VirtualBox

source: vbox/trunk/src/VBox/Runtime/common/string/strformatrt.cpp@ 84054

Last change on this file since 84054 was 84054, checked in by vboxsync, 5 years ago

IPRT,++: Apply bldprog-strtab.h and friends to the IPRT status message database (errmsg.cpp) to reduce size. The interface (RTErrMsg*) has been reworked as we no longer have C-strings in the database, but 'compressed' string w/o zero terminators. bugref:9726

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 78.2 KB
Line 
1/* $Id: strformatrt.cpp 84054 2020-04-28 16:05:00Z vboxsync $ */
2/** @file
3 * IPRT - IPRT String Formatter Extensions.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.215389.xyz. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*********************************************************************************************************************************
29* Header Files *
30*********************************************************************************************************************************/
31#define LOG_GROUP RTLOGGROUP_STRING
32#include <iprt/string.h>
33#ifndef RT_NO_EXPORT_SYMBOL
34# define RT_NO_EXPORT_SYMBOL /* don't slurp <linux/module.h> which then again
35 slurps arch-specific headers defining symbols */
36#endif
37#include "internal/iprt.h"
38
39#include <iprt/log.h>
40#include <iprt/assert.h>
41#include <iprt/string.h>
42#include <iprt/stdarg.h>
43#ifdef IN_RING3
44# include <iprt/errcore.h>
45# include <iprt/thread.h>
46# include <iprt/utf16.h>
47#endif
48#include <iprt/ctype.h>
49#include <iprt/time.h>
50#include <iprt/net.h>
51#include <iprt/path.h>
52#include <iprt/asm.h>
53#define STRFORMAT_WITH_X86
54#ifdef STRFORMAT_WITH_X86
55# include <iprt/x86.h>
56#endif
57#include "internal/string.h"
58
59
60/*********************************************************************************************************************************
61* Global Variables *
62*********************************************************************************************************************************/
63static char g_szHexDigits[17] = "0123456789abcdef";
64#ifdef IN_RING3
65static char g_szHexDigitsUpper[17] = "0123456789ABCDEF";
66#endif
67
68
69/**
70 * Helper that formats a 16-bit hex word in a IPv6 address.
71 *
72 * @returns Length in chars.
73 * @param pszDst The output buffer. Written from the start.
74 * @param uWord The word to format as hex.
75 */
76static size_t rtstrFormatIPv6HexWord(char *pszDst, uint16_t uWord)
77{
78 size_t off;
79 uint16_t cDigits;
80
81 if (uWord & UINT16_C(0xff00))
82 cDigits = uWord & UINT16_C(0xf000) ? 4 : 3;
83 else
84 cDigits = uWord & UINT16_C(0x00f0) ? 2 : 1;
85
86 off = 0;
87 switch (cDigits)
88 {
89 case 4: pszDst[off++] = g_szHexDigits[(uWord >> 12) & 0xf]; RT_FALL_THRU();
90 case 3: pszDst[off++] = g_szHexDigits[(uWord >> 8) & 0xf]; RT_FALL_THRU();
91 case 2: pszDst[off++] = g_szHexDigits[(uWord >> 4) & 0xf]; RT_FALL_THRU();
92 case 1: pszDst[off++] = g_szHexDigits[(uWord >> 0) & 0xf];
93 break;
94 }
95 pszDst[off] = '\0';
96 return off;
97}
98
99
100/**
101 * Helper function to format IPv6 address according to RFC 5952.
102 *
103 * @returns The number of bytes formatted.
104 * @param pfnOutput Pointer to output function.
105 * @param pvArgOutput Argument for the output function.
106 * @param pIpv6Addr IPv6 address
107 */
108static size_t rtstrFormatIPv6(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput, PCRTNETADDRIPV6 pIpv6Addr)
109{
110 size_t cch; /* result */
111 bool fEmbeddedIpv4;
112 size_t cwHexPart;
113 size_t cwLongestZeroRun;
114 size_t iLongestZeroStart;
115 size_t idx;
116 char szHexWord[8];
117
118 Assert(pIpv6Addr != NULL);
119
120 /*
121 * Check for embedded IPv4 address.
122 *
123 * IPv4-compatible - ::11.22.33.44 (obsolete)
124 * IPv4-mapped - ::ffff:11.22.33.44
125 * IPv4-translated - ::ffff:0:11.22.33.44 (RFC 2765)
126 */
127 fEmbeddedIpv4 = false;
128 cwHexPart = RT_ELEMENTS(pIpv6Addr->au16);
129 if ( pIpv6Addr->au64[0] == 0
130 && ( ( pIpv6Addr->au32[2] == 0
131 && pIpv6Addr->au32[3] != 0
132 && pIpv6Addr->au32[3] != RT_H2BE_U32_C(1) )
133 || pIpv6Addr->au32[2] == RT_H2BE_U32_C(0x0000ffff)
134 || pIpv6Addr->au32[2] == RT_H2BE_U32_C(0xffff0000) ) )
135 {
136 fEmbeddedIpv4 = true;
137 cwHexPart -= 2;
138 }
139
140 /*
141 * Find the longest sequences of two or more zero words.
142 */
143 cwLongestZeroRun = 0;
144 iLongestZeroStart = 0;
145 for (idx = 0; idx < cwHexPart; idx++)
146 if (pIpv6Addr->au16[idx] == 0)
147 {
148 size_t iZeroStart = idx;
149 size_t cwZeroRun;
150 do
151 idx++;
152 while (idx < cwHexPart && pIpv6Addr->au16[idx] == 0);
153 cwZeroRun = idx - iZeroStart;
154 if (cwZeroRun > 1 && cwZeroRun > cwLongestZeroRun)
155 {
156 cwLongestZeroRun = cwZeroRun;
157 iLongestZeroStart = iZeroStart;
158 if (cwZeroRun >= cwHexPart - idx)
159 break;
160 }
161 }
162
163 /*
164 * Do the formatting.
165 */
166 cch = 0;
167 if (cwLongestZeroRun == 0)
168 {
169 for (idx = 0; idx < cwHexPart; ++idx)
170 {
171 if (idx > 0)
172 cch += pfnOutput(pvArgOutput, ":", 1);
173 cch += pfnOutput(pvArgOutput, szHexWord, rtstrFormatIPv6HexWord(szHexWord, RT_BE2H_U16(pIpv6Addr->au16[idx])));
174 }
175
176 if (fEmbeddedIpv4)
177 cch += pfnOutput(pvArgOutput, ":", 1);
178 }
179 else
180 {
181 const size_t iLongestZeroEnd = iLongestZeroStart + cwLongestZeroRun;
182
183 if (iLongestZeroStart == 0)
184 cch += pfnOutput(pvArgOutput, ":", 1);
185 else
186 for (idx = 0; idx < iLongestZeroStart; ++idx)
187 {
188 cch += pfnOutput(pvArgOutput, szHexWord, rtstrFormatIPv6HexWord(szHexWord, RT_BE2H_U16(pIpv6Addr->au16[idx])));
189 cch += pfnOutput(pvArgOutput, ":", 1);
190 }
191
192 if (iLongestZeroEnd == cwHexPart)
193 cch += pfnOutput(pvArgOutput, ":", 1);
194 else
195 {
196 for (idx = iLongestZeroEnd; idx < cwHexPart; ++idx)
197 {
198 cch += pfnOutput(pvArgOutput, ":", 1);
199 cch += pfnOutput(pvArgOutput, szHexWord, rtstrFormatIPv6HexWord(szHexWord, RT_BE2H_U16(pIpv6Addr->au16[idx])));
200 }
201
202 if (fEmbeddedIpv4)
203 cch += pfnOutput(pvArgOutput, ":", 1);
204 }
205 }
206
207 if (fEmbeddedIpv4)
208 cch += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
209 "%u.%u.%u.%u",
210 pIpv6Addr->au8[12],
211 pIpv6Addr->au8[13],
212 pIpv6Addr->au8[14],
213 pIpv6Addr->au8[15]);
214
215 return cch;
216}
217
218
219/**
220 * Callback to format iprt formatting extentions.
221 * See @ref pg_rt_str_format for a reference on the format types.
222 *
223 * @returns The number of bytes formatted.
224 * @param pfnOutput Pointer to output function.
225 * @param pvArgOutput Argument for the output function.
226 * @param ppszFormat Pointer to the format string pointer. Advance this till the char
227 * after the format specifier.
228 * @param pArgs Pointer to the argument list. Use this to fetch the arguments.
229 * @param cchWidth Format Width. -1 if not specified.
230 * @param cchPrecision Format Precision. -1 if not specified.
231 * @param fFlags Flags (RTSTR_NTFS_*).
232 * @param chArgSize The argument size specifier, 'l' or 'L'.
233 */
234DECLHIDDEN(size_t) rtstrFormatRt(PFNRTSTROUTPUT pfnOutput, void *pvArgOutput, const char **ppszFormat, va_list *pArgs,
235 int cchWidth, int cchPrecision, unsigned fFlags, char chArgSize)
236{
237 const char *pszFormatOrg = *ppszFormat;
238 char ch = *(*ppszFormat)++;
239 size_t cch;
240 char szBuf[80];
241
242 if (ch == 'R')
243 {
244 ch = *(*ppszFormat)++;
245 switch (ch)
246 {
247 /*
248 * Groups 1 and 2.
249 */
250 case 'T':
251 case 'G':
252 case 'H':
253 case 'R':
254 case 'C':
255 case 'I':
256 case 'X':
257 case 'U':
258 case 'K':
259 {
260 /*
261 * Interpret the type.
262 */
263 typedef enum
264 {
265 RTSF_INT,
266 RTSF_INTW,
267 RTSF_BOOL,
268 RTSF_FP16,
269 RTSF_FP32,
270 RTSF_FP64,
271 RTSF_IPV4,
272 RTSF_IPV6,
273 RTSF_MAC,
274 RTSF_NETADDR,
275 RTSF_UUID,
276 RTSF_ERRINFO,
277 RTSF_ERRINFO_MSG_ONLY
278 } RTSF;
279 static const struct
280 {
281 uint8_t cch; /**< the length of the string. */
282 char sz[10]; /**< the part following 'R'. */
283 uint8_t cb; /**< the size of the type. */
284 uint8_t u8Base; /**< the size of the type. */
285 RTSF enmFormat; /**< The way to format it. */
286 uint16_t fFlags; /**< additional RTSTR_F_* flags. */
287 }
288 /** Sorted array of types, looked up using binary search! */
289 s_aTypes[] =
290 {
291#define STRMEM(str) sizeof(str) - 1, str
292 { STRMEM("Ci"), sizeof(RTINT), 10, RTSF_INT, RTSTR_F_VALSIGNED },
293 { STRMEM("Cp"), sizeof(RTCCPHYS), 16, RTSF_INTW, 0 },
294 { STRMEM("Cr"), sizeof(RTCCUINTREG), 16, RTSF_INTW, 0 },
295 { STRMEM("Cu"), sizeof(RTUINT), 10, RTSF_INT, 0 },
296 { STRMEM("Cv"), sizeof(void *), 16, RTSF_INTW, 0 },
297 { STRMEM("Cx"), sizeof(RTUINT), 16, RTSF_INT, 0 },
298 { STRMEM("Gi"), sizeof(RTGCINT), 10, RTSF_INT, RTSTR_F_VALSIGNED },
299 { STRMEM("Gp"), sizeof(RTGCPHYS), 16, RTSF_INTW, 0 },
300 { STRMEM("Gr"), sizeof(RTGCUINTREG), 16, RTSF_INTW, 0 },
301 { STRMEM("Gu"), sizeof(RTGCUINT), 10, RTSF_INT, 0 },
302 { STRMEM("Gv"), sizeof(RTGCPTR), 16, RTSF_INTW, 0 },
303 { STRMEM("Gx"), sizeof(RTGCUINT), 16, RTSF_INT, 0 },
304 { STRMEM("Hi"), sizeof(RTHCINT), 10, RTSF_INT, RTSTR_F_VALSIGNED },
305 { STRMEM("Hp"), sizeof(RTHCPHYS), 16, RTSF_INTW, 0 },
306 { STRMEM("Hr"), sizeof(RTHCUINTREG), 16, RTSF_INTW, 0 },
307 { STRMEM("Hu"), sizeof(RTHCUINT), 10, RTSF_INT, 0 },
308 { STRMEM("Hv"), sizeof(RTHCPTR), 16, RTSF_INTW, 0 },
309 { STRMEM("Hx"), sizeof(RTHCUINT), 16, RTSF_INT, 0 },
310 { STRMEM("I16"), sizeof(int16_t), 10, RTSF_INT, RTSTR_F_VALSIGNED },
311 { STRMEM("I32"), sizeof(int32_t), 10, RTSF_INT, RTSTR_F_VALSIGNED },
312 { STRMEM("I64"), sizeof(int64_t), 10, RTSF_INT, RTSTR_F_VALSIGNED },
313 { STRMEM("I8"), sizeof(int8_t), 10, RTSF_INT, RTSTR_F_VALSIGNED },
314 { STRMEM("Kv"), sizeof(RTHCPTR), 16, RTSF_INT, RTSTR_F_OBFUSCATE_PTR },
315 { STRMEM("Rv"), sizeof(RTRCPTR), 16, RTSF_INTW, 0 },
316 { STRMEM("Tbool"), sizeof(bool), 10, RTSF_BOOL, 0 },
317 { STRMEM("Teic"), sizeof(PCRTERRINFO), 16, RTSF_ERRINFO, 0 },
318 { STRMEM("Teim"), sizeof(PCRTERRINFO), 16, RTSF_ERRINFO_MSG_ONLY, 0 },
319 { STRMEM("Tfile"), sizeof(RTFILE), 10, RTSF_INT, 0 },
320 { STRMEM("Tfmode"), sizeof(RTFMODE), 16, RTSF_INTW, 0 },
321 { STRMEM("Tfoff"), sizeof(RTFOFF), 10, RTSF_INT, RTSTR_F_VALSIGNED },
322 { STRMEM("Tfp16"), sizeof(RTFAR16), 16, RTSF_FP16, RTSTR_F_ZEROPAD },
323 { STRMEM("Tfp32"), sizeof(RTFAR32), 16, RTSF_FP32, RTSTR_F_ZEROPAD },
324 { STRMEM("Tfp64"), sizeof(RTFAR64), 16, RTSF_FP64, RTSTR_F_ZEROPAD },
325 { STRMEM("Tgid"), sizeof(RTGID), 10, RTSF_INT, RTSTR_F_VALSIGNED },
326 { STRMEM("Tino"), sizeof(RTINODE), 16, RTSF_INTW, 0 },
327 { STRMEM("Tint"), sizeof(RTINT), 10, RTSF_INT, RTSTR_F_VALSIGNED },
328 { STRMEM("Tiop"), sizeof(RTIOPORT), 16, RTSF_INTW, 0 },
329 { STRMEM("Tldrm"), sizeof(RTLDRMOD), 16, RTSF_INTW, 0 },
330 { STRMEM("Tmac"), sizeof(PCRTMAC), 16, RTSF_MAC, 0 },
331 { STRMEM("Tnaddr"), sizeof(PCRTNETADDR), 10, RTSF_NETADDR,0 },
332 { STRMEM("Tnaipv4"), sizeof(RTNETADDRIPV4), 10, RTSF_IPV4, 0 },
333 { STRMEM("Tnaipv6"), sizeof(PCRTNETADDRIPV6),16, RTSF_IPV6, 0 },
334 { STRMEM("Tnthrd"), sizeof(RTNATIVETHREAD), 16, RTSF_INTW, 0 },
335 { STRMEM("Tproc"), sizeof(RTPROCESS), 16, RTSF_INTW, 0 },
336 { STRMEM("Tptr"), sizeof(RTUINTPTR), 16, RTSF_INTW, 0 },
337 { STRMEM("Treg"), sizeof(RTCCUINTREG), 16, RTSF_INTW, 0 },
338 { STRMEM("Tsel"), sizeof(RTSEL), 16, RTSF_INTW, 0 },
339 { STRMEM("Tsem"), sizeof(RTSEMEVENT), 16, RTSF_INTW, 0 },
340 { STRMEM("Tsock"), sizeof(RTSOCKET), 10, RTSF_INT, 0 },
341 { STRMEM("Tthrd"), sizeof(RTTHREAD), 16, RTSF_INTW, 0 },
342 { STRMEM("Tuid"), sizeof(RTUID), 10, RTSF_INT, RTSTR_F_VALSIGNED },
343 { STRMEM("Tuint"), sizeof(RTUINT), 10, RTSF_INT, 0 },
344 { STRMEM("Tunicp"), sizeof(RTUNICP), 16, RTSF_INTW, RTSTR_F_ZEROPAD },
345 { STRMEM("Tutf16"), sizeof(RTUTF16), 16, RTSF_INTW, RTSTR_F_ZEROPAD },
346 { STRMEM("Tuuid"), sizeof(PCRTUUID), 16, RTSF_UUID, 0 },
347 { STRMEM("Txint"), sizeof(RTUINT), 16, RTSF_INT, 0 },
348 { STRMEM("U16"), sizeof(uint16_t), 10, RTSF_INT, 0 },
349 { STRMEM("U32"), sizeof(uint32_t), 10, RTSF_INT, 0 },
350 { STRMEM("U64"), sizeof(uint64_t), 10, RTSF_INT, 0 },
351 { STRMEM("U8"), sizeof(uint8_t), 10, RTSF_INT, 0 },
352 { STRMEM("X16"), sizeof(uint16_t), 16, RTSF_INT, 0 },
353 { STRMEM("X32"), sizeof(uint32_t), 16, RTSF_INT, 0 },
354 { STRMEM("X64"), sizeof(uint64_t), 16, RTSF_INT, 0 },
355 { STRMEM("X8"), sizeof(uint8_t), 16, RTSF_INT, 0 },
356#undef STRMEM
357 };
358 static const char s_szNull[] = "<NULL>";
359
360 const char *pszType = *ppszFormat - 1;
361 int iStart = 0;
362 int iEnd = RT_ELEMENTS(s_aTypes) - 1;
363 int i = RT_ELEMENTS(s_aTypes) / 2;
364
365 union
366 {
367 uint8_t u8;
368 uint16_t u16;
369 uint32_t u32;
370 uint64_t u64;
371 int8_t i8;
372 int16_t i16;
373 int32_t i32;
374 int64_t i64;
375 RTR0INTPTR uR0Ptr;
376 RTFAR16 fp16;
377 RTFAR32 fp32;
378 RTFAR64 fp64;
379 bool fBool;
380 PCRTMAC pMac;
381 RTNETADDRIPV4 Ipv4Addr;
382 PCRTNETADDRIPV6 pIpv6Addr;
383 PCRTNETADDR pNetAddr;
384 PCRTUUID pUuid;
385 PCRTERRINFO pErrInfo;
386 } u;
387
388 AssertMsg(!chArgSize, ("Not argument size '%c' for RT types! '%.10s'\n", chArgSize, pszFormatOrg));
389 RT_NOREF_PV(chArgSize);
390
391 /*
392 * Lookup the type - binary search.
393 */
394 for (;;)
395 {
396 int iDiff = strncmp(pszType, s_aTypes[i].sz, s_aTypes[i].cch);
397 if (!iDiff)
398 break;
399 if (iEnd == iStart)
400 {
401 AssertMsgFailed(("Invalid format type '%.10s'!\n", pszFormatOrg));
402 return 0;
403 }
404 if (iDiff < 0)
405 iEnd = i - 1;
406 else
407 iStart = i + 1;
408 if (iEnd < iStart)
409 {
410 AssertMsgFailed(("Invalid format type '%.10s'!\n", pszFormatOrg));
411 return 0;
412 }
413 i = iStart + (iEnd - iStart) / 2;
414 }
415
416 /*
417 * Advance the format string and merge flags.
418 */
419 *ppszFormat += s_aTypes[i].cch - 1;
420 fFlags |= s_aTypes[i].fFlags;
421
422 /*
423 * Fetch the argument.
424 * It's important that a signed value gets sign-extended up to 64-bit.
425 */
426 RT_ZERO(u);
427 if (fFlags & RTSTR_F_VALSIGNED)
428 {
429 switch (s_aTypes[i].cb)
430 {
431 case sizeof(int8_t):
432 u.i64 = va_arg(*pArgs, /*int8_t*/int);
433 fFlags |= RTSTR_F_8BIT;
434 break;
435 case sizeof(int16_t):
436 u.i64 = va_arg(*pArgs, /*int16_t*/int);
437 fFlags |= RTSTR_F_16BIT;
438 break;
439 case sizeof(int32_t):
440 u.i64 = va_arg(*pArgs, int32_t);
441 fFlags |= RTSTR_F_32BIT;
442 break;
443 case sizeof(int64_t):
444 u.i64 = va_arg(*pArgs, int64_t);
445 fFlags |= RTSTR_F_64BIT;
446 break;
447 default:
448 AssertMsgFailed(("Invalid format error, size %d'!\n", s_aTypes[i].cb));
449 break;
450 }
451 }
452 else
453 {
454 switch (s_aTypes[i].cb)
455 {
456 case sizeof(uint8_t):
457 u.u8 = va_arg(*pArgs, /*uint8_t*/unsigned);
458 fFlags |= RTSTR_F_8BIT;
459 break;
460 case sizeof(uint16_t):
461 u.u16 = va_arg(*pArgs, /*uint16_t*/unsigned);
462 fFlags |= RTSTR_F_16BIT;
463 break;
464 case sizeof(uint32_t):
465 u.u32 = va_arg(*pArgs, uint32_t);
466 fFlags |= RTSTR_F_32BIT;
467 break;
468 case sizeof(uint64_t):
469 u.u64 = va_arg(*pArgs, uint64_t);
470 fFlags |= RTSTR_F_64BIT;
471 break;
472 case sizeof(RTFAR32):
473 u.fp32 = va_arg(*pArgs, RTFAR32);
474 break;
475 case sizeof(RTFAR64):
476 u.fp64 = va_arg(*pArgs, RTFAR64);
477 break;
478 default:
479 AssertMsgFailed(("Invalid format error, size %d'!\n", s_aTypes[i].cb));
480 break;
481 }
482 }
483
484#ifndef DEBUG
485 /*
486 * For now don't show the address.
487 */
488 if (fFlags & RTSTR_F_OBFUSCATE_PTR)
489 {
490 cch = rtStrFormatKernelAddress(szBuf, sizeof(szBuf), u.uR0Ptr, cchWidth, cchPrecision, fFlags);
491 return pfnOutput(pvArgOutput, szBuf, cch);
492 }
493#endif
494
495 /*
496 * Format the output.
497 */
498 switch (s_aTypes[i].enmFormat)
499 {
500 case RTSF_INT:
501 {
502 cch = RTStrFormatNumber(szBuf, u.u64, s_aTypes[i].u8Base, cchWidth, cchPrecision, fFlags);
503 break;
504 }
505
506 /* hex which defaults to max width. */
507 case RTSF_INTW:
508 {
509 Assert(s_aTypes[i].u8Base == 16);
510 if (cchWidth < 0)
511 {
512 cchWidth = s_aTypes[i].cb * 2 + (fFlags & RTSTR_F_SPECIAL ? 2 : 0);
513 fFlags |= RTSTR_F_ZEROPAD;
514 }
515 cch = RTStrFormatNumber(szBuf, u.u64, s_aTypes[i].u8Base, cchWidth, cchPrecision, fFlags);
516 break;
517 }
518
519 case RTSF_BOOL:
520 {
521 static const char s_szTrue[] = "true ";
522 static const char s_szFalse[] = "false";
523 if (u.u64 == 1)
524 return pfnOutput(pvArgOutput, s_szTrue, sizeof(s_szTrue) - 1);
525 if (u.u64 == 0)
526 return pfnOutput(pvArgOutput, s_szFalse, sizeof(s_szFalse) - 1);
527 /* invalid boolean value */
528 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "!%lld!", u.u64);
529 }
530
531 case RTSF_FP16:
532 {
533 fFlags &= ~(RTSTR_F_VALSIGNED | RTSTR_F_BIT_MASK | RTSTR_F_WIDTH | RTSTR_F_PRECISION | RTSTR_F_THOUSAND_SEP);
534 cch = RTStrFormatNumber(&szBuf[0], u.fp16.sel, 16, 4, -1, fFlags | RTSTR_F_16BIT);
535 Assert(cch == 4);
536 szBuf[4] = ':';
537 cch = RTStrFormatNumber(&szBuf[5], u.fp16.off, 16, 4, -1, fFlags | RTSTR_F_16BIT);
538 Assert(cch == 4);
539 cch = 4 + 1 + 4;
540 break;
541 }
542 case RTSF_FP32:
543 {
544 fFlags &= ~(RTSTR_F_VALSIGNED | RTSTR_F_BIT_MASK | RTSTR_F_WIDTH | RTSTR_F_PRECISION | RTSTR_F_THOUSAND_SEP);
545 cch = RTStrFormatNumber(&szBuf[0], u.fp32.sel, 16, 4, -1, fFlags | RTSTR_F_16BIT);
546 Assert(cch == 4);
547 szBuf[4] = ':';
548 cch = RTStrFormatNumber(&szBuf[5], u.fp32.off, 16, 8, -1, fFlags | RTSTR_F_32BIT);
549 Assert(cch == 8);
550 cch = 4 + 1 + 8;
551 break;
552 }
553 case RTSF_FP64:
554 {
555 fFlags &= ~(RTSTR_F_VALSIGNED | RTSTR_F_BIT_MASK | RTSTR_F_WIDTH | RTSTR_F_PRECISION | RTSTR_F_THOUSAND_SEP);
556 cch = RTStrFormatNumber(&szBuf[0], u.fp64.sel, 16, 4, -1, fFlags | RTSTR_F_16BIT);
557 Assert(cch == 4);
558 szBuf[4] = ':';
559 cch = RTStrFormatNumber(&szBuf[5], u.fp64.off, 16, 16, -1, fFlags | RTSTR_F_64BIT);
560 Assert(cch == 16);
561 cch = 4 + 1 + 16;
562 break;
563 }
564
565 case RTSF_IPV4:
566 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
567 "%u.%u.%u.%u",
568 u.Ipv4Addr.au8[0],
569 u.Ipv4Addr.au8[1],
570 u.Ipv4Addr.au8[2],
571 u.Ipv4Addr.au8[3]);
572
573 case RTSF_IPV6:
574 {
575 if (VALID_PTR(u.pIpv6Addr))
576 return rtstrFormatIPv6(pfnOutput, pvArgOutput, u.pIpv6Addr);
577 return pfnOutput(pvArgOutput, s_szNull, sizeof(s_szNull) - 1);
578 }
579
580 case RTSF_MAC:
581 {
582 if (VALID_PTR(u.pMac))
583 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
584 "%02x:%02x:%02x:%02x:%02x:%02x",
585 u.pMac->au8[0],
586 u.pMac->au8[1],
587 u.pMac->au8[2],
588 u.pMac->au8[3],
589 u.pMac->au8[4],
590 u.pMac->au8[5]);
591 return pfnOutput(pvArgOutput, s_szNull, sizeof(s_szNull) - 1);
592 }
593
594 case RTSF_NETADDR:
595 {
596 if (VALID_PTR(u.pNetAddr))
597 {
598 switch (u.pNetAddr->enmType)
599 {
600 case RTNETADDRTYPE_IPV4:
601 if (u.pNetAddr->uPort == RTNETADDR_PORT_NA)
602 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
603 "%u.%u.%u.%u",
604 u.pNetAddr->uAddr.IPv4.au8[0],
605 u.pNetAddr->uAddr.IPv4.au8[1],
606 u.pNetAddr->uAddr.IPv4.au8[2],
607 u.pNetAddr->uAddr.IPv4.au8[3]);
608 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
609 "%u.%u.%u.%u:%u",
610 u.pNetAddr->uAddr.IPv4.au8[0],
611 u.pNetAddr->uAddr.IPv4.au8[1],
612 u.pNetAddr->uAddr.IPv4.au8[2],
613 u.pNetAddr->uAddr.IPv4.au8[3],
614 u.pNetAddr->uPort);
615
616 case RTNETADDRTYPE_IPV6:
617 if (u.pNetAddr->uPort == RTNETADDR_PORT_NA)
618 return rtstrFormatIPv6(pfnOutput, pvArgOutput, &u.pNetAddr->uAddr.IPv6);
619
620 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
621 "[%RTnaipv6]:%u",
622 &u.pNetAddr->uAddr.IPv6,
623 u.pNetAddr->uPort);
624
625 case RTNETADDRTYPE_MAC:
626 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
627 "%02x:%02x:%02x:%02x:%02x:%02x",
628 u.pNetAddr->uAddr.Mac.au8[0],
629 u.pNetAddr->uAddr.Mac.au8[1],
630 u.pNetAddr->uAddr.Mac.au8[2],
631 u.pNetAddr->uAddr.Mac.au8[3],
632 u.pNetAddr->uAddr.Mac.au8[4],
633 u.pNetAddr->uAddr.Mac.au8[5]);
634
635 default:
636 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
637 "unsupported-netaddr-type=%u", u.pNetAddr->enmType);
638
639 }
640 }
641 return pfnOutput(pvArgOutput, s_szNull, sizeof(s_szNull) - 1);
642 }
643
644 case RTSF_UUID:
645 {
646 if (VALID_PTR(u.pUuid))
647 {
648 /* cannot call RTUuidToStr because of GC/R0. */
649 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
650 "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x",
651 RT_H2LE_U32(u.pUuid->Gen.u32TimeLow),
652 RT_H2LE_U16(u.pUuid->Gen.u16TimeMid),
653 RT_H2LE_U16(u.pUuid->Gen.u16TimeHiAndVersion),
654 u.pUuid->Gen.u8ClockSeqHiAndReserved,
655 u.pUuid->Gen.u8ClockSeqLow,
656 u.pUuid->Gen.au8Node[0],
657 u.pUuid->Gen.au8Node[1],
658 u.pUuid->Gen.au8Node[2],
659 u.pUuid->Gen.au8Node[3],
660 u.pUuid->Gen.au8Node[4],
661 u.pUuid->Gen.au8Node[5]);
662 }
663 return pfnOutput(pvArgOutput, s_szNull, sizeof(s_szNull) - 1);
664 }
665
666 case RTSF_ERRINFO:
667 case RTSF_ERRINFO_MSG_ONLY:
668 {
669 if (VALID_PTR(u.pErrInfo) && RTErrInfoIsSet(u.pErrInfo))
670 {
671 cch = 0;
672 if (s_aTypes[i].enmFormat == RTSF_ERRINFO)
673 {
674#ifdef IN_RING3 /* we don't want this anywhere else yet. */
675 cch += RTErrFormatMsgShort(u.pErrInfo->rc, pfnOutput, pvArgOutput, szBuf, sizeof(szBuf));
676#else
677 cch += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%d", u.pErrInfo->rc);
678#endif
679 }
680
681 if (u.pErrInfo->cbMsg > 0)
682 {
683 if (fFlags & RTSTR_F_SPECIAL)
684 cch = pfnOutput(pvArgOutput, RT_STR_TUPLE(" - "));
685 else
686 cch = pfnOutput(pvArgOutput, RT_STR_TUPLE(": "));
687 cch += pfnOutput(pvArgOutput, u.pErrInfo->pszMsg, u.pErrInfo->cbMsg);
688 }
689 return cch;
690 }
691 return 0;
692 }
693
694 default:
695 AssertMsgFailed(("Internal error %d\n", s_aTypes[i].enmFormat));
696 return 0;
697 }
698
699 /*
700 * Finally, output the formatted string and return.
701 */
702 return pfnOutput(pvArgOutput, szBuf, cch);
703 }
704
705
706 /* Group 3 */
707
708 /*
709 * Base name printing, big endian UTF-16.
710 */
711 case 'b':
712 {
713 switch (*(*ppszFormat)++)
714 {
715 case 'n':
716 {
717 const char *pszLastSep;
718 const char *psz = pszLastSep = va_arg(*pArgs, const char *);
719 if (!VALID_PTR(psz))
720 return pfnOutput(pvArgOutput, RT_STR_TUPLE("<null>"));
721
722 while ((ch = *psz) != '\0')
723 {
724 if (RTPATH_IS_SEP(ch))
725 {
726 do
727 psz++;
728 while ((ch = *psz) != '\0' && RTPATH_IS_SEP(ch));
729 if (!ch)
730 break;
731 pszLastSep = psz;
732 }
733 psz++;
734 }
735
736 return pfnOutput(pvArgOutput, pszLastSep, psz - pszLastSep);
737 }
738
739 /* %lRbs */
740 case 's':
741 if (chArgSize == 'l')
742 {
743 /* utf-16BE -> utf-8 */
744 int cchStr;
745 PCRTUTF16 pwszStr = va_arg(*pArgs, PRTUTF16);
746
747 if (RT_VALID_PTR(pwszStr))
748 {
749 cchStr = 0;
750 while (cchStr < cchPrecision && pwszStr[cchStr] != '\0')
751 cchStr++;
752 }
753 else
754 {
755 static RTUTF16 s_wszBigNull[] =
756 {
757 RT_H2BE_U16_C((uint16_t)'<'), RT_H2BE_U16_C((uint16_t)'N'), RT_H2BE_U16_C((uint16_t)'U'),
758 RT_H2BE_U16_C((uint16_t)'L'), RT_H2BE_U16_C((uint16_t)'L'), RT_H2BE_U16_C((uint16_t)'>'), '\0'
759 };
760 pwszStr = s_wszBigNull;
761 cchStr = RT_ELEMENTS(s_wszBigNull) - 1;
762 }
763
764 cch = 0;
765 if (!(fFlags & RTSTR_F_LEFT))
766 while (--cchWidth >= cchStr)
767 cch += pfnOutput(pvArgOutput, " ", 1);
768 cchWidth -= cchStr;
769 while (cchStr-- > 0)
770 {
771/** @todo \#ifndef IN_RC*/
772#ifdef IN_RING3
773 RTUNICP Cp = 0;
774 RTUtf16BigGetCpEx(&pwszStr, &Cp);
775 char *pszEnd = RTStrPutCp(szBuf, Cp);
776 *pszEnd = '\0';
777 cch += pfnOutput(pvArgOutput, szBuf, pszEnd - szBuf);
778#else
779 szBuf[0] = (char)(*pwszStr++ >> 8);
780 cch += pfnOutput(pvArgOutput, szBuf, 1);
781#endif
782 }
783 while (--cchWidth >= 0)
784 cch += pfnOutput(pvArgOutput, " ", 1);
785 return cch;
786 }
787 RT_FALL_THRU();
788
789 default:
790 AssertMsgFailed(("Invalid status code format type '%.10s'!\n", pszFormatOrg));
791 break;
792 }
793 break;
794 }
795
796
797 /*
798 * Pretty function / method name printing.
799 */
800 case 'f':
801 {
802 switch (*(*ppszFormat)++)
803 {
804 /*
805 * Pretty function / method name printing.
806 * This isn't 100% right (see classic signal prototype) and it assumes
807 * standardized names, but it'll do for today.
808 */
809 case 'n':
810 {
811 const char *pszStart;
812 const char *psz = pszStart = va_arg(*pArgs, const char *);
813 int cAngle = 0;
814
815 if (!VALID_PTR(psz))
816 return pfnOutput(pvArgOutput, RT_STR_TUPLE("<null>"));
817
818 while ((ch = *psz) != '\0' && ch != '(')
819 {
820 if (RT_C_IS_BLANK(ch))
821 {
822 psz++;
823 while ((ch = *psz) != '\0' && (RT_C_IS_BLANK(ch) || ch == '('))
824 psz++;
825 if (ch && cAngle == 0)
826 pszStart = psz;
827 }
828 else if (ch == '(')
829 break;
830 else if (ch == '<')
831 {
832 cAngle++;
833 psz++;
834 }
835 else if (ch == '>')
836 {
837 cAngle--;
838 psz++;
839 }
840 else
841 psz++;
842 }
843
844 return pfnOutput(pvArgOutput, pszStart, psz - pszStart);
845 }
846
847 default:
848 AssertMsgFailed(("Invalid status code format type '%.10s'!\n", pszFormatOrg));
849 break;
850 }
851 break;
852 }
853
854
855 /*
856 * hex dumping, COM/XPCOM, human readable sizes.
857 */
858 case 'h':
859 {
860 ch = *(*ppszFormat)++;
861 switch (ch)
862 {
863 /*
864 * Hex stuff.
865 */
866 case 'x':
867 case 'X':
868 {
869 uint8_t *pu8 = va_arg(*pArgs, uint8_t *);
870 uint64_t uMemAddr;
871 int cchMemAddrWidth;
872
873 if (cchPrecision < 0)
874 cchPrecision = 16;
875
876 if (ch == 'x')
877 {
878 uMemAddr = (uintptr_t)pu8;
879 cchMemAddrWidth = sizeof(pu8) * 2;
880 }
881 else
882 {
883 uMemAddr = va_arg(*pArgs, uint64_t);
884 cchMemAddrWidth = uMemAddr > UINT32_MAX || uMemAddr + cchPrecision > UINT32_MAX ? 16 : 8;
885 }
886
887 if (pu8)
888 {
889 switch (*(*ppszFormat)++)
890 {
891 /*
892 * Regular hex dump.
893 */
894 case 'd':
895 {
896 int off = 0;
897 cch = 0;
898
899 if (cchWidth <= 0)
900 cchWidth = 16;
901
902 while (off < cchPrecision)
903 {
904 int i;
905 cch += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%s%0*llx/%04x:",
906 off ? "\n" : "", cchMemAddrWidth, uMemAddr + off, off);
907 for (i = 0; i < cchWidth && off + i < cchPrecision ; i++)
908 cch += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
909 off + i < cchPrecision ? !(i & 7) && i ? "-%02x" : " %02x" : " ",
910 pu8[i]);
911 while (i++ < cchWidth)
912 cch += pfnOutput(pvArgOutput, " ", 3);
913
914 cch += pfnOutput(pvArgOutput, " ", 1);
915
916 for (i = 0; i < cchWidth && off + i < cchPrecision; i++)
917 {
918 uint8_t u8 = pu8[i];
919 cch += pfnOutput(pvArgOutput, u8 < 127 && u8 >= 32 ? (const char *)&u8 : ".", 1);
920 }
921
922 /* next */
923 pu8 += cchWidth;
924 off += cchWidth;
925 }
926 return cch;
927 }
928
929 /*
930 * Regular hex dump with dittoing.
931 */
932 case 'D':
933 {
934 int offEndDupCheck;
935 int cDuplicates = 0;
936 int off = 0;
937 cch = 0;
938
939 if (cchWidth <= 0)
940 cchWidth = 16;
941 offEndDupCheck = cchPrecision - cchWidth;
942
943 while (off < cchPrecision)
944 {
945 int i;
946 if ( off >= offEndDupCheck
947 || off <= 0
948 || memcmp(pu8, pu8 - cchWidth, cchWidth) != 0
949 || ( cDuplicates == 0
950 && ( off + cchWidth >= offEndDupCheck
951 || memcmp(pu8 + cchWidth, pu8, cchWidth) != 0)) )
952 {
953 if (cDuplicates > 0)
954 {
955 cch += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "\n%.*s **** <ditto x %u>",
956 cchMemAddrWidth, "****************", cDuplicates);
957 cDuplicates = 0;
958 }
959
960 cch += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%s%0*llx/%04x:",
961 off ? "\n" : "", cchMemAddrWidth, uMemAddr + off, off);
962 for (i = 0; i < cchWidth && off + i < cchPrecision ; i++)
963 cch += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0,
964 off + i < cchPrecision ? !(i & 7) && i
965 ? "-%02x" : " %02x" : " ",
966 pu8[i]);
967 while (i++ < cchWidth)
968 cch += pfnOutput(pvArgOutput, " ", 3);
969
970 cch += pfnOutput(pvArgOutput, " ", 1);
971
972 for (i = 0; i < cchWidth && off + i < cchPrecision; i++)
973 {
974 uint8_t u8 = pu8[i];
975 cch += pfnOutput(pvArgOutput, u8 < 127 && u8 >= 32 ? (const char *)&u8 : ".", 1);
976 }
977 }
978 else
979 cDuplicates++;
980
981 /* next */
982 pu8 += cchWidth;
983 off += cchWidth;
984 }
985 return cch;
986 }
987
988 /*
989 * Hex string.
990 */
991 case 's':
992 {
993 if (cchPrecision-- > 0)
994 {
995 if (ch == 'x')
996 cch = RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%02x", *pu8++);
997 else
998 cch = RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%0*llx: %02x",
999 cchMemAddrWidth, uMemAddr, *pu8++);
1000 for (; cchPrecision > 0; cchPrecision--, pu8++)
1001 cch += RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, " %02x", *pu8);
1002 return cch;
1003 }
1004 break;
1005 }
1006
1007 default:
1008 AssertMsgFailed(("Invalid status code format type '%.10s'!\n", pszFormatOrg));
1009 break;
1010 }
1011 }
1012 else
1013 return pfnOutput(pvArgOutput, RT_STR_TUPLE("<null>"));
1014 break;
1015 }
1016
1017
1018#ifdef IN_RING3
1019 /*
1020 * XPCOM / COM status code: %Rhrc, %Rhrf, %Rhra
1021 * ASSUMES: If Windows Then COM else XPCOM.
1022 */
1023 case 'r':
1024 {
1025 uint32_t hrc = va_arg(*pArgs, uint32_t);
1026 PCRTCOMERRMSG pMsg = RTErrCOMGet(hrc);
1027 switch (*(*ppszFormat)++)
1028 {
1029 case 'c':
1030 return pfnOutput(pvArgOutput, pMsg->pszDefine, strlen(pMsg->pszDefine));
1031 case 'f':
1032# if !defined(RT_OS_WINDOWS) || (!defined(RT_IN_STATIC) && !defined(IPRT_ERRMSG_DEFINES_ONLY))
1033 return pfnOutput(pvArgOutput, pMsg->pszMsgFull, strlen(pMsg->pszMsgFull));
1034# else
1035 AssertFailed();
1036 return pfnOutput(pvArgOutput, pMsg->pszDefine, strlen(pMsg->pszDefine));
1037# endif
1038 case 'a':
1039# if !defined(RT_OS_WINDOWS) || (!defined(RT_IN_STATIC) && !defined(IPRT_ERRMSG_DEFINES_ONLY))
1040 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%s (0x%08X) - %s", pMsg->pszDefine, hrc, pMsg->pszMsgFull);
1041# else
1042 AssertFailed();
1043 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%s (0x%08X)", pMsg->pszDefine, hrc);
1044# endif
1045 default:
1046 AssertMsgFailed(("Invalid status code format type '%.10s'!\n", pszFormatOrg));
1047 return 0;
1048 }
1049 break;
1050 }
1051#endif /* IN_RING3 */
1052
1053 /*
1054 * Human readable sizes.
1055 */
1056 case 'c':
1057 case 'u':
1058 {
1059 unsigned i;
1060 ssize_t cchBuf;
1061 uint64_t uValue;
1062 uint64_t uFraction = 0;
1063 const char *pszPrefix = NULL;
1064 char ch2 = *(*ppszFormat)++;
1065 AssertMsgReturn(ch2 == 'b' || ch2 == 'B' || ch2 == 'i', ("invalid type '%.10s'!\n", pszFormatOrg), 0);
1066 uValue = va_arg(*pArgs, uint64_t);
1067
1068 if (!(fFlags & RTSTR_F_PRECISION))
1069 cchPrecision = 1; /** @todo default to flexible decimal point. */
1070 else if (cchPrecision > 3)
1071 cchPrecision = 3;
1072 else if (cchPrecision < 0)
1073 cchPrecision = 0;
1074
1075 if (ch2 == 'b' || ch2 == 'B')
1076 {
1077 static const struct
1078 {
1079 const char *pszPrefix;
1080 uint8_t cShift;
1081 uint64_t cbMin;
1082 uint64_t cbMinZeroPrecision;
1083 } s_aUnits[] =
1084 {
1085 { "Ei", 60, _1E, _1E*2 },
1086 { "Pi", 50, _1P, _1P*2 },
1087 { "Ti", 40, _1T, _1T*2 },
1088 { "Gi", 30, _1G, _1G64*2 },
1089 { "Mi", 20, _1M, _1M*2 },
1090 { "Ki", 10, _1K, _1K*2 },
1091 };
1092 for (i = 0; i < RT_ELEMENTS(s_aUnits); i++)
1093 if ( uValue >= s_aUnits[i].cbMin
1094 && (cchPrecision > 0 || uValue >= s_aUnits[i].cbMinZeroPrecision))
1095 {
1096 if (cchPrecision != 0)
1097 {
1098 uFraction = uValue & (RT_BIT_64(s_aUnits[i].cShift) - 1);
1099 uFraction *= cchPrecision == 1 ? 10 : cchPrecision == 2 ? 100 : 1000;
1100 uFraction >>= s_aUnits[i].cShift;
1101 }
1102 uValue >>= s_aUnits[i].cShift;
1103 pszPrefix = s_aUnits[i].pszPrefix;
1104 break;
1105 }
1106 }
1107 else
1108 {
1109 static const struct
1110 {
1111 const char *pszPrefix;
1112 uint64_t cbFactor;
1113 uint64_t cbMinZeroPrecision;
1114 } s_aUnits[] =
1115 {
1116 { "E", UINT64_C(1000000000000000000), UINT64_C(1010000000000000000), },
1117 { "P", UINT64_C(1000000000000000), UINT64_C(1010000000000000), },
1118 { "T", UINT64_C(1000000000000), UINT64_C(1010000000000), },
1119 { "G", UINT64_C(1000000000), UINT64_C(1010000000), },
1120 { "M", UINT64_C(1000000), UINT64_C(1010000), },
1121 { "k", UINT64_C(1000), UINT64_C(1010), },
1122 };
1123 for (i = 0; i < RT_ELEMENTS(s_aUnits); i++)
1124 if ( uValue >= s_aUnits[i].cbFactor
1125 && (cchPrecision > 0 || uValue >= s_aUnits[i].cbMinZeroPrecision))
1126 {
1127 if (cchPrecision == 0)
1128 uValue /= s_aUnits[i].cbFactor;
1129 else
1130 {
1131 uFraction = uValue % s_aUnits[i].cbFactor;
1132 uValue = uValue / s_aUnits[i].cbFactor;
1133 uFraction *= cchPrecision == 1 ? 10 : cchPrecision == 2 ? 100 : 1000;
1134 uFraction += s_aUnits[i].cbFactor >> 1;
1135 uFraction /= s_aUnits[i].cbFactor;
1136 }
1137 pszPrefix = s_aUnits[i].pszPrefix;
1138 break;
1139 }
1140 }
1141
1142 cchBuf = RTStrFormatU64(szBuf, sizeof(szBuf), uValue, 10, 0, 0, 0);
1143 if (pszPrefix)
1144 {
1145 if (cchPrecision)
1146 {
1147 szBuf[cchBuf++] = '.';
1148 cchBuf += RTStrFormatU64(&szBuf[cchBuf], sizeof(szBuf) - cchBuf, uFraction, 10, cchPrecision, 0,
1149 RTSTR_F_ZEROPAD | RTSTR_F_WIDTH);
1150 }
1151 if (fFlags & RTSTR_F_BLANK)
1152 szBuf[cchBuf++] = ' ';
1153 szBuf[cchBuf++] = *pszPrefix++;
1154 if (*pszPrefix && ch2 != 'B')
1155 szBuf[cchBuf++] = *pszPrefix;
1156 }
1157 else if (fFlags & RTSTR_F_BLANK)
1158 szBuf[cchBuf++] = ' ';
1159 if (ch == 'c')
1160 szBuf[cchBuf++] = 'B';
1161 szBuf[cchBuf] = '\0';
1162
1163 cch = 0;
1164 if ((fFlags & RTSTR_F_WIDTH) && !(fFlags & RTSTR_F_LEFT))
1165 while (cchBuf < cchWidth)
1166 {
1167 cch += pfnOutput(pvArgOutput, fFlags & RTSTR_F_ZEROPAD ? "0" : " ", 1);
1168 cchWidth--;
1169 }
1170 cch += pfnOutput(pvArgOutput, szBuf, cchBuf);
1171 return cch;
1172 }
1173
1174 default:
1175 AssertMsgFailed(("Invalid status code format type '%.10s'!\n", pszFormatOrg));
1176 return 0;
1177
1178 }
1179 break;
1180 }
1181
1182 /*
1183 * iprt status code: %Rrc, %Rrs, %Rrf, %Rra.
1184 */
1185 case 'r':
1186 {
1187 int rc = va_arg(*pArgs, int);
1188#ifdef IN_RING3 /* we don't want this anywhere else yet. */
1189 switch (*(*ppszFormat)++)
1190 {
1191 case 'c':
1192 return RTErrFormatDefine(rc, pfnOutput, pvArgOutput, szBuf, sizeof(szBuf));
1193 case 's':
1194 return RTErrFormatMsgShort(rc, pfnOutput, pvArgOutput, szBuf, sizeof(szBuf));
1195 case 'f':
1196 return RTErrFormatMsgFull(rc, pfnOutput, pvArgOutput, szBuf, sizeof(szBuf));
1197 case 'a':
1198 return RTErrFormatMsgAll(rc, pfnOutput, pvArgOutput, szBuf, sizeof(szBuf));
1199 default:
1200 AssertMsgFailed(("Invalid status code format type '%.10s'!\n", pszFormatOrg));
1201 return 0;
1202 }
1203#else /* !IN_RING3 */
1204 switch (*(*ppszFormat)++)
1205 {
1206 case 'c':
1207 case 's':
1208 case 'f':
1209 case 'a':
1210 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%d", rc);
1211 default:
1212 AssertMsgFailed(("Invalid status code format type '%.10s'!\n", pszFormatOrg));
1213 return 0;
1214 }
1215#endif /* !IN_RING3 */
1216 break;
1217 }
1218
1219#if defined(IN_RING3)
1220 /*
1221 * Windows status code: %Rwc, %Rwf, %Rwa
1222 */
1223 case 'w':
1224 {
1225 long rc = va_arg(*pArgs, long);
1226# if defined(RT_OS_WINDOWS)
1227 PCRTWINERRMSG pMsg = RTErrWinGet(rc);
1228# endif
1229 switch (*(*ppszFormat)++)
1230 {
1231# if defined(RT_OS_WINDOWS)
1232 case 'c':
1233 return pfnOutput(pvArgOutput, pMsg->pszDefine, strlen(pMsg->pszDefine));
1234 case 'f':
1235# if !defined(RT_IN_STATIC) && !defined(IPRT_ERRMSG_DEFINES_ONLY)
1236 return pfnOutput(pvArgOutput, pMsg->pszMsgFull, strlen(pMsg->pszMsgFull));
1237# else
1238 AssertFailed();
1239 return pfnOutput(pvArgOutput, pMsg->pszDefine, strlen(pMsg->pszDefine));
1240# endif
1241 case 'a':
1242# if !defined(RT_IN_STATIC) && !defined(IPRT_ERRMSG_DEFINES_ONLY)
1243 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%s (0x%08X) - %s", pMsg->pszDefine, rc, pMsg->pszMsgFull);
1244# else
1245 AssertFailed();
1246 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "%s (0x%08X)", pMsg->pszDefine, rc);
1247# endif
1248# else /* !RT_OS_WINDOWS */
1249 case 'c':
1250 case 'f':
1251 case 'a':
1252 return RTStrFormat(pfnOutput, pvArgOutput, NULL, 0, "0x%08X", rc);
1253# endif /* !RT_OS_WINDOWS */
1254 default:
1255 AssertMsgFailed(("Invalid status code format type '%.10s'!\n", pszFormatOrg));
1256 return 0;
1257 }
1258 break;
1259 }
1260#endif /* IN_RING3 */
1261
1262 /*
1263 * Group 4, structure dumpers.
1264 */
1265 case 'D':
1266 {
1267 /*
1268 * Interpret the type.
1269 */
1270 typedef enum
1271 {
1272 RTST_TIMESPEC
1273 } RTST;
1274/** Set if it's a pointer */
1275#define RTST_FLAGS_POINTER RT_BIT(0)
1276 static const struct
1277 {
1278 uint8_t cch; /**< the length of the string. */
1279 char sz[16-2]; /**< the part following 'R'. */
1280 uint8_t cb; /**< the size of the argument. */
1281 uint8_t fFlags; /**< RTST_FLAGS_* */
1282 RTST enmType; /**< The structure type. */
1283 }
1284 /** Sorted array of types, looked up using binary search! */
1285 s_aTypes[] =
1286 {
1287#define STRMEM(str) sizeof(str) - 1, str
1288 { STRMEM("Dtimespec"), sizeof(PCRTTIMESPEC), RTST_FLAGS_POINTER, RTST_TIMESPEC},
1289#undef STRMEM
1290 };
1291 const char *pszType = *ppszFormat - 1;
1292 int iStart = 0;
1293 int iEnd = RT_ELEMENTS(s_aTypes) - 1;
1294 int i = RT_ELEMENTS(s_aTypes) / 2;
1295
1296 union
1297 {
1298 const void *pv;
1299 uint64_t u64;
1300 PCRTTIMESPEC pTimeSpec;
1301 } u;
1302
1303 AssertMsg(!chArgSize, ("Not argument size '%c' for RT types! '%.10s'\n", chArgSize, pszFormatOrg));
1304
1305 /*
1306 * Lookup the type - binary search.
1307 */
1308 for (;;)
1309 {
1310 int iDiff = strncmp(pszType, s_aTypes[i].sz, s_aTypes[i].cch);
1311 if (!iDiff)
1312 break;
1313 if (iEnd == iStart)
1314 {
1315 AssertMsgFailed(("Invalid format type '%.10s'!\n", pszFormatOrg));
1316 return 0;
1317 }
1318 if (iDiff < 0)
1319 iEnd = i - 1;
1320 else
1321 iStart = i + 1;
1322 if (iEnd < iStart)
1323 {
1324 AssertMsgFailed(("Invalid format type '%.10s'!\n", pszFormatOrg));
1325 return 0;
1326 }
1327 i = iStart + (iEnd - iStart) / 2;
1328 }
1329 *ppszFormat += s_aTypes[i].cch - 1;
1330
1331 /*
1332 * Fetch the argument.
1333 */
1334 u.u64 = 0;
1335 switch (s_aTypes[i].cb)
1336 {
1337 case sizeof(const void *):
1338 u.pv = va_arg(*pArgs, const void *);
1339 break;
1340 default:
1341 AssertMsgFailed(("Invalid format error, size %d'!\n", s_aTypes[i].cb));
1342 break;
1343 }
1344
1345 /*
1346 * If it's a pointer, we'll check if it's valid before going on.
1347 */
1348 if ((s_aTypes[i].fFlags & RTST_FLAGS_POINTER) && !VALID_PTR(u.pv))
1349 return pfnOutput(pvArgOutput, RT_STR_TUPLE("<null>"));
1350
1351 /*
1352 * Format the output.
1353 */
1354 switch (s_aTypes[i].enmType)
1355 {
1356 case RTST_TIMESPEC:
1357 return RTStrFormat(pfnOutput, pvArgOutput, NULL, NULL, "%'lld ns", RTTimeSpecGetNano(u.pTimeSpec));
1358
1359 default:
1360 AssertMsgFailed(("Invalid/unhandled enmType=%d\n", s_aTypes[i].enmType));
1361 break;
1362 }
1363 break;
1364 }
1365
1366#ifdef IN_RING3
1367
1368 /*
1369 * Group 5, XML / HTML, JSON and URI escapers.
1370 */
1371 case 'M':
1372 {
1373 char chWhat = (*ppszFormat)[0];
1374 if (chWhat == 'a' || chWhat == 'e')
1375 {
1376 /* XML attributes and element values. */
1377 bool fAttr = chWhat == 'a';
1378 char chType = (*ppszFormat)[1];
1379 *ppszFormat += 2;
1380 switch (chType)
1381 {
1382 case 's':
1383 {
1384 static const char s_szElemEscape[] = "<>&\"'";
1385 static const char s_szAttrEscape[] = "<>&\"\n\r"; /* more? */
1386 const char * const pszEscape = fAttr ? s_szAttrEscape : s_szElemEscape;
1387 size_t const cchEscape = (fAttr ? RT_ELEMENTS(s_szAttrEscape) : RT_ELEMENTS(s_szElemEscape)) - 1;
1388 size_t cchOutput = 0;
1389 const char *pszStr = va_arg(*pArgs, char *);
1390 ssize_t cchStr;
1391 ssize_t offCur;
1392 ssize_t offLast;
1393
1394 if (!VALID_PTR(pszStr))
1395 pszStr = "<NULL>";
1396 cchStr = RTStrNLen(pszStr, (unsigned)cchPrecision);
1397
1398 if (fAttr)
1399 cchOutput += pfnOutput(pvArgOutput, "\"", 1);
1400 if (!(fFlags & RTSTR_F_LEFT))
1401 while (--cchWidth >= cchStr)
1402 cchOutput += pfnOutput(pvArgOutput, " ", 1);
1403
1404 offLast = offCur = 0;
1405 while (offCur < cchStr)
1406 {
1407 if (memchr(pszEscape, pszStr[offCur], cchEscape))
1408 {
1409 if (offLast < offCur)
1410 cchOutput += pfnOutput(pvArgOutput, &pszStr[offLast], offCur - offLast);
1411 switch (pszStr[offCur])
1412 {
1413 case '<': cchOutput += pfnOutput(pvArgOutput, "&lt;", 4); break;
1414 case '>': cchOutput += pfnOutput(pvArgOutput, "&gt;", 4); break;
1415 case '&': cchOutput += pfnOutput(pvArgOutput, "&amp;", 5); break;
1416 case '\'': cchOutput += pfnOutput(pvArgOutput, "&apos;", 6); break;
1417 case '"': cchOutput += pfnOutput(pvArgOutput, "&quot;", 6); break;
1418 case '\n': cchOutput += pfnOutput(pvArgOutput, "&#xA;", 5); break;
1419 case '\r': cchOutput += pfnOutput(pvArgOutput, "&#xD;", 5); break;
1420 default:
1421 AssertFailed();
1422 }
1423 offLast = offCur + 1;
1424 }
1425 offCur++;
1426 }
1427 if (offLast < offCur)
1428 cchOutput += pfnOutput(pvArgOutput, &pszStr[offLast], offCur - offLast);
1429
1430 while (--cchWidth >= cchStr)
1431 cchOutput += pfnOutput(pvArgOutput, " ", 1);
1432 if (fAttr)
1433 cchOutput += pfnOutput(pvArgOutput, "\"", 1);
1434 return cchOutput;
1435 }
1436
1437 default:
1438 AssertMsgFailed(("Invalid IPRT format type '%.10s'!\n", pszFormatOrg));
1439 }
1440 }
1441 else if (chWhat == 'j')
1442 {
1443 /* JSON string escaping. */
1444 char const chType = (*ppszFormat)[1];
1445 *ppszFormat += 2;
1446 switch (chType)
1447 {
1448 case 's':
1449 {
1450 const char *pszStr = va_arg(*pArgs, char *);
1451 size_t cchOutput;
1452 ssize_t cchStr;
1453 ssize_t offCur;
1454 ssize_t offLast;
1455
1456 if (!VALID_PTR(pszStr))
1457 pszStr = "<NULL>";
1458 cchStr = RTStrNLen(pszStr, (unsigned)cchPrecision);
1459
1460 cchOutput = pfnOutput(pvArgOutput, "\"", 1);
1461 if (!(fFlags & RTSTR_F_LEFT))
1462 while (--cchWidth >= cchStr)
1463 cchOutput += pfnOutput(pvArgOutput, " ", 1);
1464
1465 offLast = offCur = 0;
1466 while (offCur < cchStr)
1467 {
1468 unsigned int const uch = pszStr[offCur];
1469 if ( uch >= 0x5d
1470 || (uch >= 0x20 && uch != 0x22 && uch != 0x5c))
1471 offCur++;
1472 else
1473 {
1474 if (offLast < offCur)
1475 cchOutput += pfnOutput(pvArgOutput, &pszStr[offLast], offCur - offLast);
1476 switch ((char)uch)
1477 {
1478 case '"': cchOutput += pfnOutput(pvArgOutput, "\\\"", 2); break;
1479 case '\\': cchOutput += pfnOutput(pvArgOutput, "\\\\", 2); break;
1480 case '/': cchOutput += pfnOutput(pvArgOutput, "\\/", 2); break;
1481 case '\b': cchOutput += pfnOutput(pvArgOutput, "\\b", 2); break;
1482 case '\f': cchOutput += pfnOutput(pvArgOutput, "\\f", 2); break;
1483 case '\n': cchOutput += pfnOutput(pvArgOutput, "\\n", 2); break;
1484 case '\t': cchOutput += pfnOutput(pvArgOutput, "\\t", 2); break;
1485 default:
1486 {
1487 RTUNICP uc = 0xfffd; /* replacement character */
1488 const char *pszCur = &pszStr[offCur];
1489 int rc = RTStrGetCpEx(&pszCur, &uc);
1490 if (RT_SUCCESS(rc))
1491 offCur += pszCur - &pszStr[offCur] - 1;
1492 if (uc >= 0xfffe)
1493 uc = 0xfffd; /* replacement character */
1494 szBuf[0] = '\\';
1495 szBuf[1] = 'u';
1496 szBuf[2] = g_szHexDigits[(uc >> 12) & 0xf];
1497 szBuf[3] = g_szHexDigits[(uc >> 8) & 0xf];
1498 szBuf[4] = g_szHexDigits[(uc >> 4) & 0xf];
1499 szBuf[5] = g_szHexDigits[ uc & 0xf];
1500 szBuf[6] = '\0';
1501 cchOutput += pfnOutput(pvArgOutput, szBuf, 6);
1502 break;
1503 }
1504 }
1505 offLast = ++offCur;
1506 }
1507 }
1508 if (offLast < offCur)
1509 cchOutput += pfnOutput(pvArgOutput, &pszStr[offLast], offCur - offLast);
1510
1511 while (--cchWidth >= cchStr)
1512 cchOutput += pfnOutput(pvArgOutput, " ", 1);
1513 cchOutput += pfnOutput(pvArgOutput, "\"", 1);
1514 return cchOutput;
1515 }
1516
1517 default:
1518 AssertMsgFailed(("Invalid IPRT format type '%.10s'!\n", pszFormatOrg));
1519 }
1520 }
1521 else if (chWhat == 'p')
1522 {
1523 /* Percent encoded string (RTC-3986). */
1524 char const chVariant = (*ppszFormat)[1];
1525 char const chAddSafe = chVariant == 'p' ? '/'
1526 : chVariant == 'q' ? '+' /* '+' in queries is problematic, so no escape. */
1527 : '~' /* whatever */;
1528 size_t cchOutput = 0;
1529 const char *pszStr = va_arg(*pArgs, char *);
1530 ssize_t cchStr;
1531 ssize_t offCur;
1532 ssize_t offLast;
1533
1534 *ppszFormat += 2;
1535 AssertMsgBreak(chVariant == 'a' || chVariant == 'p' || chVariant == 'q' || chVariant == 'f',
1536 ("Invalid IPRT format type '%.10s'!\n", pszFormatOrg));
1537
1538 if (!VALID_PTR(pszStr))
1539 pszStr = "<NULL>";
1540 cchStr = RTStrNLen(pszStr, (unsigned)cchPrecision);
1541
1542 if (!(fFlags & RTSTR_F_LEFT))
1543 while (--cchWidth >= cchStr)
1544 cchOutput += pfnOutput(pvArgOutput, "%20", 3);
1545
1546 offLast = offCur = 0;
1547 while (offCur < cchStr)
1548 {
1549 ch = pszStr[offCur];
1550 if ( RT_C_IS_ALPHA(ch)
1551 || RT_C_IS_DIGIT(ch)
1552 || ch == '-'
1553 || ch == '.'
1554 || ch == '_'
1555 || ch == '~'
1556 || ch == chAddSafe)
1557 offCur++;
1558 else
1559 {
1560 if (offLast < offCur)
1561 cchOutput += pfnOutput(pvArgOutput, &pszStr[offLast], offCur - offLast);
1562 if (ch != ' ' || chVariant != 'f')
1563 {
1564 szBuf[0] = '%';
1565 szBuf[1] = g_szHexDigitsUpper[((uint8_t)ch >> 4) & 0xf];
1566 szBuf[2] = g_szHexDigitsUpper[(uint8_t)ch & 0xf];
1567 szBuf[3] = '\0';
1568 cchOutput += pfnOutput(pvArgOutput, szBuf, 3);
1569 }
1570 else
1571 cchOutput += pfnOutput(pvArgOutput, "+", 1);
1572 offLast = ++offCur;
1573 }
1574 }
1575 if (offLast < offCur)
1576 cchOutput += pfnOutput(pvArgOutput, &pszStr[offLast], offCur - offLast);
1577
1578 while (--cchWidth >= cchStr)
1579 cchOutput += pfnOutput(pvArgOutput, "%20", 3);
1580 }
1581 else
1582 AssertMsgFailed(("Invalid IPRT format type '%.10s'!\n", pszFormatOrg));
1583 break;
1584 }
1585
1586#endif /* IN_RING3 */
1587
1588 /*
1589 * Groups 6 - CPU Architecture Register Formatters.
1590 * "%RAarch[reg]"
1591 */
1592 case 'A':
1593 {
1594 char const * const pszArch = *ppszFormat;
1595 const char *pszReg = pszArch;
1596 size_t cchOutput = 0;
1597 int cPrinted = 0;
1598 size_t cchReg;
1599
1600 /* Parse out the */
1601 while ((ch = *pszReg++) && ch != '[')
1602 { /* nothing */ }
1603 AssertMsgBreak(ch == '[', ("Malformed IPRT architecture register format type '%.10s'!\n", pszFormatOrg));
1604
1605 cchReg = 0;
1606 while ((ch = pszReg[cchReg]) && ch != ']')
1607 cchReg++;
1608 AssertMsgBreak(ch == ']', ("Malformed IPRT architecture register format type '%.10s'!\n", pszFormatOrg));
1609
1610 *ppszFormat = &pszReg[cchReg + 1];
1611
1612
1613#define REG_EQUALS(a_szReg) (sizeof(a_szReg) - 1 == cchReg && !strncmp(a_szReg, pszReg, sizeof(a_szReg) - 1))
1614#define REG_OUT_BIT(a_uVal, a_fBitMask, a_szName) \
1615 do { \
1616 if ((a_uVal) & (a_fBitMask)) \
1617 { \
1618 if (!cPrinted++) \
1619 cchOutput += pfnOutput(pvArgOutput, "{" a_szName, sizeof(a_szName)); \
1620 else \
1621 cchOutput += pfnOutput(pvArgOutput, "," a_szName, sizeof(a_szName)); \
1622 (a_uVal) &= ~(a_fBitMask); \
1623 } \
1624 } while (0)
1625#define REG_OUT_CLOSE(a_uVal) \
1626 do { \
1627 if ((a_uVal)) \
1628 { \
1629 cchOutput += pfnOutput(pvArgOutput, !cPrinted ? "{unkn=" : ",unkn=", 6); \
1630 cch = RTStrFormatNumber(&szBuf[0], (a_uVal), 16, 1, -1, fFlags); \
1631 cchOutput += pfnOutput(pvArgOutput, szBuf, cch); \
1632 cPrinted++; \
1633 } \
1634 if (cPrinted) \
1635 cchOutput += pfnOutput(pvArgOutput, "}", 1); \
1636 } while (0)
1637
1638
1639 if (0)
1640 { /* dummy */ }
1641#ifdef STRFORMAT_WITH_X86
1642 /*
1643 * X86 & AMD64.
1644 */
1645 else if ( pszReg - pszArch == 3 + 1
1646 && pszArch[0] == 'x'
1647 && pszArch[1] == '8'
1648 && pszArch[2] == '6')
1649 {
1650 if (REG_EQUALS("cr0"))
1651 {
1652 uint64_t cr0 = va_arg(*pArgs, uint64_t);
1653 fFlags |= RTSTR_F_64BIT;
1654 cch = RTStrFormatNumber(&szBuf[0], cr0, 16, 8, -1, fFlags | RTSTR_F_ZEROPAD);
1655 cchOutput += pfnOutput(pvArgOutput, szBuf, cch);
1656 REG_OUT_BIT(cr0, X86_CR0_PE, "PE");
1657 REG_OUT_BIT(cr0, X86_CR0_MP, "MP");
1658 REG_OUT_BIT(cr0, X86_CR0_EM, "EM");
1659 REG_OUT_BIT(cr0, X86_CR0_TS, "DE");
1660 REG_OUT_BIT(cr0, X86_CR0_ET, "ET");
1661 REG_OUT_BIT(cr0, X86_CR0_NE, "NE");
1662 REG_OUT_BIT(cr0, X86_CR0_WP, "WP");
1663 REG_OUT_BIT(cr0, X86_CR0_AM, "AM");
1664 REG_OUT_BIT(cr0, X86_CR0_NW, "NW");
1665 REG_OUT_BIT(cr0, X86_CR0_CD, "CD");
1666 REG_OUT_BIT(cr0, X86_CR0_PG, "PG");
1667 REG_OUT_CLOSE(cr0);
1668 }
1669 else if (REG_EQUALS("cr4"))
1670 {
1671 uint64_t cr4 = va_arg(*pArgs, uint64_t);
1672 fFlags |= RTSTR_F_64BIT;
1673 cch = RTStrFormatNumber(&szBuf[0], cr4, 16, 8, -1, fFlags | RTSTR_F_ZEROPAD);
1674 cchOutput += pfnOutput(pvArgOutput, szBuf, cch);
1675 REG_OUT_BIT(cr4, X86_CR4_VME, "VME");
1676 REG_OUT_BIT(cr4, X86_CR4_PVI, "PVI");
1677 REG_OUT_BIT(cr4, X86_CR4_TSD, "TSD");
1678 REG_OUT_BIT(cr4, X86_CR4_DE, "DE");
1679 REG_OUT_BIT(cr4, X86_CR4_PSE, "PSE");
1680 REG_OUT_BIT(cr4, X86_CR4_PAE, "PAE");
1681 REG_OUT_BIT(cr4, X86_CR4_MCE, "MCE");
1682 REG_OUT_BIT(cr4, X86_CR4_PGE, "PGE");
1683 REG_OUT_BIT(cr4, X86_CR4_PCE, "PCE");
1684 REG_OUT_BIT(cr4, X86_CR4_OSFXSR, "OSFXSR");
1685 REG_OUT_BIT(cr4, X86_CR4_OSXMMEEXCPT, "OSXMMEEXCPT");
1686 REG_OUT_BIT(cr4, X86_CR4_VMXE, "VMXE");
1687 REG_OUT_BIT(cr4, X86_CR4_SMXE, "SMXE");
1688 REG_OUT_BIT(cr4, X86_CR4_PCIDE, "PCIDE");
1689 REG_OUT_BIT(cr4, X86_CR4_OSXSAVE, "OSXSAVE");
1690 REG_OUT_BIT(cr4, X86_CR4_SMEP, "SMEP");
1691 REG_OUT_BIT(cr4, X86_CR4_SMAP, "SMAP");
1692 REG_OUT_CLOSE(cr4);
1693 }
1694 else
1695 AssertMsgFailed(("Unknown x86 register specified in '%.10s'!\n", pszFormatOrg));
1696 }
1697#endif
1698 else
1699 AssertMsgFailed(("Unknown architecture specified in '%.10s'!\n", pszFormatOrg));
1700#undef REG_OUT_BIT
1701#undef REG_OUT_CLOSE
1702#undef REG_EQUALS
1703 return cchOutput;
1704 }
1705
1706 /*
1707 * Invalid/Unknown. Bitch about it.
1708 */
1709 default:
1710 AssertMsgFailed(("Invalid IPRT format type '%.10s'!\n", pszFormatOrg));
1711 break;
1712 }
1713 }
1714 else
1715 AssertMsgFailed(("Invalid IPRT format type '%.10s'!\n", pszFormatOrg));
1716
1717 NOREF(pszFormatOrg);
1718 return 0;
1719}
1720
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette