0Process)
79{
80 /** @todo fix rtR0ProcessToLinuxTask!! */
81 return R0Process == RTR0ProcHandleSelf() ? current : NULL;
82}
83
84
85/**
86 * Compute order. Some functions allocate 2^order pages.
87 *
88 * @returns order.
89 * @param cPages Number of pages.
90 */
91static int rtR0MemObjLinuxOrder(size_t cPages)
92{
93 int iOrder;
94 size_t cTmp;
95
96 for (iOrder = 0, cTmp = cPages; cTmp >>= 1; ++iOrder)
97 ;
98 if (cPages & ~((size_t)1 << iOrder))
99 ++iOrder;
100
101 return iOrder;
102}
103
104
105/**
106 * Converts from RTMEM_PROT_* to Linux PAGE_*.
107 *
108 * @returns Linux page protection constant.
109 * @param fProt The IPRT protection mask.
110 * @param fKernel Whether it applies to kernel or user space.
111 */
112static pgprot_t rtR0MemObjLinuxConvertProt(unsigned fProt, bool fKernel)
113{
114 switch (fProt)
115 {
116 default:
117 AssertMsgFailed(("%#x %d\n", fProt, fKernel));
118 case RTMEM_PROT_NONE:
119 return PAGE_NONE;
120
121 case RTMEM_PROT_READ:
122 return fKernel ? PAGE_KERNEL_RO : PAGE_READONLY;
123
124 case RTMEM_PROT_WRITE:
125 case RTMEM_PROT_WRITE | RTMEM_PROT_READ:
126 return fKernel ? PAGE_KERNEL : PAGE_SHARED;
127
128 case RTMEM_PROT_EXEC:
129 case RTMEM_PROT_EXEC | RTMEM_PROT_READ:
130#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
131 if (fKernel)
132 {
133 pgprot_t fPg = MY_PAGE_KERNEL_EXEC;
134 pgprot_val(fPg) &= ~_PAGE_RW;
135 return fPg;
136 }
137 return PAGE_READONLY_EXEC;
138#else
139 return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_READONLY_EXEC;
140#endif
141
142 case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC:
143 case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_READ:
144 return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_SHARED_EXEC;
145 }
146}
147
148
149/**
150 * Internal worker that allocates physical pages and creates the memory object for them.
151 *
152 * @returns IPRT status code.
153 * @param ppMemLnx Where to store the memory object pointer.
154 * @param enmType The object type.
155 * @param cb The number of bytes to allocate.
156 * @param fFlagsLnx The page allocation flags (GPFs).
157 * @param fContiguous Whether the allocation must be contiguous.
158 */
159static int rtR0MemObjLinuxAllocPages(PRTR0MEMOBJLNX *ppMemLnx, RTR0MEMOBJTYPE enmType, size_t cb, unsigned fFlagsLnx, bool fContiguous)
160{
161 size_t iPage;
162 size_t cPages = cb >> PAGE_SHIFT;
163 struct page *paPages;
164
165 /*
166 * Allocate a memory object structure that's large enough to contain
167 * the page pointer array.
168 */
169 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), enmType, NULL, cb);
170 if (!pMemLnx)
171 return VERR_NO_MEMORY;
172 pMemLnx->cPages = cPages;
173
174 /*
175 * Allocate the pages.
176 * For small allocations we'll try contiguous first and then fall back on page by page.
177 */
178#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
179 if ( fContiguous
180 || cb <= PAGE_SIZE * 2)
181 {
182 paPages = alloc_pages(fFlagsLnx, rtR0MemObjLinuxOrder(cb >> PAGE_SHIFT));
183 if (paPages)
184 {
185 fContiguous = true;
186 for (iPage = 0; iPage < cPages; iPage++)
187 pMemLnx->apPages[iPage] = &paPages[iPage];
188 }
189 else if (fContiguous)
190 {
191 rtR0MemObjDelete(&pMemLnx->Core);
192 return VERR_NO_MEMORY;
193 }
194 }
195
196 if (!fContiguous)
197 {
198 for (iPage = 0; iPage < cPages; iPage++)
199 {
200 pMemLnx->apPages[iPage] = alloc_page(fFlagsLnx);
201 if (RT_UNLIKELY(!pMemLnx->apPages[iPage]))
202 {
203 while (iPage-- > 0)
204 __free_page(pMemLnx->apPages[iPage]);
205 rtR0MemObjDelete(&pMemLnx->Core);
206 return VERR_NO_MEMORY;
207 }
208 }
209 }
210
211#else /* < 2.4.22 */
212 /** @todo figure out why we didn't allocate page-by-page on 2.4.21 and older... */
213 paPages = alloc_pages(fFlagsLnx, rtR0MemObjLinuxOrder(cb >> PAGE_SHIFT));
214 if (!paPages)
215 {
216 rtR0MemObjDelete(&pMemLnx->Core);
217 return VERR_NO_MEMORY;
218 }
219 for (iPage = 0; iPage < cPages; iPage++)
220 {
221 pMemLnx->apPages[iPage] = &paPages[iPage];
222 if (pgprot_val(MY_PAGE_KERNEL_EXEC) != pgprot_val(PAGE_KERNEL))
223 MY_CHANGE_PAGE_ATTR(pMemLnx->apPages[iPage], 1, MY_PAGE_KERNEL_EXEC);
224 if (PageHighMem(pMemLnx->apPages[iPage]))
225 BUG();
226 }
227
228 fContiguous = true;
229#endif /* < 2.4.22 */
230 pMemLnx->fContiguous = fContiguous;
231
232 /*
233 * Reserve the pages.
234 */
235 for (iPage = 0; iPage < cPages; iPage++)
236 SetPageReserved(pMemLnx->apPages[iPage]);
237
238 *ppMemLnx = pMemLnx;
239 return VINF_SUCCESS;
240}
241
242
243/**
244 * Frees the physical pages allocated by the rtR0MemObjLinuxAllocPages() call.
245 *
246 * This method does NOT free the object.
247 *
248 * @param pMemLnx The object which physical pages should be freed.
249 */
250static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx)
251{
252 size_t iPage = pMemLnx->cPages;
253 if (iPage > 0)
254 {
255 /*
256 * Restore the page flags.
257 */
258 while (iPage-- > 0)
259 {
260 ClearPageReserved(pMemLnx->apPages[iPage]);
261#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
262#else
263 if (pgprot_val(MY_PAGE_KERNEL_EXEC) != pgprot_val(PAGE_KERNEL))
264 MY_CHANGE_PAGE_ATTR(pMemLnx->apPages[iPage], 1, PAGE_KERNEL);
265#endif
266 }
267
268 /*
269 * Free the pages.
270 */
271#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
272 if (!pMemLnx->fContiguous)
273 {
274 iPage = pMemLnx->cPages;
275 while (iPage-- > 0)
276 __free_page(pMemLnx->apPages[iPage]);
277 }
278 else
279#endif
280 __free_pages(pMemLnx->apPages[0], rtR0MemObjLinuxOrder(pMemLnx->cPages));
281
282 pMemLnx->cPages = 0;
283 }
284}
285
286
287/**
288 * Maps the allocation into ring-0.
289 *
290 * This will update the RTR0MEMOBJLNX::Core.pv and RTR0MEMOBJ::fMappedToRing0 members.
291 *
292 * Contiguous mappings that isn't in 'high' memory will already be mapped into kernel
293 * space, so we'll use that mapping if possible. If execute access is required, we'll
294 * play safe and do our own mapping.
295 *
296 * @returns IPRT status code.
297 * @param pMemLnx The linux memory object to map.
298 * @param fExecutable Whether execute access is required.
299 */
300static int rtR0MemObjLinuxVMap(PRTR0MEMOBJLNX pMemLnx, bool fExecutable)
301{
302 int rc = VINF_SUCCESS;
303
304 /*
305 * Choose mapping strategy.
306 */
307 bool fMustMap = fExecutable
308 || !pMemLnx->fContiguous;
309 if (!fMustMap)
310 {
311 size_t iPage = pMemLnx->cPages;
312 while (iPage-- > 0)
313 if (PageHighMem(pMemLnx->apPages[iPage]))
314 {
315 fMustMap = true;
316 break;
317 }
318 }
319
320 Assert(!pMemLnx->Core.pv);
321 Assert(!pMemLnx->fMappedToRing0);
322
323 if (fMustMap)
324 {
325 /*
326 * Use vmap - 2.4.22 and later.
327 */
328#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
329 pgprot_t fPg;
330 pgprot_val(fPg) = _PAGE_PRESENT | _PAGE_RW;
331# ifdef _PAGE_NX
332 if (!fExecutable)
333 pgprot_val(fPg) |= _PAGE_NX;
334# endif
335
336# ifdef VM_MAP
337 pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_MAP, fPg);
338# else
339 pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_ALLOC, fPg);
340# endif
341 if (pMemLnx->Core.pv)
342 pMemLnx->fMappedToRing0 = true;
343 else
344 rc = VERR_MAP_FAILED;
345#else /* < 2.4.22 */
346 rc = VERR_NOT_SUPPORTED;
347#endif
348 }
349 else
350 {
351 /*
352 * Use the kernel RAM mapping.
353 */
354 pMemLnx->Core.pv = phys_to_virt(page_to_phys(pMemLnx->apPages[0]));
355 Assert(pMemLnx->Core.pv);
356 }
357
358 return rc;
359}
360
361
362/**
363 * Undos what rtR0MemObjLinuxVMap() did.
364 *
365 * @param pMemLnx The linux memory object.
366 */
367static void rtR0MemObjLinuxVUnmap(PRTR0MEMOBJLNX pMemLnx)
368{
369#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
370 if (pMemLnx->fMappedToRing0)
371 {
372 Assert(pMemLnx->Core.pv);
373 vunmap(pMemLnx->Core.pv);
374 pMemLnx->fMappedToRing0 = false;
375 }
376#else /* < 2.4.22 */
377 Assert(!pMemLnx->fMappedToRing0);
378#endif
379 pMemLnx->Core.pv = NULL;
380}
381
382
383int rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
384{
385 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
386
387 /*
388 * Release any memory that we've allocated or locked.
389 */
390 switch (pMemLnx->Core.enmType)
391 {
392 case RTR0MEMOBJTYPE_LOW:
393 case RTR0MEMOBJTYPE_PAGE:
394 case RTR0MEMOBJTYPE_CONT:
395 case RTR0MEMOBJTYPE_PHYS:
396 rtR0MemObjLinuxVUnmap(pMemLnx);
397 rtR0MemObjLinuxFreePages(pMemLnx);
398 break;
399
400 case RTR0MEMOBJTYPE_LOCK:
401 if (pMemLnx->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
402 {
403 size_t iPage;
404 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
405 Assert(pTask);
406 if (pTask && pTask->mm)
407 down_read(&pTask->mm->mmap_sem);
408
409 iPage = pMemLnx->cPages;
410 while (iPage-- > 0)
411 {
412 if (!PageReserved(pMemLnx->apPages[iPage]))
413 SetPageDirty(pMemLnx->apPages[iPage]);
414 page_cache_release(pMemLnx->apPages[iPage]);
415 }
416
417 if (pTask && pTask->mm)
418 up_read(&pTask->mm->mmap_sem);
419 }
420 else
421 AssertFailed(); /* not implemented for R0 */
422 break;
423
424 case RTR0MEMOBJTYPE_RES_VIRT:
425 Assert(pMemLnx->Core.pv);
426 if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
427 {
428 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
429 Assert(pTask);
430 if (pTask && pTask->mm)
431 {
432 down_write(&pTask->mm->mmap_sem);
433 MY_DO_MUNMAP(pTask->mm, (unsigned long)pMemLnx->Core.pv, pMemLnx->Core.cb);
434 up_write(&pTask->mm->mmap_sem);
435 }
436 }
437 else
438 {
439 vunmap(pMemLnx->Core.pv);
440
441 Assert(pMemLnx->cPages == 1 && pMemLnx->apPages[0] != NULL);
442 __free_page(pMemLnx->apPages[0]);
443 pMemLnx->apPages[0] = NULL;
444 pMemLnx->cPages = 0;
445 }
446 pMemLnx->Core.pv = NULL;
447 break;
448
449 case RTR0MEMOBJTYPE_MAPPING:
450 Assert(pMemLnx->cPages == 0); Assert(pMemLnx->Core.pv);
451 if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
452 {
453 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
454 Assert(pTask);
455 if (pTask && pTask->mm)
456 {
457 down_write(&pTask->mm->mmap_sem);
458 MY_DO_MUNMAP(pTask->mm, (unsigned long)pMemLnx->Core.pv, pMemLnx->Core.cb);
459 up_write(&pTask->mm->mmap_sem);
460 }
461 }
462 else
463 vunmap(pMemLnx->Core.pv);
464 pMemLnx->Core.pv = NULL;
465 break;
466
467 default:
468 AssertMsgFailed(("enmType=%d\n", pMemLnx->Core.enmType));
469 return VERR_INTERNAL_ERROR;
470 }
471 return VINF_SUCCESS;
472}
473
474
475int rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
476{
477 PRTR0MEMOBJLNX pMemLnx;
478 int rc;
479
480#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
481 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, GFP_HIGHUSER, false /* non-contiguous */);
482#else
483 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, GFP_USER, false /* non-contiguous */);
484#endif
485 if (RT_SUCCESS(rc))
486 {
487 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
488 if (RT_SUCCESS(rc))
489 {
490 *ppMem = &pMemLnx->Core;
491 return rc;
492 }
493
494 rtR0MemObjLinuxFreePages(pMemLnx);
495 rtR0MemObjDelete(&pMemLnx->Core);
496 }
497
498 return rc;
499}
500
501
502int rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
503{
504 PRTR0MEMOBJLNX pMemLnx;
505 int rc;
506
507#ifdef RT_ARCH_AMD64
508# ifdef GFP_DMA32
509 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, GFP_DMA32, false /* non-contiguous */);
510 if (RT_FAILURE(rc))
511# endif
512 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, GFP_DMA, false /* non-contiguous */);
513#else
514 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, GFP_USER, false /* non-contiguous */);
515#endif
516 if (RT_SUCCESS(rc))
517 {
518 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
519 if (RT_SUCCESS(rc))
520 {
521 *ppMem = &pMemLnx->Core;
522 return rc;
523 }
524
525 rtR0MemObjLinuxFreePages(pMemLnx);
526 rtR0MemObjDelete(&pMemLnx->Core);
527 }
528
529 return rc;
530}
531
532
533int rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
534{
535 PRTR0MEMOBJLNX pMemLnx;
536 int rc;
537
538#ifdef RT_ARCH_AMD64
539# ifdef GFP_DMA32
540 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, GFP_DMA32, true /* contiguous */);
541 if (RT_FAILURE(rc))
542# endif
543 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, GFP_DMA, true /* contiguous */);
544#else
545 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, GFP_USER, true /* contiguous */);
546#endif
547 if (RT_SUCCESS(rc))
548 {
549 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
550 if (RT_SUCCESS(rc))
551 {
552#ifdef RT_STRICT
553 size_t iPage = pMemLnx->cPages;
554 while (iPage-- > 0)
555 Assert(page_to_phys(pMemLnx->apPages[iPage]) < _4G);
556#endif
557 pMemLnx->Core.u.Cont.Phys = page_to_phys(pMemLnx->apPages[0]);
558 *ppMem = &pMemLnx->Core;
559 return rc;
560 }
561
562 rtR0MemObjLinuxFreePages(pMemLnx);
563 rtR0MemObjDelete(&pMemLnx->Core);
564 }
565
566 return rc;
567}
568
569
570/**
571 * Worker for rtR0MemObjLinuxAllocPhysSub that tries one allocation strategy.
572 *
573 * @returns IPRT status.
574 * @param ppMemLnx Where to
575 * @param enmType The object type.
576 * @param cb The size of the allocation.
577 * @param PhysHighest See rtR0MemObjNativeAllocPhys.
578 * @param fGfp The Linux GFP flags to use for the allocation.
579 */
580static int rtR0MemObjLinuxAllocPhysSub2(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType, size_t cb, RTHCPHYS PhysHighest, unsigned fGfp)
581{
582 PRTR0MEMOBJLNX pMemLnx;
583 int rc;
584
585 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, enmType, cb, fGfp,
586 enmType == RTR0MEMOBJTYPE_PHYS /* contiguous / non-contiguous */);
587 if (RT_FAILURE(rc))
588 return rc;
589
590 /*
591 * Check the addresses if necessary. (Can be optimized a bit for PHYS.)
592 */
593 if (PhysHighest != NIL_RTHCPHYS)
594 {
595 size_t iPage = pMemLnx->cPages;
596 while (iPage-- > 0)
597 if (page_to_phys(pMemLnx->apPages[iPage]) >= PhysHighest)
598 {
599 rtR0MemObjLinuxFreePages(pMemLnx);
600 rtR0MemObjDelete(&pMemLnx->Core);
601 return VERR_NO_MEMORY;
602 }
603 }
604
605 /*
606 * Complete the object.
607 */
608 if (enmType == RTR0MEMOBJTYPE_PHYS)
609 {
610 pMemLnx->Core.u.Phys.PhysBase = page_to_phys(pMemLnx->apPages[0]);
611 pMemLnx->Core.u.Phys.fAllocated = true;
612 }
613 *ppMem = &pMemLnx->Core;
614 return rc;
615}
616
617
618/**
619 * Worker for rtR0MemObjNativeAllocPhys and rtR0MemObjNativeAllocPhysNC.
620 *
621 * @returns IPRT status.
622 * @param ppMem Where to store the memory object pointer on success.
623 * @param enmType The object type.
624 * @param cb The size of the allocation.
625 * @param PhysHighest See rtR0MemObjNativeAllocPhys.
626 */
627static int rtR0MemObjLinuxAllocPhysSub(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType, size_t cb, RTHCPHYS PhysHighest)
628{
629 int rc;
630
631 /*
632 * There are two clear cases and that's the <=16MB and anything-goes ones.
633 * When the physical address limit is somewhere inbetween those two we'll
634 * just have to try, starting with HIGHUSER and working our way thru the
635 * different types, hoping we'll get lucky.
636 *
637 * We should probably move this physical address restriction logic up to
638 * the page alloc function as it would be more efficient there. But since
639 * we don't expect this to be a performance issue just yet it can wait.
640 */
641 if (PhysHighest == NIL_RTHCPHYS)
642 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, PhysHighest, GFP_HIGHUSER);
643 else if (PhysHighest <= _1M * 16)
644 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, PhysHighest, GFP_DMA);
645 else
646 {
647 rc = VERR_NO_MEMORY;
648 if (RT_FAILURE(rc))
649 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, PhysHighest, GFP_HIGHUSER);
650 if (RT_FAILURE(rc))
651 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, PhysHighest, GFP_USER);
652#ifdef GFP_DMA32
653 if (RT_FAILURE(rc))
654 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, PhysHighest, GFP_DMA32);
655#endif
656 if (RT_FAILURE(rc))
657 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, PhysHighest, GFP_DMA);
658 }
659 return rc;
660}
661
662
663int rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
664{
665 return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS, cb, PhysHighest);
666}
667
668
669int rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
670{
671 return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS_NC, cb, PhysHighest);
672}
673
674
675int rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb)
676{
677 /*
678 * All we need to do here is to validate that we can use
679 * ioremap on the specified address (32/64-bit dma_addr_t).
680 */
681 PRTR0MEMOBJLNX pMemLnx;
682 dma_addr_t PhysAddr = Phys;
683 AssertMsgReturn(PhysAddr == Phys, ("%#llx\n", (unsigned long long)Phys), VERR_ADDRESS_TOO_BIG);
684
685 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_PHYS, NULL, cb);
686 if (!pMemLnx)
687 return VERR_NO_MEMORY;
688
689 pMemLnx->Core.u.Phys.PhysBase = PhysAddr;
690 pMemLnx->Core.u.Phys.fAllocated = false;
691 Assert(!pMemLnx->cPages);
692 *ppMem = &pMemLnx->Core;
693 return VINF_SUCCESS;
694}
695
696
697int rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, RTR0PROCESS R0Process)
698{
699 const int cPages = cb >> PAGE_SHIFT;
700 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
701 struct vm_area_struct **papVMAs;
702 PRTR0MEMOBJLNX pMemLnx;
703 int rc = VERR_NO_MEMORY;
704
705 /*
706 * Check for valid task and size overflows.
707 */
708 if (!pTask)
709 return VERR_NOT_SUPPORTED;
710 if (((size_t)cPages << PAGE_SHIFT) != cb)
711 return VERR_OUT_OF_RANGE;
712
713 /*
714 * Allocate the memory object and a temporary buffer for the VMAs.
715 */
716 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
717 if (!pMemLnx)
718 return VERR_NO_MEMORY;
719
720 papVMAs = (struct vm_area_struct **)RTMemAlloc(sizeof(*papVMAs) * cPages);
721 if (papVMAs)
722 {
723 down_read(&pTask->mm->mmap_sem);
724
725 /*
726 * Get user pages.
727 */
728 rc = get_user_pages(pTask, /* Task for fault acounting. */
729 pTask->mm, /* Whose pages. */
730 R3Ptr, /* Where from. */
731 cPages, /* How many pages. */
732 1, /* Write to memory. */
733 0, /* force. */
734 &pMemLnx->apPages[0], /* Page array. */
735 papVMAs); /* vmas */
736 if (rc == cPages)
737 {
738 /*
739 * Flush dcache (required?) and protect against fork.
740 */
741 /** @todo The Linux fork() protection will require more work if this API
742 * is to be used for anything but locking VM pages. */
743 while (rc-- > 0)
744 {
745 flush_dcache_page(pMemLnx->apPages[rc]);
746 papVMAs[rc]->vm_flags |= VM_DONTCOPY;
747 }
748
749 up_read(&pTask->mm->mmap_sem);
750
751 RTMemFree(papVMAs);
752
753 pMemLnx->Core.u.Lock.R0Process = R0Process;
754 pMemLnx->cPages = cPages;
755 Assert(!pMemLnx->fMappedToRing0);
756 *ppMem = &pMemLnx->Core;
757
758 return VINF_SUCCESS;
759 }
760
761 /*
762 * Failed - we need to unlock any pages that we succeeded to lock.
763 */
764 while (rc-- > 0)
765 {
766 if (!PageReserved(pMemLnx->apPages[rc]))
767 SetPageDirty(pMemLnx->apPages[rc]);
768 page_cache_release(pMemLnx->apPages[rc]);
769 }
770
771 up_read(&pTask->mm->mmap_sem);
772
773 RTMemFree(papVMAs);
774 rc = VERR_LOCK_FAILED;
775 }
776
777 rtR0MemObjDelete(&pMemLnx->Core);
778 return rc;
779}
780
781
782int rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb)
783{
784 /* What is there to lock? Should/Can we fake this? */
785 return VERR_NOT_SUPPORTED;
786}
787
788
789int rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
790{
791#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
792 const size_t cPages = cb >> PAGE_SHIFT;
793 struct page *pDummyPage;
794 struct page **papPages;
795
796 /* check for unsupported stuff. */
797 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
798 AssertMsgReturn(uAlignment <= PAGE_SIZE, ("%#x\n", uAlignment), VERR_NOT_SUPPORTED);
799
800 /*
801 * Allocate a dummy page and create a page pointer array for vmap such that
802 * the dummy page is mapped all over the reserved area.
803 */
804 pDummyPage = alloc_page(GFP_HIGHUSER);
805 if (!pDummyPage)
806 return VERR_NO_MEMORY;
807 papPages = RTMemAlloc(sizeof(*papPages) * cPages);
808 if (papPages)
809 {
810 void *pv;
811 size_t iPage = cPages;
812 while (iPage-- > 0)
813 papPages[iPage] = pDummyPage;
814# ifdef VM_MAP
815 pv = vmap(papPages, cPages, VM_MAP, PAGE_KERNEL_RO);
816# else
817 pv = vmap(papPages, cPages, VM_ALLOC, PAGE_KERNEL_RO);
818# endif
819 RTMemFree(papPages);
820 if (pv)
821 {
822 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
823 if (pMemLnx)
824 {
825 pMemLnx->Core.u.ResVirt.R0Process = NIL_RTR0PROCESS;
826 pMemLnx->cPages = 1;
827 pMemLnx->apPages[0] = pDummyPage;
828 *ppMem = &pMemLnx->Core;
829 return VINF_SUCCESS;
830 }
831 vunmap(pv);
832 }
833 }
834 __free_page(pDummyPage);
835 return VERR_NO_MEMORY;
836
837#else /* < 2.4.22 */
838 /*
839 * Could probably use ioremap here, but the caller is in a better position than us
840 * to select some safe physical memory.
841 */
842 return VERR_NOT_SUPPORTED;
843#endif
844}
845
846
847/**
848 * Worker for rtR0MemObjNativeReserveUser and rtR0MemObjNativerMapUser that creates
849 * an empty user space mapping.
850 *
851 * The caller takes care of acquiring the mmap_sem of the task.
852 *
853 * @returns Pointer to the mapping.
854 * (void *)-1 on failure.
855 * @param R3PtrFixed (RTR3PTR)-1 if anywhere, otherwise a specific location.
856 * @param cb The size of the mapping.
857 * @param uAlignment The alignment of the mapping.
858 * @param pTask The Linux task to create this mapping in.
859 * @param fProt The RTMEM_PROT_* mask.
860 */
861static void *rtR0MemObjLinuxDoMmap(RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, struct task_struct *pTask, unsigned fProt)
862{
863 unsigned fLnxProt;
864 unsigned long ulAddr;
865
866 /*
867 * Convert from IPRT protection to mman.h PROT_ and call do_mmap.
868 */
869 fProt &= (RTMEM_PROT_NONE | RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC);
870 if (fProt == RTMEM_PROT_NONE)
871 fLnxProt = PROT_NONE;
872 else
873 {
874 fLnxProt = 0;
875 if (fProt & RTMEM_PROT_READ)
876 fLnxProt |= PROT_READ;
877 if (fProt & RTMEM_PROT_WRITE)
878 fLnxProt |= PROT_WRITE;
879 if (fProt & RTMEM_PROT_EXEC)
880 fLnxProt |= PROT_EXEC;
881 }
882
883 if (R3PtrFixed != (RTR3PTR)-1)
884 ulAddr = do_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
885 else
886 {
887 ulAddr = do_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
888 if ( !(ulAddr & ~PAGE_MASK)
889 && (ulAddr & (uAlignment - 1)))
890 {
891 /** @todo implement uAlignment properly... We'll probably need to make some dummy mappings to fill
892 * up alignment gaps. This is of course complicated by fragmentation (which we might have cause
893 * ourselves) and further by there begin two mmap strategies (top / bottom). */
894 /* For now, just ignore uAlignment requirements... */
895 }
896 }
897 if (ulAddr & ~PAGE_MASK) /* ~PAGE_MASK == PAGE_OFFSET_MASK */
898 return (void *)-1;
899 return (void *)ulAddr;
900}
901
902
903int rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
904{
905 PRTR0MEMOBJLNX pMemLnx;
906 void *pv;
907 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
908 if (!pTask)
909 return VERR_NOT_SUPPORTED;
910
911 /*
912 * Let rtR0MemObjLinuxDoMmap do the difficult bits.
913 */
914 down_write(&pTask->mm->mmap_sem);
915 pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, cb, uAlignment, pTask, RTMEM_PROT_NONE);
916 up_write(&pTask->mm->mmap_sem);
917 if (pv == (void *)-1)
918 return VERR_NO_MEMORY;
919
920 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
921 if (!pMemLnx)
922 {
923 down_write(&pTask->mm->mmap_sem);
924 MY_DO_MUNMAP(pTask->mm, (unsigned long)pv, cb);
925 up_write(&pTask->mm->mmap_sem);
926 return VERR_NO_MEMORY;
927 }
928
929 pMemLnx->Core.u.ResVirt.R0Process = R0Process;
930 *ppMem = &pMemLnx->Core;
931 return VINF_SUCCESS;
932}
933
934
935int rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment, unsigned fProt)
936{
937 int rc = VERR_NO_MEMORY;
938 PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
939 PRTR0MEMOBJLNX pMemLnx;
940
941 /* Fail if requested to do something we can't. */
942 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
943 AssertMsgReturn(uAlignment <= PAGE_SIZE, ("%#x\n", uAlignment), VERR_NOT_SUPPORTED);
944
945 /*
946 * Create the IPRT memory object.
947 */
948 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, pMemLnxToMap->Core.cb);
949 if (pMemLnx)
950 {
951 if (pMemLnxToMap->cPages)
952 {
953#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
954 /*
955 * Use vmap - 2.4.22 and later.
956 */
957 pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, true /* kernel */);
958# ifdef VM_MAP
959 pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[0], pMemLnxToMap->cPages, VM_MAP, fPg);
960# else
961 pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[0], pMemLnxToMap->cPages, VM_ALLOC, fPg);
962# endif
963 if (pMemLnx->Core.pv)
964 {
965 pMemLnx->fMappedToRing0 = true;
966 rc = VINF_SUCCESS;
967 }
968 else
969 rc = VERR_MAP_FAILED;
970
971#else /* < 2.4.22 */
972 /*
973 * Only option here is to share mappings if possible and forget about fProt.
974 */
975 if (rtR0MemObjIsRing3(pMemToMap))
976 rc = VERR_NOT_SUPPORTED;
977 else
978 {
979 rc = VINF_SUCCESS;
980 if (!pMemLnxToMap->Core.pv)
981 rc = rtR0MemObjLinuxVMap(pMemLnxToMap, !!(fProt & RTMEM_PROT_EXEC));
982 if (RT_SUCCESS(rc))
983 {
984 Assert(pMemLnxToMap->Core.pv);
985 pMemLnx->Core.pv = pMemLnxToMap->Core.pv;
986 }
987 }
988#endif
989 }
990 else
991 {
992 /*
993 * MMIO / physical memory.
994 */
995 Assert(pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS && !pMemLnxToMap->Core.u.Phys.fAllocated);
996 pMemLnx->Core.pv = ioremap(pMemLnxToMap->Core.u.Phys.PhysBase, pMemLnxToMap->Core.cb);
997 if (pMemLnx->Core.pv)
998 {
999 /** @todo fix protection. */
1000 rc = VINF_SUCCESS;
1001 }
1002 }
1003 if (RT_SUCCESS(rc))
1004 {
1005 pMemLnx->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
1006 *ppMem = &pMemLnx->Core;
1007 return VINF_SUCCESS;
1008 }
1009 rtR0MemObjDelete(&pMemLnx->Core);
1010 }
1011
1012 return rc;
1013}
1014
1015
1016int rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
1017{
1018 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1019 PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
1020 int rc = VERR_NO_MEMORY;
1021 PRTR0MEMOBJLNX pMemLnx;
1022
1023 /*
1024 * Check for restrictions.
1025 */
1026 if (!pTask)
1027 return VERR_NOT_SUPPORTED;
1028
1029 /*
1030 * Create the IPRT memory object.
1031 */
1032 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, pMemLnxToMap->Core.cb);
1033 if (pMemLnx)
1034 {
1035 /*
1036 * Allocate user space mapping.
1037 */
1038 void *pv;
1039 down_write(&pTask->mm->mmap_sem);
1040 pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, pMemLnxToMap->Core.cb, uAlignment, pTask, fProt);
1041 if (pv != (void *)-1)
1042 {
1043 /*
1044 * Map page by page into the mmap area.
1045 * This is generic, paranoid and not very efficient.
1046 */
1047 pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, false /* user */);
1048 unsigned long ulAddrCur = (unsigned long)pv;
1049 const size_t cPages = pMemLnxToMap->Core.cb >> PAGE_SHIFT;
1050 size_t iPage;
1051 rc = 0;
1052 if (pMemLnxToMap->cPages)
1053 {
1054 for (iPage = 0; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE)
1055 {
1056#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1057 struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
1058 AssertBreak(vma, rc = VERR_INTERNAL_ERROR);
1059#endif
1060
1061#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
1062 rc = remap_pfn_range(vma, ulAddrCur, page_to_pfn(pMemLnxToMap->apPages[iPage]), PAGE_SIZE, fPg);
1063#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1064 rc = remap_page_range(vma, ulAddrCur, page_to_phys(pMemLnxToMap->apPages[iPage]), PAGE_SIZE, fPg);
1065#else /* 2.4 */
1066 rc = remap_page_range(ulAddrCur, page_to_phys(pMemLnxToMap->apPages[iPage]), PAGE_SIZE, fPg);
1067#endif
1068 if (rc)
1069 break;
1070 }
1071 }
1072 else
1073 {
1074 RTHCPHYS Phys;
1075 if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS)
1076 Phys = pMemLnxToMap->Core.u.Phys.PhysBase;
1077 else if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_CONT)
1078 Phys = pMemLnxToMap->Core.u.Cont.Phys;
1079 else
1080 {
1081 AssertMsgFailed(("%d\n", pMemLnxToMap->Core.enmType));
1082 Phys = NIL_RTHCPHYS;
1083 }
1084 if (Phys != NIL_RTHCPHYS)
1085 {
1086 for (iPage = 0; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE, Phys += PAGE_SIZE)
1087 {
1088#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1089 struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
1090 AssertBreak(vma, rc = VERR_INTERNAL_ERROR);
1091#endif
1092
1093#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
1094 rc = remap_pfn_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1095#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1096 rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1097#else /* 2.4 */
1098 rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
1099#endif
1100 if (rc)
1101 break;
1102 }
1103 }
1104 }
1105 if (!rc)
1106 {
1107 up_write(&pTask->mm->mmap_sem);
1108
1109 pMemLnx->Core.pv = pv;
1110 pMemLnx->Core.u.Mapping.R0Process = R0Process;
1111 *ppMem = &pMemLnx->Core;
1112 return VINF_SUCCESS;
1113 }
1114
1115 /*
1116 * Bail out.
1117 */
1118 MY_DO_MUNMAP(pTask->mm, (unsigned long)pv, pMemLnxToMap->Core.cb);
1119 if (rc != VERR_INTERNAL_ERROR)
1120 rc = VERR_NO_MEMORY;
1121 }
1122
1123 up_write(&pTask->mm->mmap_sem);
1124
1125 rtR0MemObjDelete(&pMemLnx->Core);
1126 }
1127
1128 return rc;
1129}
1130
1131
1132RTHCPHYS rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
1133{
1134 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
1135
1136 if (pMemLnx->cPages)
1137 return page_to_phys(pMemLnx->apPages[iPage]);
1138
1139 switch (pMemLnx->Core.enmType)
1140 {
1141 case RTR0MEMOBJTYPE_CONT:
1142 return pMemLnx->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
1143
1144 case RTR0MEMOBJTYPE_PHYS:
1145 return pMemLnx->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
1146
1147 /* the parent knows */
1148 case RTR0MEMOBJTYPE_MAPPING:
1149 return rtR0MemObjNativeGetPagePhysAddr(pMemLnx->Core.uRel.Child.pParent, iPage);
1150
1151 /* cPages > 0 */
1152 case RTR0MEMOBJTYPE_LOW:
1153 case RTR0MEMOBJTYPE_LOCK:
1154 case RTR0MEMOBJTYPE_PHYS_NC:
1155 case RTR0MEMOBJTYPE_PAGE:
1156 default:
1157 AssertMsgFailed(("%d\n", pMemLnx->Core.enmType));
1158 /* fall thru */
1159
1160 case RTR0MEMOBJTYPE_RES_VIRT:
1161 return NIL_RTHCPHYS;
1162 }
1163}
1164
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette