VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/linux/alloc-r0drv-linux.c@ 32674

Last change on this file since 32674 was 32674, checked in by vboxsync, 15 years ago

IPRT: started on some internal ring-0 alloc api.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 9.6 KB
Line 
1/* $Id: alloc-r0drv-linux.c 32674 2010-09-21 16:51:50Z vboxsync $ */
2/** @file
3 * IPRT - Memory Allocation, Ring-0 Driver, Linux.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.215389.xyz. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*******************************************************************************
29* Header Files *
30*******************************************************************************/
31#include "the-linux-kernel.h"
32#include "internal/iprt.h"
33
34#include <iprt/mem.h>
35#include <iprt/assert.h>
36#include "r0drv/alloc-r0drv.h"
37
38#if defined(RT_ARCH_AMD64) || defined(DOXYGEN_RUNNING)
39/**
40 * We need memory in the module range (~2GB to ~0) this can only be obtained
41 * thru APIs that are not exported (see module_alloc()).
42 *
43 * So, we'll have to create a quick and dirty heap here using BSS memory.
44 * Very annoying and it's going to restrict us!
45 */
46# define RTMEMALLOC_EXEC_HEAP
47#endif
48#ifdef RTMEMALLOC_EXEC_HEAP
49# include <iprt/heap.h>
50# include <iprt/spinlock.h>
51# include <iprt/err.h>
52#endif
53
54
55/*******************************************************************************
56* Global Variables *
57*******************************************************************************/
58#ifdef RTMEMALLOC_EXEC_HEAP
59/** The heap. */
60static RTHEAPSIMPLE g_HeapExec = NIL_RTHEAPSIMPLE;
61/** Spinlock protecting the heap. */
62static RTSPINLOCK g_HeapExecSpinlock = NIL_RTSPINLOCK;
63
64
65/**
66 * API for cleaning up the heap spinlock on IPRT termination.
67 * This is as RTMemExecDonate specific to AMD64 Linux/GNU.
68 */
69void rtR0MemExecCleanup(void)
70{
71 RTSpinlockDestroy(g_HeapExecSpinlock);
72 g_HeapExecSpinlock = NIL_RTSPINLOCK;
73}
74
75
76/**
77 * Donate read+write+execute memory to the exec heap.
78 *
79 * This API is specific to AMD64 and Linux/GNU. A kernel module that desires to
80 * use RTMemExecAlloc on AMD64 Linux/GNU will have to donate some statically
81 * allocated memory in the module if it wishes for GCC generated code to work.
82 * GCC can only generate modules that work in the address range ~2GB to ~0
83 * currently.
84 *
85 * The API only accept one single donation.
86 *
87 * @returns IPRT status code.
88 * @param pvMemory Pointer to the memory block.
89 * @param cb The size of the memory block.
90 */
91RTR0DECL(int) RTR0MemExecDonate(void *pvMemory, size_t cb)
92{
93 int rc;
94 AssertReturn(g_HeapExec == NIL_RTHEAPSIMPLE, VERR_WRONG_ORDER);
95
96 rc = RTSpinlockCreate(&g_HeapExecSpinlock);
97 if (RT_SUCCESS(rc))
98 {
99 rc = RTHeapSimpleInit(&g_HeapExec, pvMemory, cb);
100 if (RT_FAILURE(rc))
101 rtR0MemExecCleanup();
102 }
103 return rc;
104}
105RT_EXPORT_SYMBOL(RTR0MemExecDonate);
106#endif /* RTMEMALLOC_EXEC_HEAP */
107
108
109
110/**
111 * OS specific allocation function.
112 */
113PRTMEMHDR rtR0MemAlloc(size_t cb, uint32_t fFlags)
114{
115 PRTMEMHDR pHdr;
116
117 /*
118 * Allocate.
119 */
120 if (fFlags & RTMEMHDR_FLAG_EXEC)
121 {
122 AssertReturn(!(fFlags & RTMEMHDR_FLAG_ANY_CTX), NULL);
123
124#if defined(RT_ARCH_AMD64)
125# ifdef RTMEMALLOC_EXEC_HEAP
126 if (g_HeapExec != NIL_RTHEAPSIMPLE)
127 {
128 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
129 RTSpinlockAcquireNoInts(g_HeapExecSpinlock, &SpinlockTmp);
130 pHdr = (PRTMEMHDR)RTHeapSimpleAlloc(g_HeapExec, cb + sizeof(*pHdr), 0);
131 RTSpinlockReleaseNoInts(g_HeapExecSpinlock, &SpinlockTmp);
132 fFlags |= RTMEMHDR_FLAG_EXEC_HEAP;
133 }
134 else
135 pHdr = NULL;
136# else /* !RTMEMALLOC_EXEC_HEAP */
137 pHdr = (PRTMEMHDR)__vmalloc(cb + sizeof(*pHdr), GFP_KERNEL | __GFP_HIGHMEM, MY_PAGE_KERNEL_EXEC);
138# endif /* !RTMEMALLOC_EXEC_HEAP */
139
140#elif defined(PAGE_KERNEL_EXEC) && defined(CONFIG_X86_PAE)
141 pHdr = (PRTMEMHDR)__vmalloc(cb + sizeof(*pHdr), GFP_KERNEL | __GFP_HIGHMEM, MY_PAGE_KERNEL_EXEC);
142#else
143 pHdr = (PRTMEMHDR)vmalloc(cb + sizeof(*pHdr));
144#endif
145 }
146 else
147 {
148 if (cb <= PAGE_SIZE || (fFlags & RTMEMHDR_FLAG_ANY_CTX))
149 {
150 fFlags |= RTMEMHDR_FLAG_KMALLOC;
151 pHdr = kmalloc(cb + sizeof(*pHdr), GFP_KERNEL);
152 }
153 else
154 pHdr = vmalloc(cb + sizeof(*pHdr));
155 }
156
157 /*
158 * Initialize.
159 */
160 if (pHdr)
161 {
162 pHdr->u32Magic = RTMEMHDR_MAGIC;
163 pHdr->fFlags = fFlags;
164 pHdr->cb = cb;
165 pHdr->cbReq = cb;
166 }
167 return pHdr;
168}
169
170
171/**
172 * OS specific free function.
173 */
174void rtR0MemFree(PRTMEMHDR pHdr)
175{
176 pHdr->u32Magic += 1;
177 if (pHdr->fFlags & RTMEMHDR_FLAG_KMALLOC)
178 kfree(pHdr);
179#ifdef RTMEMALLOC_EXEC_HEAP
180 else if (pHdr->fFlags & RTMEMHDR_FLAG_EXEC_HEAP)
181 {
182 RTSPINLOCKTMP SpinlockTmp = RTSPINLOCKTMP_INITIALIZER;
183 RTSpinlockAcquireNoInts(g_HeapExecSpinlock, &SpinlockTmp);
184 RTHeapSimpleFree(g_HeapExec, pHdr);
185 RTSpinlockReleaseNoInts(g_HeapExecSpinlock, &SpinlockTmp);
186 }
187#endif
188 else
189 vfree(pHdr);
190}
191
192
193/**
194 * Compute order. Some functions allocate 2^order pages.
195 *
196 * @returns order.
197 * @param cPages Number of pages.
198 */
199static int CalcPowerOf2Order(unsigned long cPages)
200{
201 int iOrder;
202 unsigned long cTmp;
203
204 for (iOrder = 0, cTmp = cPages; cTmp >>= 1; ++iOrder)
205 ;
206 if (cPages & ~(1 << iOrder))
207 ++iOrder;
208
209 return iOrder;
210}
211
212
213/**
214 * Allocates physical contiguous memory (below 4GB).
215 * The allocation is page aligned and the content is undefined.
216 *
217 * @returns Pointer to the memory block. This is page aligned.
218 * @param pPhys Where to store the physical address.
219 * @param cb The allocation size in bytes. This is always
220 * rounded up to PAGE_SIZE.
221 */
222RTR0DECL(void *) RTMemContAlloc(PRTCCPHYS pPhys, size_t cb)
223{
224 int cOrder;
225 unsigned cPages;
226 struct page *paPages;
227
228 /*
229 * validate input.
230 */
231 Assert(VALID_PTR(pPhys));
232 Assert(cb > 0);
233
234 /*
235 * Allocate page pointer array.
236 */
237 cb = RT_ALIGN_Z(cb, PAGE_SIZE);
238 cPages = cb >> PAGE_SHIFT;
239 cOrder = CalcPowerOf2Order(cPages);
240#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
241 /* ZONE_DMA32: 0-4GB */
242 paPages = alloc_pages(GFP_DMA32, cOrder);
243 if (!paPages)
244#endif
245#ifdef RT_ARCH_AMD64
246 /* ZONE_DMA; 0-16MB */
247 paPages = alloc_pages(GFP_DMA, cOrder);
248#else
249 /* ZONE_NORMAL: 0-896MB */
250 paPages = alloc_pages(GFP_USER, cOrder);
251#endif
252 if (paPages)
253 {
254 /*
255 * Reserve the pages and mark them executable.
256 */
257 unsigned iPage;
258 for (iPage = 0; iPage < cPages; iPage++)
259 {
260 Assert(!PageHighMem(&paPages[iPage]));
261 if (iPage + 1 < cPages)
262 {
263 AssertMsg( (uintptr_t)phys_to_virt(page_to_phys(&paPages[iPage])) + PAGE_SIZE
264 == (uintptr_t)phys_to_virt(page_to_phys(&paPages[iPage + 1]))
265 && page_to_phys(&paPages[iPage]) + PAGE_SIZE
266 == page_to_phys(&paPages[iPage + 1]),
267 ("iPage=%i cPages=%u [0]=%#llx,%p [1]=%#llx,%p\n", iPage, cPages,
268 (long long)page_to_phys(&paPages[iPage]), phys_to_virt(page_to_phys(&paPages[iPage])),
269 (long long)page_to_phys(&paPages[iPage + 1]), phys_to_virt(page_to_phys(&paPages[iPage + 1])) ));
270 }
271
272 SetPageReserved(&paPages[iPage]);
273#if LINUX_VERSION_CODE > KERNEL_VERSION(2, 4, 20) /** @todo find the exact kernel where change_page_attr was introduced. */
274 MY_SET_PAGES_EXEC(&paPages[iPage], 1);
275#endif
276 }
277 *pPhys = page_to_phys(paPages);
278 return phys_to_virt(page_to_phys(paPages));
279 }
280
281 return NULL;
282}
283RT_EXPORT_SYMBOL(RTMemContAlloc);
284
285
286/**
287 * Frees memory allocated ysing RTMemContAlloc().
288 *
289 * @param pv Pointer to return from RTMemContAlloc().
290 * @param cb The cb parameter passed to RTMemContAlloc().
291 */
292RTR0DECL(void) RTMemContFree(void *pv, size_t cb)
293{
294 if (pv)
295 {
296 int cOrder;
297 unsigned cPages;
298 unsigned iPage;
299 struct page *paPages;
300
301 /* validate */
302 AssertMsg(!((uintptr_t)pv & PAGE_OFFSET_MASK), ("pv=%p\n", pv));
303 Assert(cb > 0);
304
305 /* calc order and get pages */
306 cb = RT_ALIGN_Z(cb, PAGE_SIZE);
307 cPages = cb >> PAGE_SHIFT;
308 cOrder = CalcPowerOf2Order(cPages);
309 paPages = virt_to_page(pv);
310
311 /*
312 * Restore page attributes freeing the pages.
313 */
314 for (iPage = 0; iPage < cPages; iPage++)
315 {
316 ClearPageReserved(&paPages[iPage]);
317#if LINUX_VERSION_CODE > KERNEL_VERSION(2, 4, 20) /** @todo find the exact kernel where change_page_attr was introduced. */
318 MY_SET_PAGES_NOEXEC(&paPages[iPage], 1);
319#endif
320 }
321 __free_pages(paPages, cOrder);
322 }
323}
324RT_EXPORT_SYMBOL(RTMemContFree);
325
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette