1 | /* $Id: bignum.cpp 52290 2014-08-06 10:14:47Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * IPRT - Big Integer Numbers.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006-2014 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.215389.xyz. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | *
|
---|
17 | * The contents of this file may alternatively be used under the terms
|
---|
18 | * of the Common Development and Distribution License Version 1.0
|
---|
19 | * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
|
---|
20 | * VirtualBox OSE distribution, in which case the provisions of the
|
---|
21 | * CDDL are applicable instead of those of the GPL.
|
---|
22 | *
|
---|
23 | * You may elect to license modified versions of this file under the
|
---|
24 | * terms and conditions of either the GPL or the CDDL or both.
|
---|
25 | */
|
---|
26 |
|
---|
27 |
|
---|
28 | /*******************************************************************************
|
---|
29 | * Header Files *
|
---|
30 | *******************************************************************************/
|
---|
31 | /*#ifdef IN_RING3
|
---|
32 | # define RTMEM_WRAP_TO_EF_APIS
|
---|
33 | #endif*/
|
---|
34 | #include "internal/iprt.h"
|
---|
35 | #include <iprt/bignum.h>
|
---|
36 |
|
---|
37 | #include <iprt/asm.h>
|
---|
38 | #include <iprt/asm-math.h>
|
---|
39 | #include <iprt/err.h>
|
---|
40 | #include <iprt/mem.h>
|
---|
41 | #include <iprt/memsafer.h>
|
---|
42 | #include <iprt/string.h>
|
---|
43 |
|
---|
44 |
|
---|
45 | /*******************************************************************************
|
---|
46 | * Defined Constants And Macros *
|
---|
47 | *******************************************************************************/
|
---|
48 | /** Allocation alignment in elements. */
|
---|
49 | #ifndef RTMEM_WRAP_TO_EF_APIS
|
---|
50 | # define RTBIGNUM_ALIGNMENT 4U
|
---|
51 | #else
|
---|
52 | # define RTBIGNUM_ALIGNMENT 1U
|
---|
53 | #endif
|
---|
54 |
|
---|
55 | /** The max size (in bytes) of an elements array. */
|
---|
56 | #define RTBIGNUM_MAX_SIZE _4M
|
---|
57 |
|
---|
58 |
|
---|
59 | /** Assert the validity of a big number structure pointer in strict builds. */
|
---|
60 | #ifdef RT_STRICT
|
---|
61 | # define RTBIGNUM_ASSERT_VALID(a_pBigNum) \
|
---|
62 | do { \
|
---|
63 | AssertPtr(a_pBigNum); \
|
---|
64 | Assert(!(a_pBigNum)->fCurScrambled); \
|
---|
65 | Assert( (a_pBigNum)->cUsed == (a_pBigNum)->cAllocated \
|
---|
66 | || ASMMemIsAllU32(&(a_pBigNum)->pauElements[(a_pBigNum)->cUsed], \
|
---|
67 | ((a_pBigNum)->cAllocated - (a_pBigNum)->cUsed) * RTBIGNUM_ELEMENT_SIZE, 0) == NULL); \
|
---|
68 | } while (0)
|
---|
69 | #else
|
---|
70 | # define RTBIGNUM_ASSERT_VALID(a_pBigNum) do {} while (0)
|
---|
71 | #endif
|
---|
72 |
|
---|
73 |
|
---|
74 | /** Enable assembly optimizations. */
|
---|
75 | #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
|
---|
76 | # define IPRT_BIGINT_WITH_ASM
|
---|
77 | #endif
|
---|
78 |
|
---|
79 |
|
---|
80 | /** @def RTBIGNUM_ZERO_ALIGN
|
---|
81 | * For calculating the rtBigNumEnsureExtraZeroElements argument from cUsed.
|
---|
82 | * This has to do with 64-bit assembly instruction operating as RTBIGNUMELEMENT
|
---|
83 | * was 64-bit on some hosts.
|
---|
84 | */
|
---|
85 | #if defined(IPRT_BIGINT_WITH_ASM) && ARCH_BITS == 64 && RTBIGNUM_ELEMENT_SIZE == 4 && defined(RT_LITTLE_ENDIAN)
|
---|
86 | # define RTBIGNUM_ZERO_ALIGN(a_cUsed) RT_ALIGN_32(a_cUsed, 2)
|
---|
87 | #elif defined(IPRT_BIGINT_WITH_ASM)
|
---|
88 | # define RTBIGNUM_ZERO_ALIGN(a_cUsed) (a_cUsed)
|
---|
89 | #else
|
---|
90 | # define RTBIGNUM_ZERO_ALIGN(a_cUsed) (a_cUsed)
|
---|
91 | #endif
|
---|
92 |
|
---|
93 |
|
---|
94 | /*******************************************************************************
|
---|
95 | * Internal Functions *
|
---|
96 | *******************************************************************************/
|
---|
97 | #ifdef IPRT_BIGINT_WITH_ASM
|
---|
98 | /* bignum-amd64-x86.asm: */
|
---|
99 | DECLASM(void) rtBigNumMagnitudeSubAssemblyWorker(RTBIGNUMELEMENT *pauResult, RTBIGNUMELEMENT const *pauMinuend,
|
---|
100 | RTBIGNUMELEMENT const *pauSubtrahend, uint32_t cUsed);
|
---|
101 | DECLASM(void) rtBigNumMagnitudeSubThisAssemblyWorker(RTBIGNUMELEMENT *pauMinuendResult, RTBIGNUMELEMENT const *pauSubtrahend,
|
---|
102 | uint32_t cUsed);
|
---|
103 | DECLASM(RTBIGNUMELEMENT) rtBigNumMagnitudeShiftLeftOneAssemblyWorker(RTBIGNUMELEMENT *pauElements, uint32_t cUsed,
|
---|
104 | RTBIGNUMELEMENT uCarry);
|
---|
105 | #endif
|
---|
106 |
|
---|
107 |
|
---|
108 | /**
|
---|
109 | * Scrambles a big number if required.
|
---|
110 | *
|
---|
111 | * @param pBigNum The big number.
|
---|
112 | */
|
---|
113 | DECLINLINE(void) rtBigNumScramble(PRTBIGNUM pBigNum)
|
---|
114 | {
|
---|
115 | if (pBigNum->fSensitive)
|
---|
116 | {
|
---|
117 | AssertReturnVoid(!pBigNum->fCurScrambled);
|
---|
118 | if (pBigNum->pauElements)
|
---|
119 | {
|
---|
120 | int rc = RTMemSaferScramble(pBigNum->pauElements, pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE); AssertRC(rc);
|
---|
121 | pBigNum->fCurScrambled = RT_SUCCESS(rc);
|
---|
122 | }
|
---|
123 | else
|
---|
124 | pBigNum->fCurScrambled = true;
|
---|
125 | }
|
---|
126 | }
|
---|
127 |
|
---|
128 |
|
---|
129 | /**
|
---|
130 | * Unscrambles a big number if required.
|
---|
131 | *
|
---|
132 | * @returns IPRT status code.
|
---|
133 | * @param pBigNum The big number.
|
---|
134 | */
|
---|
135 | DECLINLINE(int) rtBigNumUnscramble(PRTBIGNUM pBigNum)
|
---|
136 | {
|
---|
137 | if (pBigNum->fSensitive)
|
---|
138 | {
|
---|
139 | AssertReturn(pBigNum->fCurScrambled, VERR_INTERNAL_ERROR_2);
|
---|
140 | if (pBigNum->pauElements)
|
---|
141 | {
|
---|
142 | int rc = RTMemSaferUnscramble(pBigNum->pauElements, pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE); AssertRC(rc);
|
---|
143 | pBigNum->fCurScrambled = !RT_SUCCESS(rc);
|
---|
144 | return rc;
|
---|
145 | }
|
---|
146 | else
|
---|
147 | pBigNum->fCurScrambled = false;
|
---|
148 | }
|
---|
149 | return VINF_SUCCESS;
|
---|
150 | }
|
---|
151 |
|
---|
152 |
|
---|
153 | /**
|
---|
154 | * Getter function for pauElements which extends the array to infinity.
|
---|
155 | *
|
---|
156 | * @returns The element value.
|
---|
157 | * @param pBigNum The big number.
|
---|
158 | * @param iElement The element index.
|
---|
159 | */
|
---|
160 | DECLINLINE(RTBIGNUMELEMENT) rtBigNumGetElement(PCRTBIGNUM pBigNum, uint32_t iElement)
|
---|
161 | {
|
---|
162 | if (iElement < pBigNum->cUsed)
|
---|
163 | return pBigNum->pauElements[iElement];
|
---|
164 | return 0;
|
---|
165 | }
|
---|
166 |
|
---|
167 |
|
---|
168 | /**
|
---|
169 | * Grows the pauElements array so it can fit at least @a cNewUsed entries.
|
---|
170 | *
|
---|
171 | * @returns IPRT status code.
|
---|
172 | * @param pBigNum The big number.
|
---|
173 | * @param cNewUsed The new cUsed value.
|
---|
174 | * @param cMinElements The minimum number of elements.
|
---|
175 | */
|
---|
176 | static int rtBigNumGrow(PRTBIGNUM pBigNum, uint32_t cNewUsed, uint32_t cMinElements)
|
---|
177 | {
|
---|
178 | Assert(cMinElements >= cNewUsed);
|
---|
179 | uint32_t const cbOld = pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE;
|
---|
180 | uint32_t const cNew = RT_ALIGN_32(cMinElements, RTBIGNUM_ALIGNMENT);
|
---|
181 | uint32_t const cbNew = cNew * RTBIGNUM_ELEMENT_SIZE;
|
---|
182 | Assert(cbNew > cbOld);
|
---|
183 |
|
---|
184 | void *pvNew;
|
---|
185 | if (pBigNum->fSensitive)
|
---|
186 | pvNew = RTMemSaferReallocZ(cbOld, pBigNum->pauElements, cbNew);
|
---|
187 | else
|
---|
188 | pvNew = RTMemRealloc(pBigNum->pauElements, cbNew);
|
---|
189 | if (RT_LIKELY(pvNew))
|
---|
190 | {
|
---|
191 | if (cbNew > cbOld)
|
---|
192 | RT_BZERO((char *)pvNew + cbOld, cbNew - cbOld);
|
---|
193 |
|
---|
194 | pBigNum->pauElements = (RTBIGNUMELEMENT *)pvNew;
|
---|
195 | pBigNum->cUsed = cNewUsed;
|
---|
196 | pBigNum->cAllocated = cNew;
|
---|
197 | return VINF_SUCCESS;
|
---|
198 | }
|
---|
199 | return VERR_NO_MEMORY;
|
---|
200 | }
|
---|
201 |
|
---|
202 |
|
---|
203 | /**
|
---|
204 | * Changes the cUsed member, growing the pauElements array if necessary.
|
---|
205 | *
|
---|
206 | * Any elements added to the array will be initialized to zero.
|
---|
207 | *
|
---|
208 | * @returns IPRT status code.
|
---|
209 | * @param pBigNum The big number.
|
---|
210 | * @param cNewUsed The new cUsed value.
|
---|
211 | */
|
---|
212 | DECLINLINE(int) rtBigNumSetUsed(PRTBIGNUM pBigNum, uint32_t cNewUsed)
|
---|
213 | {
|
---|
214 | if (pBigNum->cAllocated >= cNewUsed)
|
---|
215 | {
|
---|
216 | if (pBigNum->cUsed > cNewUsed)
|
---|
217 | RT_BZERO(&pBigNum->pauElements[cNewUsed], (pBigNum->cUsed - cNewUsed) * RTBIGNUM_ELEMENT_SIZE);
|
---|
218 | #ifdef RT_STRICT
|
---|
219 | else if (pBigNum->cUsed != cNewUsed)
|
---|
220 | Assert(ASMMemIsAllU32(&pBigNum->pauElements[pBigNum->cUsed],
|
---|
221 | (cNewUsed - pBigNum->cUsed) * RTBIGNUM_ELEMENT_SIZE, 0) == NULL);
|
---|
222 | #endif
|
---|
223 | pBigNum->cUsed = cNewUsed;
|
---|
224 | return VINF_SUCCESS;
|
---|
225 | }
|
---|
226 | return rtBigNumGrow(pBigNum, cNewUsed, cNewUsed);
|
---|
227 | }
|
---|
228 |
|
---|
229 |
|
---|
230 | /**
|
---|
231 | * Extended version of rtBigNumSetUsed that also allow specifying the number of
|
---|
232 | * zero elements required.
|
---|
233 | *
|
---|
234 | * @returns IPRT status code.
|
---|
235 | * @param pBigNum The big number.
|
---|
236 | * @param cNewUsed The new cUsed value.
|
---|
237 | * @param cMinElements The minimum number of elements allocated. The
|
---|
238 | * difference between @a cNewUsed and @a cMinElements
|
---|
239 | * is initialized to zero because all free elements are
|
---|
240 | * zero.
|
---|
241 | */
|
---|
242 | DECLINLINE(int) rtBigNumSetUsedEx(PRTBIGNUM pBigNum, uint32_t cNewUsed, uint32_t cMinElements)
|
---|
243 | {
|
---|
244 | if (pBigNum->cAllocated >= cMinElements)
|
---|
245 | {
|
---|
246 | if (pBigNum->cUsed > cNewUsed)
|
---|
247 | RT_BZERO(&pBigNum->pauElements[cNewUsed], (pBigNum->cUsed - cNewUsed) * RTBIGNUM_ELEMENT_SIZE);
|
---|
248 | #ifdef RT_STRICT
|
---|
249 | else if (pBigNum->cUsed != cNewUsed)
|
---|
250 | Assert(ASMMemIsAllU32(&pBigNum->pauElements[pBigNum->cUsed],
|
---|
251 | (cNewUsed - pBigNum->cUsed) * RTBIGNUM_ELEMENT_SIZE, 0) == NULL);
|
---|
252 | #endif
|
---|
253 | pBigNum->cUsed = cNewUsed;
|
---|
254 | return VINF_SUCCESS;
|
---|
255 | }
|
---|
256 | return rtBigNumGrow(pBigNum, cNewUsed, cMinElements);
|
---|
257 | }
|
---|
258 |
|
---|
259 |
|
---|
260 | /**
|
---|
261 | * For ensuring zero padding of pauElements for sub/add with carry assembly
|
---|
262 | * operations.
|
---|
263 | *
|
---|
264 | * @returns IPRT status code.
|
---|
265 | * @param pBigNum The big number.
|
---|
266 | * @param cElements The number of elements that must be in the elements
|
---|
267 | * array array, where those after pBigNum->cUsed must
|
---|
268 | * be zero.
|
---|
269 | */
|
---|
270 | DECLINLINE(int) rtBigNumEnsureExtraZeroElements(PRTBIGNUM pBigNum, uint32_t cElements)
|
---|
271 | {
|
---|
272 | if (pBigNum->cAllocated >= cElements)
|
---|
273 | {
|
---|
274 | Assert( pBigNum->cAllocated == pBigNum->cUsed
|
---|
275 | || ASMMemIsAllU32(&pBigNum->pauElements[pBigNum->cUsed],
|
---|
276 | (pBigNum->cAllocated - pBigNum->cUsed) * RTBIGNUM_ELEMENT_SIZE, 0) == NULL);
|
---|
277 | return VINF_SUCCESS;
|
---|
278 | }
|
---|
279 | return rtBigNumGrow(pBigNum, pBigNum->cUsed, cElements);
|
---|
280 | }
|
---|
281 |
|
---|
282 |
|
---|
283 | /**
|
---|
284 | * The slow part of rtBigNumEnsureElementPresent where we need to do actual zero
|
---|
285 | * extending.
|
---|
286 | *
|
---|
287 | * @returns IPRT status code.
|
---|
288 | * @param pBigNum The big number.
|
---|
289 | * @param iElement The element we wish to access.
|
---|
290 | */
|
---|
291 | static int rtBigNumEnsureElementPresentSlow(PRTBIGNUM pBigNum, uint32_t iElement)
|
---|
292 | {
|
---|
293 | uint32_t const cOldUsed = pBigNum->cUsed;
|
---|
294 | int rc = rtBigNumSetUsed(pBigNum, iElement + 1);
|
---|
295 | if (RT_SUCCESS(rc))
|
---|
296 | {
|
---|
297 | RT_BZERO(&pBigNum->pauElements[cOldUsed], (iElement + 1 - cOldUsed) * RTBIGNUM_ELEMENT_SIZE);
|
---|
298 | return VINF_SUCCESS;
|
---|
299 | }
|
---|
300 | return rc;
|
---|
301 | }
|
---|
302 |
|
---|
303 |
|
---|
304 | /**
|
---|
305 | * Zero extends the element array to make sure a the specified element index is
|
---|
306 | * accessible.
|
---|
307 | *
|
---|
308 | * This is typically used with bit operations and self modifying methods. Any
|
---|
309 | * new elements added will be initialized to zero. The caller is responsible
|
---|
310 | * for there not being any trailing zero elements.
|
---|
311 | *
|
---|
312 | * The number must be unscrambled.
|
---|
313 | *
|
---|
314 | * @returns IPRT status code.
|
---|
315 | * @param pBigNum The big number.
|
---|
316 | * @param iElement The element we wish to access.
|
---|
317 | */
|
---|
318 | DECLINLINE(int) rtBigNumEnsureElementPresent(PRTBIGNUM pBigNum, uint32_t iElement)
|
---|
319 | {
|
---|
320 | if (iElement < pBigNum->cUsed)
|
---|
321 | return VINF_SUCCESS;
|
---|
322 | return rtBigNumEnsureElementPresentSlow(pBigNum, iElement);
|
---|
323 | }
|
---|
324 |
|
---|
325 |
|
---|
326 | /**
|
---|
327 | * Strips zero elements from the magnitude value.
|
---|
328 | *
|
---|
329 | * @param pBigNum The big number to strip.
|
---|
330 | */
|
---|
331 | static void rtBigNumStripTrailingZeros(PRTBIGNUM pBigNum)
|
---|
332 | {
|
---|
333 | uint32_t i = pBigNum->cUsed;
|
---|
334 | while (i > 0 && pBigNum->pauElements[i - 1] == 0)
|
---|
335 | i--;
|
---|
336 | pBigNum->cUsed = i;
|
---|
337 | }
|
---|
338 |
|
---|
339 |
|
---|
340 | /**
|
---|
341 | * Initialize the big number to zero.
|
---|
342 | *
|
---|
343 | * @returns @a pBigNum
|
---|
344 | * @param pBigNum The big number.
|
---|
345 | * @param fFlags The flags.
|
---|
346 | * @internal
|
---|
347 | */
|
---|
348 | DECLINLINE(PRTBIGNUM) rtBigNumInitZeroInternal(PRTBIGNUM pBigNum, uint32_t fFlags)
|
---|
349 | {
|
---|
350 | RT_ZERO(*pBigNum);
|
---|
351 | pBigNum->fSensitive = RT_BOOL(fFlags & RTBIGNUMINIT_F_SENSITIVE);
|
---|
352 | return pBigNum;
|
---|
353 | }
|
---|
354 |
|
---|
355 |
|
---|
356 | /**
|
---|
357 | * Initialize the big number to zero from a template variable.
|
---|
358 | *
|
---|
359 | * @returns @a pBigNum
|
---|
360 | * @param pBigNum The big number.
|
---|
361 | * @param pTemplate The template big number.
|
---|
362 | * @internal
|
---|
363 | */
|
---|
364 | DECLINLINE(PRTBIGNUM) rtBigNumInitZeroTemplate(PRTBIGNUM pBigNum, PCRTBIGNUM pTemplate)
|
---|
365 | {
|
---|
366 | RT_ZERO(*pBigNum);
|
---|
367 | pBigNum->fSensitive = pTemplate->fSensitive;
|
---|
368 | return pBigNum;
|
---|
369 | }
|
---|
370 |
|
---|
371 |
|
---|
372 | RTDECL(int) RTBigNumInit(PRTBIGNUM pBigNum, uint32_t fFlags, void const *pvRaw, size_t cbRaw)
|
---|
373 | {
|
---|
374 | /*
|
---|
375 | * Validate input.
|
---|
376 | */
|
---|
377 | AssertPtrReturn(pBigNum, VERR_INVALID_POINTER);
|
---|
378 | AssertReturn(RT_BOOL(fFlags & RTBIGNUMINIT_F_ENDIAN_BIG) ^ RT_BOOL(fFlags & RTBIGNUMINIT_F_ENDIAN_LITTLE),
|
---|
379 | VERR_INVALID_PARAMETER);
|
---|
380 | AssertReturn(RT_BOOL(fFlags & RTBIGNUMINIT_F_UNSIGNED) ^ RT_BOOL(fFlags & RTBIGNUMINIT_F_SIGNED), VERR_INVALID_PARAMETER);
|
---|
381 | if (cbRaw)
|
---|
382 | AssertPtrReturn(pvRaw, VERR_INVALID_POINTER);
|
---|
383 |
|
---|
384 | /*
|
---|
385 | * Initalize the big number to zero.
|
---|
386 | */
|
---|
387 | rtBigNumInitZeroInternal(pBigNum, fFlags);
|
---|
388 |
|
---|
389 | /*
|
---|
390 | * Strip the input and figure the sign flag.
|
---|
391 | */
|
---|
392 | uint8_t const *pb = (uint8_t const *)pvRaw;
|
---|
393 | if (cbRaw)
|
---|
394 | {
|
---|
395 | if (fFlags & RTBIGNUMINIT_F_ENDIAN_LITTLE)
|
---|
396 | {
|
---|
397 | if (fFlags & RTBIGNUMINIT_F_UNSIGNED)
|
---|
398 | {
|
---|
399 | while (cbRaw > 0 && pb[cbRaw - 1] == 0)
|
---|
400 | cbRaw--;
|
---|
401 | }
|
---|
402 | else
|
---|
403 | {
|
---|
404 | if (pb[cbRaw - 1] >> 7)
|
---|
405 | {
|
---|
406 | pBigNum->fNegative = 1;
|
---|
407 | while (cbRaw > 1 && pb[cbRaw - 1] == 0xff)
|
---|
408 | cbRaw--;
|
---|
409 | }
|
---|
410 | else
|
---|
411 | while (cbRaw > 0 && pb[cbRaw - 1] == 0)
|
---|
412 | cbRaw--;
|
---|
413 | }
|
---|
414 | }
|
---|
415 | else
|
---|
416 | {
|
---|
417 | if (fFlags & RTBIGNUMINIT_F_UNSIGNED)
|
---|
418 | {
|
---|
419 | while (cbRaw > 0 && *pb == 0)
|
---|
420 | pb++, cbRaw--;
|
---|
421 | }
|
---|
422 | else
|
---|
423 | {
|
---|
424 | if (*pb >> 7)
|
---|
425 | {
|
---|
426 | pBigNum->fNegative = 1;
|
---|
427 | while (cbRaw > 1 && *pb == 0xff)
|
---|
428 | pb++, cbRaw--;
|
---|
429 | }
|
---|
430 | else
|
---|
431 | while (cbRaw > 0 && *pb == 0)
|
---|
432 | pb++, cbRaw--;
|
---|
433 | }
|
---|
434 | }
|
---|
435 | }
|
---|
436 |
|
---|
437 | /*
|
---|
438 | * Allocate memory for the elements.
|
---|
439 | */
|
---|
440 | size_t cbAligned = RT_ALIGN_Z(cbRaw, RTBIGNUM_ELEMENT_SIZE);
|
---|
441 | if (RT_UNLIKELY(cbAligned >= RTBIGNUM_MAX_SIZE))
|
---|
442 | return VERR_OUT_OF_RANGE;
|
---|
443 | pBigNum->cUsed = (uint32_t)cbAligned / RTBIGNUM_ELEMENT_SIZE;
|
---|
444 | if (pBigNum->cUsed)
|
---|
445 | {
|
---|
446 | pBigNum->cAllocated = RT_ALIGN_32(pBigNum->cUsed, RTBIGNUM_ALIGNMENT);
|
---|
447 | if (pBigNum->fSensitive)
|
---|
448 | pBigNum->pauElements = (RTBIGNUMELEMENT *)RTMemSaferAllocZ(pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE);
|
---|
449 | else
|
---|
450 | pBigNum->pauElements = (RTBIGNUMELEMENT *)RTMemAlloc(pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE);
|
---|
451 | if (RT_UNLIKELY(!pBigNum->pauElements))
|
---|
452 | return VERR_NO_MEMORY;
|
---|
453 |
|
---|
454 | /*
|
---|
455 | * Initialize the array.
|
---|
456 | */
|
---|
457 | uint32_t i = 0;
|
---|
458 | if (fFlags & RTBIGNUMINIT_F_ENDIAN_LITTLE)
|
---|
459 | {
|
---|
460 | while (cbRaw >= RTBIGNUM_ELEMENT_SIZE)
|
---|
461 | {
|
---|
462 | #if RTBIGNUM_ELEMENT_SIZE == 8
|
---|
463 | pBigNum->pauElements[i] = RT_MAKE_U64_FROM_U8(pb[0], pb[1], pb[2], pb[3], pb[4], pb[5], pb[6], pb[7]);
|
---|
464 | #elif RTBIGNUM_ELEMENT_SIZE == 4
|
---|
465 | pBigNum->pauElements[i] = RT_MAKE_U32_FROM_U8(pb[0], pb[1], pb[2], pb[3]);
|
---|
466 | #else
|
---|
467 | # error "Bad RTBIGNUM_ELEMENT_SIZE value"
|
---|
468 | #endif
|
---|
469 | i++;
|
---|
470 | pb += RTBIGNUM_ELEMENT_SIZE;
|
---|
471 | cbRaw -= RTBIGNUM_ELEMENT_SIZE;
|
---|
472 | }
|
---|
473 |
|
---|
474 | if (cbRaw > 0)
|
---|
475 | {
|
---|
476 | RTBIGNUMELEMENT uLast = pBigNum->fNegative ? ~(RTBIGNUMELEMENT)0 : 0;
|
---|
477 | switch (cbRaw)
|
---|
478 | {
|
---|
479 | default: AssertFailed();
|
---|
480 | #if RTBIGNUM_ELEMENT_SIZE == 8
|
---|
481 | case 7: uLast = (uLast << 8) | pb[6];
|
---|
482 | case 6: uLast = (uLast << 8) | pb[5];
|
---|
483 | case 5: uLast = (uLast << 8) | pb[4];
|
---|
484 | case 4: uLast = (uLast << 8) | pb[3];
|
---|
485 | #endif
|
---|
486 | case 3: uLast = (uLast << 8) | pb[2];
|
---|
487 | case 2: uLast = (uLast << 8) | pb[1];
|
---|
488 | case 1: uLast = (uLast << 8) | pb[0];
|
---|
489 | }
|
---|
490 | pBigNum->pauElements[i] = uLast;
|
---|
491 | }
|
---|
492 | }
|
---|
493 | else
|
---|
494 | {
|
---|
495 | pb += cbRaw;
|
---|
496 | while (cbRaw >= RTBIGNUM_ELEMENT_SIZE)
|
---|
497 | {
|
---|
498 | pb -= RTBIGNUM_ELEMENT_SIZE;
|
---|
499 | #if RTBIGNUM_ELEMENT_SIZE == 8
|
---|
500 | pBigNum->pauElements[i] = RT_MAKE_U64_FROM_U8(pb[7], pb[6], pb[5], pb[4], pb[3], pb[2], pb[1], pb[0]);
|
---|
501 | #elif RTBIGNUM_ELEMENT_SIZE == 4
|
---|
502 | pBigNum->pauElements[i] = RT_MAKE_U32_FROM_U8(pb[3], pb[2], pb[1], pb[0]);
|
---|
503 | #else
|
---|
504 | # error "Bad RTBIGNUM_ELEMENT_SIZE value"
|
---|
505 | #endif
|
---|
506 | i++;
|
---|
507 | cbRaw -= RTBIGNUM_ELEMENT_SIZE;
|
---|
508 | }
|
---|
509 |
|
---|
510 | if (cbRaw > 0)
|
---|
511 | {
|
---|
512 | RTBIGNUMELEMENT uLast = pBigNum->fNegative ? ~(RTBIGNUMELEMENT)0 : 0;
|
---|
513 | pb -= cbRaw;
|
---|
514 | switch (cbRaw)
|
---|
515 | {
|
---|
516 | default: AssertFailed();
|
---|
517 | #if RTBIGNUM_ELEMENT_SIZE == 8
|
---|
518 | case 7: uLast = (uLast << 8) | *pb++;
|
---|
519 | case 6: uLast = (uLast << 8) | *pb++;
|
---|
520 | case 5: uLast = (uLast << 8) | *pb++;
|
---|
521 | case 4: uLast = (uLast << 8) | *pb++;
|
---|
522 | #endif
|
---|
523 | case 3: uLast = (uLast << 8) | *pb++;
|
---|
524 | case 2: uLast = (uLast << 8) | *pb++;
|
---|
525 | case 1: uLast = (uLast << 8) | *pb++;
|
---|
526 | }
|
---|
527 | pBigNum->pauElements[i] = uLast;
|
---|
528 | }
|
---|
529 | }
|
---|
530 |
|
---|
531 | /*
|
---|
532 | * If negative, negate it so we get a positive magnitude value in pauElements.
|
---|
533 | */
|
---|
534 | if (pBigNum->fNegative)
|
---|
535 | {
|
---|
536 | pBigNum->pauElements[0] = 0U - pBigNum->pauElements[0];
|
---|
537 | for (i = 1; i < pBigNum->cUsed; i++)
|
---|
538 | pBigNum->pauElements[i] = 0U - pBigNum->pauElements[i] - 1U;
|
---|
539 | }
|
---|
540 |
|
---|
541 | /*
|
---|
542 | * Clear unused elements.
|
---|
543 | */
|
---|
544 | if (pBigNum->cUsed != pBigNum->cAllocated)
|
---|
545 | {
|
---|
546 | RTBIGNUMELEMENT *puUnused = &pBigNum->pauElements[pBigNum->cUsed];
|
---|
547 | AssertCompile(RTBIGNUM_ALIGNMENT <= 4);
|
---|
548 | switch (pBigNum->cAllocated - pBigNum->cUsed)
|
---|
549 | {
|
---|
550 | default: AssertFailed();
|
---|
551 | case 3: *puUnused++ = 0;
|
---|
552 | case 2: *puUnused++ = 0;
|
---|
553 | case 1: *puUnused++ = 0;
|
---|
554 | }
|
---|
555 | }
|
---|
556 | RTBIGNUM_ASSERT_VALID(pBigNum);
|
---|
557 | }
|
---|
558 |
|
---|
559 | rtBigNumScramble(pBigNum);
|
---|
560 | return VINF_SUCCESS;
|
---|
561 | }
|
---|
562 |
|
---|
563 |
|
---|
564 | RTDECL(int) RTBigNumInitZero(PRTBIGNUM pBigNum, uint32_t fFlags)
|
---|
565 | {
|
---|
566 | AssertReturn(!(fFlags & ~RTBIGNUMINIT_F_SENSITIVE), VERR_INVALID_PARAMETER);
|
---|
567 | AssertPtrReturn(pBigNum, VERR_INVALID_POINTER);
|
---|
568 |
|
---|
569 | rtBigNumInitZeroInternal(pBigNum, fFlags);
|
---|
570 | rtBigNumScramble(pBigNum);
|
---|
571 | return VINF_SUCCESS;
|
---|
572 | }
|
---|
573 |
|
---|
574 |
|
---|
575 | /**
|
---|
576 | * Internal clone function that assumes the caller takes care of scrambling.
|
---|
577 | *
|
---|
578 | * @returns IPRT status code.
|
---|
579 | * @param pBigNum The target number.
|
---|
580 | * @param pSrc The source number.
|
---|
581 | */
|
---|
582 | static int rtBigNumCloneInternal(PRTBIGNUM pBigNum, PCRTBIGNUM pSrc)
|
---|
583 | {
|
---|
584 | Assert(!pSrc->fCurScrambled);
|
---|
585 | int rc = VINF_SUCCESS;
|
---|
586 |
|
---|
587 | /*
|
---|
588 | * Copy over the data.
|
---|
589 | */
|
---|
590 | RT_ZERO(*pBigNum);
|
---|
591 | pBigNum->fNegative = pSrc->fNegative;
|
---|
592 | pBigNum->fSensitive = pSrc->fSensitive;
|
---|
593 | pBigNum->cUsed = pSrc->cUsed;
|
---|
594 | if (pSrc->cUsed)
|
---|
595 | {
|
---|
596 | /* Duplicate the element array. */
|
---|
597 | pBigNum->cAllocated = RT_ALIGN_32(pBigNum->cUsed, RTBIGNUM_ALIGNMENT);
|
---|
598 | if (pBigNum->fSensitive)
|
---|
599 | pBigNum->pauElements = (RTBIGNUMELEMENT *)RTMemSaferAllocZ(pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE);
|
---|
600 | else
|
---|
601 | pBigNum->pauElements = (RTBIGNUMELEMENT *)RTMemAlloc(pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE);
|
---|
602 | if (RT_LIKELY(pBigNum->pauElements))
|
---|
603 | {
|
---|
604 | memcpy(pBigNum->pauElements, pSrc->pauElements, pBigNum->cUsed * RTBIGNUM_ELEMENT_SIZE);
|
---|
605 | if (pBigNum->cUsed != pBigNum->cAllocated)
|
---|
606 | RT_BZERO(&pBigNum->pauElements[pBigNum->cUsed], (pBigNum->cAllocated - pBigNum->cUsed) * RTBIGNUM_ELEMENT_SIZE);
|
---|
607 | }
|
---|
608 | else
|
---|
609 | {
|
---|
610 | RT_ZERO(*pBigNum);
|
---|
611 | rc = VERR_NO_MEMORY;
|
---|
612 | }
|
---|
613 | }
|
---|
614 | return rc;
|
---|
615 | }
|
---|
616 |
|
---|
617 |
|
---|
618 | RTDECL(int) RTBigNumClone(PRTBIGNUM pBigNum, PCRTBIGNUM pSrc)
|
---|
619 | {
|
---|
620 | int rc = rtBigNumUnscramble((PRTBIGNUM)pSrc);
|
---|
621 | if (RT_SUCCESS(rc))
|
---|
622 | {
|
---|
623 | RTBIGNUM_ASSERT_VALID(pSrc);
|
---|
624 | rc = rtBigNumCloneInternal(pBigNum, pSrc);
|
---|
625 | if (RT_SUCCESS(rc))
|
---|
626 | rtBigNumScramble(pBigNum);
|
---|
627 | rtBigNumScramble((PRTBIGNUM)pSrc);
|
---|
628 | }
|
---|
629 | return rc;
|
---|
630 | }
|
---|
631 |
|
---|
632 |
|
---|
633 | RTDECL(int) RTBigNumDestroy(PRTBIGNUM pBigNum)
|
---|
634 | {
|
---|
635 | if (pBigNum)
|
---|
636 | {
|
---|
637 | if (pBigNum->pauElements)
|
---|
638 | {
|
---|
639 | Assert(pBigNum->cAllocated > 0);
|
---|
640 | if (pBigNum->fSensitive)
|
---|
641 | {
|
---|
642 | RTMemSaferFree(pBigNum->pauElements, pBigNum->cAllocated * RTBIGNUM_ELEMENT_SIZE);
|
---|
643 | RT_ZERO(*pBigNum);
|
---|
644 | }
|
---|
645 | RTMemFree(pBigNum->pauElements);
|
---|
646 | pBigNum->pauElements = NULL;
|
---|
647 | }
|
---|
648 | }
|
---|
649 | return VINF_SUCCESS;
|
---|
650 | }
|
---|
651 |
|
---|
652 |
|
---|
653 | RTDECL(int) RTBigNumAssign(PRTBIGNUM pDst, PCRTBIGNUM pSrc)
|
---|
654 | {
|
---|
655 | AssertReturn(pDst->fSensitive >= pSrc->fSensitive, VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
656 | int rc = rtBigNumUnscramble(pDst);
|
---|
657 | if (RT_SUCCESS(rc))
|
---|
658 | {
|
---|
659 | RTBIGNUM_ASSERT_VALID(pDst);
|
---|
660 | rc = rtBigNumUnscramble((PRTBIGNUM)pSrc);
|
---|
661 | if (RT_SUCCESS(rc))
|
---|
662 | {
|
---|
663 | RTBIGNUM_ASSERT_VALID(pSrc);
|
---|
664 | if ( pDst->fSensitive == pSrc->fSensitive
|
---|
665 | || pDst->fSensitive)
|
---|
666 | {
|
---|
667 | if (pDst->cAllocated >= pSrc->cUsed)
|
---|
668 | {
|
---|
669 | if (pDst->cUsed > pSrc->cUsed)
|
---|
670 | RT_BZERO(&pDst->pauElements[pSrc->cUsed], (pDst->cUsed - pSrc->cUsed) * RTBIGNUM_ELEMENT_SIZE);
|
---|
671 | pDst->cUsed = pSrc->cUsed;
|
---|
672 | pDst->fNegative = pSrc->fNegative;
|
---|
673 | memcpy(pDst->pauElements, pSrc->pauElements, pSrc->cUsed * RTBIGNUM_ELEMENT_SIZE);
|
---|
674 | }
|
---|
675 | else
|
---|
676 | {
|
---|
677 | rc = rtBigNumGrow(pDst, pSrc->cUsed, pSrc->cUsed);
|
---|
678 | if (RT_SUCCESS(rc))
|
---|
679 | {
|
---|
680 | pDst->fNegative = pSrc->fNegative;
|
---|
681 | memcpy(pDst->pauElements, pSrc->pauElements, pSrc->cUsed * RTBIGNUM_ELEMENT_SIZE);
|
---|
682 | }
|
---|
683 | }
|
---|
684 | }
|
---|
685 | else
|
---|
686 | rc = VERR_BIGNUM_SENSITIVE_INPUT;
|
---|
687 | rtBigNumScramble((PRTBIGNUM)pSrc);
|
---|
688 | }
|
---|
689 | rtBigNumScramble(pDst);
|
---|
690 | }
|
---|
691 | return rc;
|
---|
692 | }
|
---|
693 |
|
---|
694 |
|
---|
695 | static uint32_t rtBigNumElementBitCount(RTBIGNUMELEMENT uElement)
|
---|
696 | {
|
---|
697 | #if RTBIGNUM_ELEMENT_SIZE == 8
|
---|
698 | if (uElement >> 32)
|
---|
699 | return ASMBitLastSetU32((uint32_t)(uElement >> 32)) + 32;
|
---|
700 | return ASMBitLastSetU32((uint32_t)uElement);
|
---|
701 | #elif RTBIGNUM_ELEMENT_SIZE == 4
|
---|
702 | return ASMBitLastSetU32(uElement);
|
---|
703 | #else
|
---|
704 | # error "Bad RTBIGNUM_ELEMENT_SIZE value"
|
---|
705 | #endif
|
---|
706 | }
|
---|
707 |
|
---|
708 |
|
---|
709 | /**
|
---|
710 | * Same as RTBigNumBitWidth, except that it ignore the signed bit.
|
---|
711 | *
|
---|
712 | * The number must be unscrambled.
|
---|
713 | *
|
---|
714 | * @returns The effective width of the magnitude, in bits. Returns 0 if the
|
---|
715 | * value is zero.
|
---|
716 | * @param pBigNum The bit number.
|
---|
717 | */
|
---|
718 | static uint32_t rtBigNumMagnitudeBitWidth(PCRTBIGNUM pBigNum)
|
---|
719 | {
|
---|
720 | uint32_t idxLast = pBigNum->cUsed;
|
---|
721 | if (idxLast)
|
---|
722 | {
|
---|
723 | idxLast--;
|
---|
724 | RTBIGNUMELEMENT uLast = pBigNum->pauElements[idxLast]; Assert(uLast);
|
---|
725 | return rtBigNumElementBitCount(uLast) + idxLast * RTBIGNUM_ELEMENT_BITS;
|
---|
726 | }
|
---|
727 | return 0;
|
---|
728 | }
|
---|
729 |
|
---|
730 |
|
---|
731 | RTDECL(uint32_t) RTBigNumBitWidth(PCRTBIGNUM pBigNum)
|
---|
732 | {
|
---|
733 | uint32_t idxLast = pBigNum->cUsed;
|
---|
734 | if (idxLast)
|
---|
735 | {
|
---|
736 | idxLast--;
|
---|
737 | rtBigNumUnscramble((PRTBIGNUM)pBigNum);
|
---|
738 | RTBIGNUMELEMENT uLast = pBigNum->pauElements[idxLast]; Assert(uLast);
|
---|
739 | rtBigNumScramble((PRTBIGNUM)pBigNum);
|
---|
740 | return rtBigNumElementBitCount(uLast) + idxLast * RTBIGNUM_ELEMENT_BITS + pBigNum->fNegative;
|
---|
741 | }
|
---|
742 | return 0;
|
---|
743 | }
|
---|
744 |
|
---|
745 |
|
---|
746 | RTDECL(uint32_t) RTBigNumByteWidth(PCRTBIGNUM pBigNum)
|
---|
747 | {
|
---|
748 | uint32_t cBits = RTBigNumBitWidth(pBigNum);
|
---|
749 | return (cBits + 7) / 8;
|
---|
750 | }
|
---|
751 |
|
---|
752 |
|
---|
753 | RTDECL(int) RTBigNumToBytesBigEndian(PCRTBIGNUM pBigNum, void *pvBuf, size_t cbWanted)
|
---|
754 | {
|
---|
755 | AssertPtrReturn(pvBuf, VERR_INVALID_POINTER);
|
---|
756 | AssertReturn(cbWanted > 0, VERR_INVALID_PARAMETER);
|
---|
757 |
|
---|
758 | int rc = rtBigNumUnscramble((PRTBIGNUM)pBigNum);
|
---|
759 | if (RT_SUCCESS(rc))
|
---|
760 | {
|
---|
761 | RTBIGNUM_ASSERT_VALID(pBigNum);
|
---|
762 | rc = VINF_SUCCESS;
|
---|
763 | if (pBigNum->cUsed != 0)
|
---|
764 | {
|
---|
765 | uint8_t *pbDst = (uint8_t *)pvBuf;
|
---|
766 | pbDst += cbWanted - 1;
|
---|
767 | for (uint32_t i = 0; i < pBigNum->cUsed; i++)
|
---|
768 | {
|
---|
769 | RTBIGNUMELEMENT uElement = pBigNum->pauElements[i];
|
---|
770 | if (pBigNum->fNegative)
|
---|
771 | uElement = (RTBIGNUMELEMENT)0 - uElement - (i > 0);
|
---|
772 | if (cbWanted >= sizeof(uElement))
|
---|
773 | {
|
---|
774 | *pbDst-- = (uint8_t)uElement;
|
---|
775 | uElement >>= 8;
|
---|
776 | *pbDst-- = (uint8_t)uElement;
|
---|
777 | uElement >>= 8;
|
---|
778 | *pbDst-- = (uint8_t)uElement;
|
---|
779 | uElement >>= 8;
|
---|
780 | *pbDst-- = (uint8_t)uElement;
|
---|
781 | #if RTBIGNUM_ELEMENT_SIZE == 8
|
---|
782 | uElement >>= 8;
|
---|
783 | *pbDst-- = (uint8_t)uElement;
|
---|
784 | uElement >>= 8;
|
---|
785 | *pbDst-- = (uint8_t)uElement;
|
---|
786 | uElement >>= 8;
|
---|
787 | *pbDst-- = (uint8_t)uElement;
|
---|
788 | uElement >>= 8;
|
---|
789 | *pbDst-- = (uint8_t)uElement;
|
---|
790 | #elif RTBIGNUM_ELEMENT_SIZE != 4
|
---|
791 | # error "Bad RTBIGNUM_ELEMENT_SIZE value"
|
---|
792 | #endif
|
---|
793 | cbWanted -= sizeof(uElement);
|
---|
794 | }
|
---|
795 | else
|
---|
796 | {
|
---|
797 |
|
---|
798 | uint32_t cBitsLeft = RTBIGNUM_ELEMENT_BITS;
|
---|
799 | while (cbWanted > 0)
|
---|
800 | {
|
---|
801 | *pbDst-- = (uint8_t)uElement;
|
---|
802 | uElement >>= 8;
|
---|
803 | cBitsLeft -= 8;
|
---|
804 | cbWanted--;
|
---|
805 | }
|
---|
806 | Assert(cBitsLeft > 0); Assert(cBitsLeft < RTBIGNUM_ELEMENT_BITS);
|
---|
807 | if ( i + 1 < pBigNum->cUsed
|
---|
808 | || ( !pBigNum->fNegative
|
---|
809 | ? uElement != 0
|
---|
810 | : uElement != ((RTBIGNUMELEMENT)1 << cBitsLeft) - 1U ) )
|
---|
811 | rc = VERR_BUFFER_OVERFLOW;
|
---|
812 | break;
|
---|
813 | }
|
---|
814 | }
|
---|
815 |
|
---|
816 | /* Sign extend the number to the desired output size. */
|
---|
817 | if (cbWanted > 0)
|
---|
818 | memset(pbDst - cbWanted, pBigNum->fNegative ? 0 : 0xff, cbWanted);
|
---|
819 | }
|
---|
820 | else
|
---|
821 | RT_BZERO(pvBuf, cbWanted);
|
---|
822 | rtBigNumScramble((PRTBIGNUM)pBigNum);
|
---|
823 | }
|
---|
824 | return rc;
|
---|
825 | }
|
---|
826 |
|
---|
827 |
|
---|
828 | RTDECL(int) RTBigNumCompare(PRTBIGNUM pLeft, PRTBIGNUM pRight)
|
---|
829 | {
|
---|
830 | int rc = rtBigNumUnscramble(pLeft);
|
---|
831 | if (RT_SUCCESS(rc))
|
---|
832 | {
|
---|
833 | RTBIGNUM_ASSERT_VALID(pLeft);
|
---|
834 | rc = rtBigNumUnscramble(pRight);
|
---|
835 | if (RT_SUCCESS(rc))
|
---|
836 | {
|
---|
837 | RTBIGNUM_ASSERT_VALID(pRight);
|
---|
838 | if (pLeft->fNegative == pRight->fNegative)
|
---|
839 | {
|
---|
840 | if (pLeft->cUsed == pRight->cUsed)
|
---|
841 | {
|
---|
842 | rc = 0;
|
---|
843 | uint32_t i = pLeft->cUsed;
|
---|
844 | while (i-- > 0)
|
---|
845 | if (pLeft->pauElements[i] != pRight->pauElements[i])
|
---|
846 | {
|
---|
847 | rc = pLeft->pauElements[i] < pRight->pauElements[i] ? -1 : 1;
|
---|
848 | break;
|
---|
849 | }
|
---|
850 | if (pLeft->fNegative)
|
---|
851 | rc = -rc;
|
---|
852 | }
|
---|
853 | else
|
---|
854 | rc = !pLeft->fNegative
|
---|
855 | ? pLeft->cUsed < pRight->cUsed ? -1 : 1
|
---|
856 | : pLeft->cUsed < pRight->cUsed ? 1 : -1;
|
---|
857 | }
|
---|
858 | else
|
---|
859 | rc = pLeft->fNegative ? -1 : 1;
|
---|
860 |
|
---|
861 | rtBigNumScramble(pRight);
|
---|
862 | }
|
---|
863 | rtBigNumScramble(pLeft);
|
---|
864 | }
|
---|
865 | return rc;
|
---|
866 | }
|
---|
867 |
|
---|
868 |
|
---|
869 | RTDECL(int) RTBigNumCompareWithU64(PRTBIGNUM pLeft, uint64_t uRight)
|
---|
870 | {
|
---|
871 | int rc = rtBigNumUnscramble(pLeft);
|
---|
872 | if (RT_SUCCESS(rc))
|
---|
873 | {
|
---|
874 | RTBIGNUM_ASSERT_VALID(pLeft);
|
---|
875 | if (!pLeft->fNegative)
|
---|
876 | {
|
---|
877 | if (pLeft->cUsed * RTBIGNUM_ELEMENT_SIZE <= sizeof(uRight))
|
---|
878 | {
|
---|
879 | if (pLeft->cUsed == 0)
|
---|
880 | rc = uRight == 0 ? 0 : -1;
|
---|
881 | else
|
---|
882 | {
|
---|
883 | #if RTBIGNUM_ELEMENT_SIZE == 8
|
---|
884 | uint64_t uLeft = rtBigNumGetElement(pLeft, 0);
|
---|
885 | if (uLeft < uRight)
|
---|
886 | rc = -1;
|
---|
887 | else
|
---|
888 | rc = uLeft == uRight ? 0 : 1;
|
---|
889 | #elif RTBIGNUM_ELEMENT_SIZE == 4
|
---|
890 | uint32_t uSubLeft = rtBigNumGetElement(pLeft, 1);
|
---|
891 | uint32_t uSubRight = uRight >> 32;
|
---|
892 | if (uSubLeft == uSubRight)
|
---|
893 | {
|
---|
894 | uSubLeft = rtBigNumGetElement(pLeft, 0);
|
---|
895 | uSubRight = (uint32_t)uRight;
|
---|
896 | }
|
---|
897 | if (uSubLeft < uSubRight)
|
---|
898 | rc = -1;
|
---|
899 | else
|
---|
900 | rc = uSubLeft == uSubRight ? 0 : 1;
|
---|
901 | #else
|
---|
902 | # error "Bad RTBIGNUM_ELEMENT_SIZE value"
|
---|
903 | #endif
|
---|
904 | }
|
---|
905 | }
|
---|
906 | else
|
---|
907 | rc = 1;
|
---|
908 | }
|
---|
909 | else
|
---|
910 | rc = -1;
|
---|
911 | rtBigNumScramble(pLeft);
|
---|
912 | }
|
---|
913 | return rc;
|
---|
914 | }
|
---|
915 |
|
---|
916 |
|
---|
917 | RTDECL(int) RTBigNumCompareWithS64(PRTBIGNUM pLeft, int64_t iRight)
|
---|
918 | {
|
---|
919 | int rc = rtBigNumUnscramble(pLeft);
|
---|
920 | if (RT_SUCCESS(rc))
|
---|
921 | {
|
---|
922 | RTBIGNUM_ASSERT_VALID(pLeft);
|
---|
923 | if (pLeft->fNegative == (iRight < 0))
|
---|
924 | {
|
---|
925 | if (pLeft->cUsed * RTBIGNUM_ELEMENT_SIZE <= sizeof(iRight))
|
---|
926 | {
|
---|
927 | uint64_t uRightMagn = !pLeft->fNegative ? (uint64_t)iRight : (uint64_t)-iRight;
|
---|
928 | #if RTBIGNUM_ELEMENT_SIZE == 8
|
---|
929 | uint64_t uLeft = rtBigNumGetElement(pLeft, 0);
|
---|
930 | if (uLeft < uRightMagn)
|
---|
931 | rc = -1;
|
---|
932 | else
|
---|
933 | rc = uLeft == (uint64_t)uRightMagn ? 0 : 1;
|
---|
934 | #elif RTBIGNUM_ELEMENT_SIZE == 4
|
---|
935 | uint32_t uSubLeft = rtBigNumGetElement(pLeft, 1);
|
---|
936 | uint32_t uSubRight = uRightMagn >> 32;
|
---|
937 | if (uSubLeft == uSubRight)
|
---|
938 | {
|
---|
939 | uSubLeft = rtBigNumGetElement(pLeft, 0);
|
---|
940 | uSubRight = (uint32_t)uRightMagn;
|
---|
941 | }
|
---|
942 | if (uSubLeft < uSubRight)
|
---|
943 | rc = -1;
|
---|
944 | else
|
---|
945 | rc = uSubLeft == uSubRight ? 0 : 1;
|
---|
946 | #else
|
---|
947 | # error "Bad RTBIGNUM_ELEMENT_SIZE value"
|
---|
948 | #endif
|
---|
949 | if (pLeft->fNegative)
|
---|
950 | rc = -rc;
|
---|
951 | }
|
---|
952 | else
|
---|
953 | rc = pLeft->fNegative ? -1 : 1;
|
---|
954 | }
|
---|
955 | else
|
---|
956 | rc = pLeft->fNegative ? -1 : 1;
|
---|
957 | rtBigNumScramble(pLeft);
|
---|
958 | }
|
---|
959 | return rc;
|
---|
960 | }
|
---|
961 |
|
---|
962 |
|
---|
963 | #define RTBIGNUMELEMENT_HALF_MASK ( ((RTBIGNUMELEMENT)1 << (RTBIGNUM_ELEMENT_BITS / 2)) - (RTBIGNUMELEMENT)1)
|
---|
964 | #define RTBIGNUMELEMENT_LO_HALF(a_uElement) ( (RTBIGNUMELEMENT_HALF_MASK) & (a_uElement) )
|
---|
965 | #define RTBIGNUMELEMENT_HI_HALF(a_uElement) ( (a_uElement) >> (RTBIGNUM_ELEMENT_BITS / 2) )
|
---|
966 |
|
---|
967 |
|
---|
968 | /**
|
---|
969 | * Compares the magnitude values of two big numbers.
|
---|
970 | *
|
---|
971 | * @retval -1 if pLeft is smaller than pRight.
|
---|
972 | * @retval 0 if pLeft is equal to pRight.
|
---|
973 | * @retval 1 if pLeft is larger than pRight.
|
---|
974 | * @param pLeft The left side number.
|
---|
975 | * @param pRight The right side number.
|
---|
976 | */
|
---|
977 | static int rtBigNumMagnitudeCompare(PCRTBIGNUM pLeft, PCRTBIGNUM pRight)
|
---|
978 | {
|
---|
979 | Assert(!pLeft->fCurScrambled); Assert(!pRight->fCurScrambled);
|
---|
980 | int rc;
|
---|
981 | uint32_t i = pLeft->cUsed;
|
---|
982 | if (i == pRight->cUsed)
|
---|
983 | {
|
---|
984 | rc = 0;
|
---|
985 | while (i-- > 0)
|
---|
986 | if (pLeft->pauElements[i] != pRight->pauElements[i])
|
---|
987 | {
|
---|
988 | rc = pLeft->pauElements[i] < pRight->pauElements[i] ? -1 : 1;
|
---|
989 | break;
|
---|
990 | }
|
---|
991 | }
|
---|
992 | else
|
---|
993 | rc = i < pRight->cUsed ? -1 : 1;
|
---|
994 | return rc;
|
---|
995 | }
|
---|
996 |
|
---|
997 |
|
---|
998 | /**
|
---|
999 | * Copies the magnitude of on number (@a pSrc) to another (@a pBigNum).
|
---|
1000 | *
|
---|
1001 | * The variables must be unscrambled. The sign flag is not considered nor
|
---|
1002 | * touched.
|
---|
1003 | *
|
---|
1004 | * @returns IPRT status code.
|
---|
1005 | * @param pDst The destination number.
|
---|
1006 | * @param pSrc The source number.
|
---|
1007 | */
|
---|
1008 | DECLINLINE(int) rtBigNumMagnitudeCopy(PRTBIGNUM pDst, PCRTBIGNUM pSrc)
|
---|
1009 | {
|
---|
1010 | int rc = rtBigNumSetUsed(pDst, pSrc->cUsed);
|
---|
1011 | if (RT_SUCCESS(rc))
|
---|
1012 | memcpy(pDst->pauElements, pSrc->pauElements, pSrc->cUsed * RTBIGNUM_ELEMENT_SIZE);
|
---|
1013 | return rc;
|
---|
1014 | }
|
---|
1015 |
|
---|
1016 |
|
---|
1017 | /**
|
---|
1018 | * Does addition with carry.
|
---|
1019 | *
|
---|
1020 | * This is a candidate for inline assembly on some platforms.
|
---|
1021 | *
|
---|
1022 | * @returns The result (the sum)
|
---|
1023 | * @param uAugend What to add to.
|
---|
1024 | * @param uAddend What to add to it.
|
---|
1025 | * @param pfCarry Where to read the input carry and return the output
|
---|
1026 | * carry.
|
---|
1027 | */
|
---|
1028 | DECLINLINE(RTBIGNUMELEMENT) rtBigNumElementAddWithCarry(RTBIGNUMELEMENT uAugend, RTBIGNUMELEMENT uAddend,
|
---|
1029 | RTBIGNUMELEMENT *pfCarry)
|
---|
1030 | {
|
---|
1031 | RTBIGNUMELEMENT uRet = uAugend + uAddend + *pfCarry;
|
---|
1032 |
|
---|
1033 | /* Determin carry the expensive way. */
|
---|
1034 | RTBIGNUMELEMENT uTmp = RTBIGNUMELEMENT_HI_HALF(uAugend) + RTBIGNUMELEMENT_HI_HALF(uAddend);
|
---|
1035 | if (uTmp < RTBIGNUMELEMENT_HALF_MASK)
|
---|
1036 | *pfCarry = 0;
|
---|
1037 | else
|
---|
1038 | *pfCarry = uTmp > RTBIGNUMELEMENT_HALF_MASK
|
---|
1039 | || RTBIGNUMELEMENT_LO_HALF(uAugend) + RTBIGNUMELEMENT_LO_HALF(uAddend) + *pfCarry
|
---|
1040 | > RTBIGNUMELEMENT_HALF_MASK;
|
---|
1041 | return uRet;
|
---|
1042 | }
|
---|
1043 |
|
---|
1044 |
|
---|
1045 | /**
|
---|
1046 | * Adds two magnitudes and stores them into a third.
|
---|
1047 | *
|
---|
1048 | * All variables must be unscrambled. The sign flag is not considered nor
|
---|
1049 | * touched.
|
---|
1050 | *
|
---|
1051 | * @returns IPRT status code.
|
---|
1052 | * @param pResult The resultant.
|
---|
1053 | * @param pAugend To whom it shall be addede.
|
---|
1054 | * @param pAddend The nombre to addede.
|
---|
1055 | */
|
---|
1056 | static int rtBigNumMagnitudeAdd(PRTBIGNUM pResult, PCRTBIGNUM pAugend, PCRTBIGNUM pAddend)
|
---|
1057 | {
|
---|
1058 | Assert(!pResult->fCurScrambled); Assert(!pAugend->fCurScrambled); Assert(!pAddend->fCurScrambled);
|
---|
1059 | Assert(pResult != pAugend); Assert(pResult != pAddend);
|
---|
1060 |
|
---|
1061 | uint32_t cElements = RT_MAX(pAugend->cUsed, pAddend->cUsed);
|
---|
1062 | int rc = rtBigNumSetUsed(pResult, cElements);
|
---|
1063 | if (RT_SUCCESS(rc))
|
---|
1064 | {
|
---|
1065 | /*
|
---|
1066 | * The primitive way, requires at least two additions for each entry
|
---|
1067 | * without machine code help.
|
---|
1068 | */
|
---|
1069 | RTBIGNUMELEMENT fCarry = 0;
|
---|
1070 | for (uint32_t i = 0; i < cElements; i++)
|
---|
1071 | pResult->pauElements[i] = rtBigNumElementAddWithCarry(rtBigNumGetElement(pAugend, i),
|
---|
1072 | rtBigNumGetElement(pAddend, i),
|
---|
1073 | &fCarry);
|
---|
1074 | if (fCarry)
|
---|
1075 | {
|
---|
1076 | rc = rtBigNumSetUsed(pResult, cElements + 1);
|
---|
1077 | if (RT_SUCCESS(rc))
|
---|
1078 | pResult->pauElements[cElements++] = 1;
|
---|
1079 | }
|
---|
1080 | Assert(pResult->cUsed == cElements || RT_FAILURE_NP(rc));
|
---|
1081 | }
|
---|
1082 |
|
---|
1083 | return rc;
|
---|
1084 | }
|
---|
1085 |
|
---|
1086 |
|
---|
1087 | /**
|
---|
1088 | * Does addition with borrow.
|
---|
1089 | *
|
---|
1090 | * This is a candidate for inline assembly on some platforms.
|
---|
1091 | *
|
---|
1092 | * @returns The result (the sum)
|
---|
1093 | * @param uMinuend What to subtract from.
|
---|
1094 | * @param uSubtrahend What to subtract.
|
---|
1095 | * @param pfBorrow Where to read the input borrow and return the output
|
---|
1096 | * borrow.
|
---|
1097 | */
|
---|
1098 | DECLINLINE(RTBIGNUMELEMENT) rtBigNumElementSubWithBorrow(RTBIGNUMELEMENT uMinuend, RTBIGNUMELEMENT uSubtrahend,
|
---|
1099 | RTBIGNUMELEMENT *pfBorrow)
|
---|
1100 | {
|
---|
1101 | RTBIGNUMELEMENT uRet = uMinuend - uSubtrahend - *pfBorrow;
|
---|
1102 |
|
---|
1103 | /* Figure out if we borrowed. */
|
---|
1104 | *pfBorrow = !*pfBorrow ? uMinuend < uSubtrahend : uMinuend <= uSubtrahend;
|
---|
1105 | return uRet;
|
---|
1106 | }
|
---|
1107 |
|
---|
1108 |
|
---|
1109 | /**
|
---|
1110 | * Substracts a smaller (or equal) magnitude from another one and stores it into
|
---|
1111 | * a third.
|
---|
1112 | *
|
---|
1113 | * All variables must be unscrambled. The sign flag is not considered nor
|
---|
1114 | * touched. For this reason, the @a pMinuend must be larger or equal to @a
|
---|
1115 | * pSubtrahend.
|
---|
1116 | *
|
---|
1117 | * @returns IPRT status code.
|
---|
1118 | * @param pResult There to store the result.
|
---|
1119 | * @param pMinuend What to subtract from.
|
---|
1120 | * @param pSubtrahend What to subtract.
|
---|
1121 | */
|
---|
1122 | static int rtBigNumMagnitudeSub(PRTBIGNUM pResult, PCRTBIGNUM pMinuend, PCRTBIGNUM pSubtrahend)
|
---|
1123 | {
|
---|
1124 | Assert(!pResult->fCurScrambled); Assert(!pMinuend->fCurScrambled); Assert(!pSubtrahend->fCurScrambled);
|
---|
1125 | Assert(pResult != pMinuend); Assert(pResult != pSubtrahend);
|
---|
1126 | Assert(pMinuend->cUsed >= pSubtrahend->cUsed);
|
---|
1127 |
|
---|
1128 | int rc;
|
---|
1129 | if (pSubtrahend->cUsed)
|
---|
1130 | {
|
---|
1131 | /*
|
---|
1132 | * Resize the result. In the assembly case, ensure that all three arrays
|
---|
1133 | * has the same number of used entries, possibly with an extra zero
|
---|
1134 | * element on 64-bit systems.
|
---|
1135 | */
|
---|
1136 | rc = rtBigNumSetUsedEx(pResult, pMinuend->cUsed, RTBIGNUM_ZERO_ALIGN(pMinuend->cUsed));
|
---|
1137 | #ifdef IPRT_BIGINT_WITH_ASM
|
---|
1138 | if (RT_SUCCESS(rc))
|
---|
1139 | rc = rtBigNumEnsureExtraZeroElements((PRTBIGNUM)pMinuend, RTBIGNUM_ZERO_ALIGN(pMinuend->cUsed));
|
---|
1140 | if (RT_SUCCESS(rc))
|
---|
1141 | rc = rtBigNumEnsureExtraZeroElements((PRTBIGNUM)pSubtrahend, RTBIGNUM_ZERO_ALIGN(pMinuend->cUsed));
|
---|
1142 | #endif
|
---|
1143 | if (RT_SUCCESS(rc))
|
---|
1144 | {
|
---|
1145 | #ifdef IPRT_BIGINT_WITH_ASM
|
---|
1146 | /*
|
---|
1147 | * Call assembly to do the work.
|
---|
1148 | */
|
---|
1149 | rtBigNumMagnitudeSubAssemblyWorker(pResult->pauElements, pMinuend->pauElements,
|
---|
1150 | pSubtrahend->pauElements, pMinuend->cUsed);
|
---|
1151 | # ifdef RT_STRICT
|
---|
1152 | RTBIGNUMELEMENT fBorrow = 0;
|
---|
1153 | for (uint32_t i = 0; i < pMinuend->cUsed; i++)
|
---|
1154 | {
|
---|
1155 | RTBIGNUMELEMENT uCorrect = rtBigNumElementSubWithBorrow(pMinuend->pauElements[i], rtBigNumGetElement(pSubtrahend, i), &fBorrow);
|
---|
1156 | AssertMsg(pResult->pauElements[i] == uCorrect, ("[%u]=%#x, expected %#x\n", i, pResult->pauElements[i], uCorrect));
|
---|
1157 | }
|
---|
1158 | # endif
|
---|
1159 | #else
|
---|
1160 | /*
|
---|
1161 | * The primitive C way.
|
---|
1162 | */
|
---|
1163 | RTBIGNUMELEMENT fBorrow = 0;
|
---|
1164 | for (uint32_t i = 0; i < pMinuend->cUsed; i++)
|
---|
1165 | pResult->pauElements[i] = rtBigNumElementSubWithBorrow(pMinuend->pauElements[i],
|
---|
1166 | rtBigNumGetElement(pSubtrahend, i),
|
---|
1167 | &fBorrow);
|
---|
1168 | Assert(fBorrow == 0);
|
---|
1169 | #endif
|
---|
1170 |
|
---|
1171 | /*
|
---|
1172 | * Trim the result.
|
---|
1173 | */
|
---|
1174 | rtBigNumStripTrailingZeros(pResult);
|
---|
1175 | }
|
---|
1176 | }
|
---|
1177 | /*
|
---|
1178 | * Special case: Subtrahend is zero.
|
---|
1179 | */
|
---|
1180 | else
|
---|
1181 | rc = rtBigNumMagnitudeCopy(pResult, pMinuend);
|
---|
1182 |
|
---|
1183 | return rc;
|
---|
1184 | }
|
---|
1185 |
|
---|
1186 |
|
---|
1187 | /**
|
---|
1188 | * Substracts a smaller (or equal) magnitude from another one and stores the
|
---|
1189 | * result into the first.
|
---|
1190 | *
|
---|
1191 | * All variables must be unscrambled. The sign flag is not considered nor
|
---|
1192 | * touched. For this reason, the @a pMinuendResult must be larger or equal to
|
---|
1193 | * @a pSubtrahend.
|
---|
1194 | *
|
---|
1195 | * @returns IPRT status code (memory alloc error).
|
---|
1196 | * @param pMinuendResult What to subtract from and return as result.
|
---|
1197 | * @param pSubtrahend What to subtract.
|
---|
1198 | */
|
---|
1199 | static int rtBigNumMagnitudeSubThis(PRTBIGNUM pMinuendResult, PCRTBIGNUM pSubtrahend)
|
---|
1200 | {
|
---|
1201 | Assert(!pMinuendResult->fCurScrambled); Assert(!pSubtrahend->fCurScrambled);
|
---|
1202 | Assert(pMinuendResult != pSubtrahend);
|
---|
1203 | Assert(pMinuendResult->cUsed >= pSubtrahend->cUsed);
|
---|
1204 |
|
---|
1205 | #ifdef IPRT_BIGINT_WITH_ASM
|
---|
1206 | /*
|
---|
1207 | * Use the assembly worker. Requires same sized element arrays, so zero extend them.
|
---|
1208 | */
|
---|
1209 | int rc = rtBigNumEnsureExtraZeroElements(pMinuendResult, RTBIGNUM_ZERO_ALIGN(pMinuendResult->cUsed));
|
---|
1210 | if (RT_SUCCESS(rc))
|
---|
1211 | rc = rtBigNumEnsureExtraZeroElements((PRTBIGNUM)pSubtrahend, RTBIGNUM_ZERO_ALIGN(pMinuendResult->cUsed));
|
---|
1212 | if (RT_FAILURE(rc))
|
---|
1213 | return rc;
|
---|
1214 | rtBigNumMagnitudeSubThisAssemblyWorker(pMinuendResult->pauElements, pSubtrahend->pauElements, pMinuendResult->cUsed);
|
---|
1215 | #else
|
---|
1216 | /*
|
---|
1217 | * The primitive way, as usual.
|
---|
1218 | */
|
---|
1219 | RTBIGNUMELEMENT fBorrow = 0;
|
---|
1220 | for (uint32_t i = 0; i < pMinuendResult->cUsed; i++)
|
---|
1221 | pMinuendResult->pauElements[i] = rtBigNumElementSubWithBorrow(pMinuendResult->pauElements[i],
|
---|
1222 | rtBigNumGetElement(pSubtrahend, i),
|
---|
1223 | &fBorrow);
|
---|
1224 | Assert(fBorrow == 0);
|
---|
1225 | #endif
|
---|
1226 |
|
---|
1227 | /*
|
---|
1228 | * Trim the result.
|
---|
1229 | */
|
---|
1230 | rtBigNumStripTrailingZeros(pMinuendResult);
|
---|
1231 |
|
---|
1232 | return VINF_SUCCESS;
|
---|
1233 | }
|
---|
1234 |
|
---|
1235 |
|
---|
1236 | RTDECL(int) RTBigNumAdd(PRTBIGNUM pResult, PCRTBIGNUM pAugend, PCRTBIGNUM pAddend)
|
---|
1237 | {
|
---|
1238 | Assert(pResult != pAugend); Assert(pResult != pAddend);
|
---|
1239 | AssertReturn(pResult->fSensitive >= (pAugend->fSensitive | pAddend->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
1240 |
|
---|
1241 | int rc = rtBigNumUnscramble(pResult);
|
---|
1242 | if (RT_SUCCESS(rc))
|
---|
1243 | {
|
---|
1244 | RTBIGNUM_ASSERT_VALID(pResult);
|
---|
1245 | rc = rtBigNumUnscramble((PRTBIGNUM)pAugend);
|
---|
1246 | if (RT_SUCCESS(rc))
|
---|
1247 | {
|
---|
1248 | RTBIGNUM_ASSERT_VALID(pAugend);
|
---|
1249 | rc = rtBigNumUnscramble((PRTBIGNUM)pAddend);
|
---|
1250 | if (RT_SUCCESS(rc))
|
---|
1251 | {
|
---|
1252 | RTBIGNUM_ASSERT_VALID(pAddend);
|
---|
1253 |
|
---|
1254 | /*
|
---|
1255 | * Same sign: Add magnitude, keep sign.
|
---|
1256 | * 1 + 1 = 2
|
---|
1257 | * (-1) + (-1) = -2
|
---|
1258 | */
|
---|
1259 | if (pAugend->fNegative == pAddend->fNegative)
|
---|
1260 | {
|
---|
1261 | pResult->fNegative = pAugend->fNegative;
|
---|
1262 | rc = rtBigNumMagnitudeAdd(pResult, pAugend, pAddend);
|
---|
1263 | }
|
---|
1264 | /*
|
---|
1265 | * Different sign: Subtract smaller from larger, keep sign of larger.
|
---|
1266 | * (-5) + 3 = -2
|
---|
1267 | * 5 + (-3) = 2
|
---|
1268 | * (-1) + 3 = 2
|
---|
1269 | * 1 + (-3) = -2
|
---|
1270 | */
|
---|
1271 | else if (rtBigNumMagnitudeCompare(pAugend, pAddend) >= 0)
|
---|
1272 | {
|
---|
1273 | pResult->fNegative = pAugend->fNegative;
|
---|
1274 | rc = rtBigNumMagnitudeSub(pResult, pAugend, pAddend);
|
---|
1275 | if (!pResult->cUsed)
|
---|
1276 | pResult->fNegative = 0;
|
---|
1277 | }
|
---|
1278 | else
|
---|
1279 | {
|
---|
1280 | pResult->fNegative = pAddend->fNegative;
|
---|
1281 | rc = rtBigNumMagnitudeSub(pResult, pAddend, pAugend);
|
---|
1282 | }
|
---|
1283 | rtBigNumScramble((PRTBIGNUM)pAddend);
|
---|
1284 | }
|
---|
1285 | rtBigNumScramble((PRTBIGNUM)pAugend);
|
---|
1286 | }
|
---|
1287 | rtBigNumScramble(pResult);
|
---|
1288 | }
|
---|
1289 | return rc;
|
---|
1290 | }
|
---|
1291 |
|
---|
1292 |
|
---|
1293 | RTDECL(int) RTBigNumSubtract(PRTBIGNUM pResult, PCRTBIGNUM pMinuend, PCRTBIGNUM pSubtrahend)
|
---|
1294 | {
|
---|
1295 | Assert(pResult != pMinuend); Assert(pResult != pSubtrahend);
|
---|
1296 | AssertReturn(pResult->fSensitive >= (pMinuend->fSensitive | pSubtrahend->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
1297 |
|
---|
1298 | int rc = rtBigNumUnscramble(pResult);
|
---|
1299 | if (RT_SUCCESS(rc))
|
---|
1300 | {
|
---|
1301 | RTBIGNUM_ASSERT_VALID(pResult);
|
---|
1302 | if (pMinuend != pSubtrahend)
|
---|
1303 | {
|
---|
1304 | rc = rtBigNumUnscramble((PRTBIGNUM)pMinuend);
|
---|
1305 | if (RT_SUCCESS(rc))
|
---|
1306 | {
|
---|
1307 | RTBIGNUM_ASSERT_VALID(pMinuend);
|
---|
1308 | rc = rtBigNumUnscramble((PRTBIGNUM)pSubtrahend);
|
---|
1309 | if (RT_SUCCESS(rc))
|
---|
1310 | {
|
---|
1311 | RTBIGNUM_ASSERT_VALID(pSubtrahend);
|
---|
1312 |
|
---|
1313 | /*
|
---|
1314 | * Different sign: Add magnitude, keep sign of first.
|
---|
1315 | * 1 - (-2) == 3
|
---|
1316 | * -1 - 2 == -3
|
---|
1317 | */
|
---|
1318 | if (pMinuend->fNegative != pSubtrahend->fNegative)
|
---|
1319 | {
|
---|
1320 | pResult->fNegative = pMinuend->fNegative;
|
---|
1321 | rc = rtBigNumMagnitudeAdd(pResult, pMinuend, pSubtrahend);
|
---|
1322 | }
|
---|
1323 | /*
|
---|
1324 | * Same sign, minuend has greater or equal absolute value: Subtract, keep sign of first.
|
---|
1325 | * 10 - 7 = 3
|
---|
1326 | */
|
---|
1327 | else if (rtBigNumMagnitudeCompare(pMinuend, pSubtrahend) >= 0)
|
---|
1328 | {
|
---|
1329 | pResult->fNegative = pMinuend->fNegative;
|
---|
1330 | rc = rtBigNumMagnitudeSub(pResult, pMinuend, pSubtrahend);
|
---|
1331 | }
|
---|
1332 | /*
|
---|
1333 | * Same sign, subtrahend is larger: Reverse and subtract, invert sign of first.
|
---|
1334 | * 7 - 10 = -3
|
---|
1335 | * -1 - (-3) = 2
|
---|
1336 | */
|
---|
1337 | else
|
---|
1338 | {
|
---|
1339 | pResult->fNegative = !pMinuend->fNegative;
|
---|
1340 | rc = rtBigNumMagnitudeSub(pResult, pSubtrahend, pMinuend);
|
---|
1341 | }
|
---|
1342 | rtBigNumScramble((PRTBIGNUM)pSubtrahend);
|
---|
1343 | }
|
---|
1344 | rtBigNumScramble((PRTBIGNUM)pMinuend);
|
---|
1345 | }
|
---|
1346 | }
|
---|
1347 | else
|
---|
1348 | {
|
---|
1349 | /* zero. */
|
---|
1350 | pResult->fNegative = 0;
|
---|
1351 | rtBigNumSetUsed(pResult, 0);
|
---|
1352 | }
|
---|
1353 | rtBigNumScramble(pResult);
|
---|
1354 | }
|
---|
1355 | return rc;
|
---|
1356 | }
|
---|
1357 |
|
---|
1358 |
|
---|
1359 | RTDECL(int) RTBigNumNegateThis(PRTBIGNUM pThis)
|
---|
1360 | {
|
---|
1361 | pThis->fNegative = !pThis->fNegative;
|
---|
1362 | return VINF_SUCCESS;
|
---|
1363 | }
|
---|
1364 |
|
---|
1365 |
|
---|
1366 | RTDECL(int) RTBigNumNegate(PRTBIGNUM pResult, PCRTBIGNUM pBigNum)
|
---|
1367 | {
|
---|
1368 | int rc = RTBigNumAssign(pResult, pBigNum);
|
---|
1369 | if (RT_SUCCESS(rc))
|
---|
1370 | rc = RTBigNumNegateThis(pResult);
|
---|
1371 | return rc;
|
---|
1372 | }
|
---|
1373 |
|
---|
1374 |
|
---|
1375 | /**
|
---|
1376 | * Multiplies the magnitudes of two values, letting the caller care about the
|
---|
1377 | * sign bit.
|
---|
1378 | *
|
---|
1379 | * @returns IPRT status code.
|
---|
1380 | * @param pResult Where to store the result.
|
---|
1381 | * @param pMultiplicand The first value.
|
---|
1382 | * @param pMultiplier The second value.
|
---|
1383 | */
|
---|
1384 | static int rtBigNumMagnitudeMultiply(PRTBIGNUM pResult, PCRTBIGNUM pMultiplicand, PCRTBIGNUM pMultiplier)
|
---|
1385 | {
|
---|
1386 | Assert(pResult != pMultiplicand); Assert(pResult != pMultiplier);
|
---|
1387 | Assert(!pResult->fCurScrambled); Assert(!pMultiplicand->fCurScrambled); Assert(!pMultiplier->fCurScrambled);
|
---|
1388 |
|
---|
1389 | /*
|
---|
1390 | * Multiplication involving zero is zero.
|
---|
1391 | */
|
---|
1392 | if (!pMultiplicand->cUsed || !pMultiplier->cUsed)
|
---|
1393 | {
|
---|
1394 | pResult->fNegative = 0;
|
---|
1395 | rtBigNumSetUsed(pResult, 0);
|
---|
1396 | return VINF_SUCCESS;
|
---|
1397 | }
|
---|
1398 |
|
---|
1399 | /*
|
---|
1400 | * Allocate a result array that is the sum of the two factors, initialize
|
---|
1401 | * it to zero.
|
---|
1402 | */
|
---|
1403 | uint32_t cMax = pMultiplicand->cUsed + pMultiplier->cUsed;
|
---|
1404 | int rc = rtBigNumSetUsed(pResult, cMax);
|
---|
1405 | if (RT_SUCCESS(rc))
|
---|
1406 | {
|
---|
1407 | RT_BZERO(pResult->pauElements, pResult->cUsed * RTBIGNUM_ELEMENT_SIZE);
|
---|
1408 |
|
---|
1409 | for (uint32_t i = 0; i < pMultiplier->cUsed; i++)
|
---|
1410 | {
|
---|
1411 | RTBIGNUMELEMENT uMultiplier = pMultiplier->pauElements[i];
|
---|
1412 | for (uint32_t j = 0; j < pMultiplicand->cUsed; j++)
|
---|
1413 | {
|
---|
1414 | RTBIGNUMELEMENT uHi;
|
---|
1415 | RTBIGNUMELEMENT uLo;
|
---|
1416 | #if RTBIGNUM_ELEMENT_SIZE == 4
|
---|
1417 | uint64_t u64 = ASMMult2xU32RetU64(pMultiplicand->pauElements[j], uMultiplier);
|
---|
1418 | uLo = (uint32_t)u64;
|
---|
1419 | uHi = u64 >> 32;
|
---|
1420 | #elif RTBIGNUM_ELEMENT_SIZE == 8
|
---|
1421 | uLo = ASMMult2xU64Ret2xU64(pMultiplicand->pauElements[j], uMultiplier, &uHi);
|
---|
1422 | #else
|
---|
1423 | # error "Invalid RTBIGNUM_ELEMENT_SIZE value"
|
---|
1424 | #endif
|
---|
1425 | RTBIGNUMELEMENT fCarry = 0;
|
---|
1426 | uint64_t k = i + j;
|
---|
1427 | pResult->pauElements[k] = rtBigNumElementAddWithCarry(pResult->pauElements[k], uLo, &fCarry);
|
---|
1428 | k++;
|
---|
1429 | pResult->pauElements[k] = rtBigNumElementAddWithCarry(pResult->pauElements[k], uHi, &fCarry);
|
---|
1430 | while (fCarry)
|
---|
1431 | {
|
---|
1432 | k++;
|
---|
1433 | pResult->pauElements[k] = rtBigNumElementAddWithCarry(pResult->pauElements[k], 0, &fCarry);
|
---|
1434 | }
|
---|
1435 | Assert(k < cMax);
|
---|
1436 | }
|
---|
1437 | }
|
---|
1438 |
|
---|
1439 | /* It's possible we overestimated the output size by 1 element. */
|
---|
1440 | rtBigNumStripTrailingZeros(pResult);
|
---|
1441 | }
|
---|
1442 | return rc;
|
---|
1443 | }
|
---|
1444 |
|
---|
1445 |
|
---|
1446 | RTDECL(int) RTBigNumMultiply(PRTBIGNUM pResult, PCRTBIGNUM pMultiplicand, PCRTBIGNUM pMultiplier)
|
---|
1447 | {
|
---|
1448 | Assert(pResult != pMultiplicand); Assert(pResult != pMultiplier);
|
---|
1449 | AssertReturn(pResult->fSensitive >= (pMultiplicand->fSensitive | pMultiplier->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
1450 |
|
---|
1451 | int rc = rtBigNumUnscramble(pResult);
|
---|
1452 | if (RT_SUCCESS(rc))
|
---|
1453 | {
|
---|
1454 | RTBIGNUM_ASSERT_VALID(pResult);
|
---|
1455 | rc = rtBigNumUnscramble((PRTBIGNUM)pMultiplicand);
|
---|
1456 | if (RT_SUCCESS(rc))
|
---|
1457 | {
|
---|
1458 | RTBIGNUM_ASSERT_VALID(pMultiplicand);
|
---|
1459 | rc = rtBigNumUnscramble((PRTBIGNUM)pMultiplier);
|
---|
1460 | if (RT_SUCCESS(rc))
|
---|
1461 | {
|
---|
1462 | RTBIGNUM_ASSERT_VALID(pMultiplier);
|
---|
1463 |
|
---|
1464 | /*
|
---|
1465 | * The sign values follow XOR rules:
|
---|
1466 | * -1 * 1 = -1; 1 ^ 0 = 1
|
---|
1467 | * 1 * -1 = -1; 1 ^ 0 = 1
|
---|
1468 | * -1 * -1 = 1; 1 ^ 1 = 0
|
---|
1469 | * 1 * 1 = 1; 0 ^ 0 = 0
|
---|
1470 | */
|
---|
1471 | pResult->fNegative = pMultiplicand->fNegative ^ pMultiplier->fNegative;
|
---|
1472 | rc = rtBigNumMagnitudeMultiply(pResult, pMultiplicand, pMultiplier);
|
---|
1473 |
|
---|
1474 | rtBigNumScramble((PRTBIGNUM)pMultiplier);
|
---|
1475 | }
|
---|
1476 | rtBigNumScramble((PRTBIGNUM)pMultiplicand);
|
---|
1477 | }
|
---|
1478 | rtBigNumScramble(pResult);
|
---|
1479 | }
|
---|
1480 | return rc;
|
---|
1481 | }
|
---|
1482 |
|
---|
1483 |
|
---|
1484 | /**
|
---|
1485 | * Clears a bit in the magnitude of @a pBigNum.
|
---|
1486 | *
|
---|
1487 | * The variables must be unscrambled.
|
---|
1488 | *
|
---|
1489 | * @param pBigNum The big number.
|
---|
1490 | * @param iBit The bit to clear (0-based).
|
---|
1491 | */
|
---|
1492 | DECLINLINE(void) rtBigNumMagnitudeClearBit(PRTBIGNUM pBigNum, uint32_t iBit)
|
---|
1493 | {
|
---|
1494 | uint32_t iElement = iBit / RTBIGNUM_ELEMENT_BITS;
|
---|
1495 | if (iElement < pBigNum->cUsed)
|
---|
1496 | {
|
---|
1497 | iBit &= RTBIGNUM_ELEMENT_BITS - 1;
|
---|
1498 | pBigNum->pauElements[iElement] &= ~RTBIGNUM_ELEMENT_BIT(iBit);
|
---|
1499 | if (iElement + 1 == pBigNum->cUsed && !pBigNum->pauElements[iElement])
|
---|
1500 | rtBigNumStripTrailingZeros(pBigNum);
|
---|
1501 | }
|
---|
1502 | }
|
---|
1503 |
|
---|
1504 |
|
---|
1505 | /**
|
---|
1506 | * Sets a bit in the magnitude of @a pBigNum.
|
---|
1507 | *
|
---|
1508 | * The variables must be unscrambled.
|
---|
1509 | *
|
---|
1510 | * @returns IPRT status code.
|
---|
1511 | * @param pBigNum The big number.
|
---|
1512 | * @param iBit The bit to clear (0-based).
|
---|
1513 | */
|
---|
1514 | DECLINLINE(int) rtBigNumMagnitudeSetBit(PRTBIGNUM pBigNum, uint32_t iBit)
|
---|
1515 | {
|
---|
1516 | uint32_t iElement = iBit / RTBIGNUM_ELEMENT_BITS;
|
---|
1517 | int rc = rtBigNumEnsureElementPresent(pBigNum, iElement);
|
---|
1518 | if (RT_SUCCESS(rc))
|
---|
1519 | {
|
---|
1520 | iBit &= RTBIGNUM_ELEMENT_BITS - 1;
|
---|
1521 | pBigNum->pauElements[iElement] |= RTBIGNUM_ELEMENT_BIT(iBit);
|
---|
1522 | return VINF_SUCCESS;
|
---|
1523 | }
|
---|
1524 | return rc;
|
---|
1525 | }
|
---|
1526 |
|
---|
1527 |
|
---|
1528 | /**
|
---|
1529 | * Writes a bit in the magnitude of @a pBigNum.
|
---|
1530 | *
|
---|
1531 | * The variables must be unscrambled.
|
---|
1532 | *
|
---|
1533 | * @returns IPRT status code.
|
---|
1534 | * @param pBigNum The big number.
|
---|
1535 | * @param iBit The bit to write (0-based).
|
---|
1536 | * @param fValue The bit value.
|
---|
1537 | */
|
---|
1538 | DECLINLINE(int) rtBigNumMagnitudeWriteBit(PRTBIGNUM pBigNum, uint32_t iBit, bool fValue)
|
---|
1539 | {
|
---|
1540 | if (fValue)
|
---|
1541 | return rtBigNumMagnitudeSetBit(pBigNum, iBit);
|
---|
1542 | rtBigNumMagnitudeClearBit(pBigNum, iBit);
|
---|
1543 | return VINF_SUCCESS;
|
---|
1544 | }
|
---|
1545 |
|
---|
1546 |
|
---|
1547 | /**
|
---|
1548 | * Returns the given magnitude bit.
|
---|
1549 | *
|
---|
1550 | * The variables must be unscrambled.
|
---|
1551 | *
|
---|
1552 | * @returns The bit value (1 or 0).
|
---|
1553 | * @param pBigNum The big number.
|
---|
1554 | * @param iBit The bit to return (0-based).
|
---|
1555 | */
|
---|
1556 | DECLINLINE(RTBIGNUMELEMENT) rtBigNumMagnitudeGetBit(PCRTBIGNUM pBigNum, uint32_t iBit)
|
---|
1557 | {
|
---|
1558 | uint32_t iElement = iBit / RTBIGNUM_ELEMENT_BITS;
|
---|
1559 | if (iElement < pBigNum->cUsed)
|
---|
1560 | {
|
---|
1561 | iBit &= RTBIGNUM_ELEMENT_BITS - 1;
|
---|
1562 | return (pBigNum->pauElements[iElement] >> iBit) & 1;
|
---|
1563 | }
|
---|
1564 | return 0;
|
---|
1565 | }
|
---|
1566 |
|
---|
1567 |
|
---|
1568 | /**
|
---|
1569 | * Shifts the magnitude left by one.
|
---|
1570 | *
|
---|
1571 | * The variables must be unscrambled.
|
---|
1572 | *
|
---|
1573 | * @returns IPRT status code.
|
---|
1574 | * @param pBigNum The big number.
|
---|
1575 | * @param uCarry The value to shift in at the bottom.
|
---|
1576 | */
|
---|
1577 | DECLINLINE(int) rtBigNumMagnitudeShiftLeftOne(PRTBIGNUM pBigNum, RTBIGNUMELEMENT uCarry)
|
---|
1578 | {
|
---|
1579 | Assert(uCarry <= 1);
|
---|
1580 |
|
---|
1581 | /* Do the shifting. */
|
---|
1582 | uint32_t cUsed = pBigNum->cUsed;
|
---|
1583 | #ifdef IPRT_BIGINT_WITH_ASM
|
---|
1584 | uCarry = rtBigNumMagnitudeShiftLeftOneAssemblyWorker(pBigNum->pauElements, cUsed, uCarry);
|
---|
1585 | #else
|
---|
1586 | for (uint32_t i = 0; i < cUsed; i++)
|
---|
1587 | {
|
---|
1588 | RTBIGNUMELEMENT uTmp = pBigNum->pauElements[i];
|
---|
1589 | pBigNum->pauElements[i] = (uTmp << 1) | uCarry;
|
---|
1590 | uCarry = uTmp >> (RTBIGNUM_ELEMENT_BITS - 1);
|
---|
1591 | }
|
---|
1592 | #endif
|
---|
1593 |
|
---|
1594 | /* If we still carry a bit, we need to increase the size. */
|
---|
1595 | if (uCarry)
|
---|
1596 | {
|
---|
1597 | int rc = rtBigNumSetUsed(pBigNum, cUsed + 1);
|
---|
1598 | pBigNum->pauElements[cUsed] = uCarry;
|
---|
1599 | }
|
---|
1600 |
|
---|
1601 | return VINF_SUCCESS;
|
---|
1602 | }
|
---|
1603 |
|
---|
1604 |
|
---|
1605 | /**
|
---|
1606 | * Divides the magnitudes of two values, letting the caller care about the sign
|
---|
1607 | * bit.
|
---|
1608 | *
|
---|
1609 | * All variables must be unscrambled. The sign flag is not considered nor
|
---|
1610 | * touched, this means the caller have to check for zero outputs.
|
---|
1611 | *
|
---|
1612 | * @returns IPRT status code.
|
---|
1613 | * @param pQuotient Where to return the quotient.
|
---|
1614 | * @param pRemainder Where to return the reminder.
|
---|
1615 | * @param pDividend What to divide.
|
---|
1616 | * @param pDivisor What to divide by.
|
---|
1617 | */
|
---|
1618 | static int rtBigNumMagnitudeDivide(PRTBIGNUM pQuotient, PRTBIGNUM pRemainder, PCRTBIGNUM pDividend, PCRTBIGNUM pDivisor)
|
---|
1619 | {
|
---|
1620 | Assert(pQuotient != pDividend); Assert(pQuotient != pDivisor); Assert(pRemainder != pDividend); Assert(pRemainder != pDivisor); Assert(pRemainder != pQuotient);
|
---|
1621 | Assert(!pQuotient->fCurScrambled); Assert(!pRemainder->fCurScrambled); Assert(!pDividend->fCurScrambled); Assert(!pDivisor->fCurScrambled);
|
---|
1622 |
|
---|
1623 | /*
|
---|
1624 | * Just set both output values to zero as that's the return for several
|
---|
1625 | * special case and the initial state of the general case.
|
---|
1626 | */
|
---|
1627 | rtBigNumSetUsed(pQuotient, 0);
|
---|
1628 | rtBigNumSetUsed(pRemainder, 0);
|
---|
1629 |
|
---|
1630 | /*
|
---|
1631 | * Dividing something by zero is undefined.
|
---|
1632 | * Diving zero by something is zero, unless the divsor is also zero.
|
---|
1633 | */
|
---|
1634 | if (!pDivisor->cUsed || !pDividend->cUsed)
|
---|
1635 | return pDivisor->cUsed ? VINF_SUCCESS : VERR_BIGNUM_DIV_BY_ZERO;
|
---|
1636 |
|
---|
1637 | /*
|
---|
1638 | * Dividing by one? Quotient = dividend, no remainder.
|
---|
1639 | */
|
---|
1640 | if (pDivisor->cUsed == 1 && pDivisor->pauElements[0] == 1)
|
---|
1641 | return rtBigNumMagnitudeCopy(pQuotient, pDividend);
|
---|
1642 |
|
---|
1643 | /*
|
---|
1644 | * Dividend smaller than the divisor. Zero quotient, all divisor.
|
---|
1645 | */
|
---|
1646 | int iDiff = rtBigNumMagnitudeCompare(pDividend, pDivisor);
|
---|
1647 | if (iDiff < 0)
|
---|
1648 | return rtBigNumMagnitudeCopy(pRemainder, pDividend);
|
---|
1649 |
|
---|
1650 | /*
|
---|
1651 | * Since we already have done the compare, check if the two values are the
|
---|
1652 | * same. The result is 1 and no remainder then.
|
---|
1653 | */
|
---|
1654 | if (iDiff == 0)
|
---|
1655 | {
|
---|
1656 | int rc = rtBigNumSetUsed(pQuotient, 1);
|
---|
1657 | if (RT_SUCCESS(rc))
|
---|
1658 | pQuotient->pauElements[0] = 1;
|
---|
1659 | return rc;
|
---|
1660 | }
|
---|
1661 |
|
---|
1662 | /*
|
---|
1663 | * Do very simple long division. This ain't fast, but it does the trick.
|
---|
1664 | */
|
---|
1665 | int rc = VINF_SUCCESS;
|
---|
1666 | uint32_t iBit = rtBigNumMagnitudeBitWidth(pDividend);
|
---|
1667 | while (iBit-- > 0)
|
---|
1668 | {
|
---|
1669 | rc = rtBigNumMagnitudeShiftLeftOne(pRemainder, rtBigNumMagnitudeGetBit(pDividend, iBit));
|
---|
1670 | AssertRCBreak(rc);
|
---|
1671 | iDiff = rtBigNumMagnitudeCompare(pRemainder, pDivisor);
|
---|
1672 | if (iDiff >= 0)
|
---|
1673 | {
|
---|
1674 | if (iDiff != 0)
|
---|
1675 | {
|
---|
1676 | rc = rtBigNumMagnitudeSubThis(pRemainder, pDivisor);
|
---|
1677 | AssertRCBreak(rc);
|
---|
1678 | }
|
---|
1679 | else
|
---|
1680 | rtBigNumSetUsed(pRemainder, 0);
|
---|
1681 | rc = rtBigNumMagnitudeSetBit(pQuotient, iBit);
|
---|
1682 | AssertRCBreak(rc);
|
---|
1683 | }
|
---|
1684 | }
|
---|
1685 |
|
---|
1686 | /* This shouldn't be necessary. */
|
---|
1687 | rtBigNumStripTrailingZeros(pQuotient);
|
---|
1688 | rtBigNumStripTrailingZeros(pRemainder);
|
---|
1689 | return rc;
|
---|
1690 | }
|
---|
1691 |
|
---|
1692 |
|
---|
1693 | RTDECL(int) RTBigNumDivide(PRTBIGNUM pQuotient, PRTBIGNUM pRemainder, PCRTBIGNUM pDividend, PCRTBIGNUM pDivisor)
|
---|
1694 | {
|
---|
1695 | Assert(pQuotient != pDividend); Assert(pQuotient != pDivisor); Assert(pRemainder != pDividend); Assert(pRemainder != pDivisor); Assert(pRemainder != pQuotient);
|
---|
1696 | AssertReturn(pQuotient->fSensitive >= (pDividend->fSensitive | pDivisor->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
1697 | AssertReturn(pRemainder->fSensitive >= (pDividend->fSensitive | pDivisor->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
1698 |
|
---|
1699 | int rc = rtBigNumUnscramble(pQuotient);
|
---|
1700 | if (RT_SUCCESS(rc))
|
---|
1701 | {
|
---|
1702 | RTBIGNUM_ASSERT_VALID(pQuotient);
|
---|
1703 | rc = rtBigNumUnscramble(pRemainder);
|
---|
1704 | if (RT_SUCCESS(rc))
|
---|
1705 | {
|
---|
1706 | RTBIGNUM_ASSERT_VALID(pRemainder);
|
---|
1707 | rc = rtBigNumUnscramble((PRTBIGNUM)pDividend);
|
---|
1708 | if (RT_SUCCESS(rc))
|
---|
1709 | {
|
---|
1710 | RTBIGNUM_ASSERT_VALID(pDividend);
|
---|
1711 | rc = rtBigNumUnscramble((PRTBIGNUM)pDivisor);
|
---|
1712 | if (RT_SUCCESS(rc))
|
---|
1713 | {
|
---|
1714 | RTBIGNUM_ASSERT_VALID(pDivisor);
|
---|
1715 |
|
---|
1716 | /*
|
---|
1717 | * The sign value of the remainder is the same as the dividend.
|
---|
1718 | * The sign values of the quotient follow XOR rules, just like multiplication:
|
---|
1719 | * -3 / 2 = -1; r=-1; 1 ^ 0 = 1
|
---|
1720 | * 3 / -2 = -1; r= 1; 1 ^ 0 = 1
|
---|
1721 | * -3 / -2 = 1; r=-1; 1 ^ 1 = 0
|
---|
1722 | * 3 / 2 = 1; r= 1; 0 ^ 0 = 0
|
---|
1723 | */
|
---|
1724 | pQuotient->fNegative = pDividend->fNegative ^ pDivisor->fNegative;
|
---|
1725 | pRemainder->fNegative = pDividend->fNegative;
|
---|
1726 |
|
---|
1727 | rc = rtBigNumMagnitudeDivide(pQuotient, pRemainder, pDividend, pDivisor);
|
---|
1728 |
|
---|
1729 | if (pQuotient->cUsed == 0)
|
---|
1730 | pQuotient->fNegative = 0;
|
---|
1731 | if (pRemainder->cUsed == 0)
|
---|
1732 | pRemainder->fNegative = 0;
|
---|
1733 |
|
---|
1734 | rtBigNumScramble((PRTBIGNUM)pDivisor);
|
---|
1735 | }
|
---|
1736 | rtBigNumScramble((PRTBIGNUM)pDividend);
|
---|
1737 | }
|
---|
1738 | rtBigNumScramble(pRemainder);
|
---|
1739 | }
|
---|
1740 | rtBigNumScramble(pQuotient);
|
---|
1741 | }
|
---|
1742 | return rc;
|
---|
1743 | }
|
---|
1744 |
|
---|
1745 |
|
---|
1746 | /**
|
---|
1747 | * Calculates the modulus of a magnitude value, leaving the sign bit to the
|
---|
1748 | * caller.
|
---|
1749 | *
|
---|
1750 | * All variables must be unscrambled. The sign flag is not considered nor
|
---|
1751 | * touched, this means the caller have to check for zero outputs.
|
---|
1752 | *
|
---|
1753 | * @returns IPRT status code.
|
---|
1754 | * @param pRemainder Where to return the reminder.
|
---|
1755 | * @param pDividend What to divide.
|
---|
1756 | * @param pDivisor What to divide by.
|
---|
1757 | */
|
---|
1758 | static int rtBigNumMagnitudeModulo(PRTBIGNUM pRemainder, PCRTBIGNUM pDividend, PCRTBIGNUM pDivisor)
|
---|
1759 | {
|
---|
1760 | Assert(pRemainder != pDividend); Assert(pRemainder != pDivisor);
|
---|
1761 | Assert(!pRemainder->fCurScrambled); Assert(!pDividend->fCurScrambled); Assert(!pDivisor->fCurScrambled);
|
---|
1762 |
|
---|
1763 | /*
|
---|
1764 | * Just set the output value to zero as that's the return for several
|
---|
1765 | * special case and the initial state of the general case.
|
---|
1766 | */
|
---|
1767 | rtBigNumSetUsed(pRemainder, 0);
|
---|
1768 |
|
---|
1769 | /*
|
---|
1770 | * Dividing something by zero is undefined.
|
---|
1771 | * Diving zero by something is zero, unless the divsor is also zero.
|
---|
1772 | */
|
---|
1773 | if (!pDivisor->cUsed || !pDividend->cUsed)
|
---|
1774 | return pDivisor->cUsed ? VINF_SUCCESS : VERR_BIGNUM_DIV_BY_ZERO;
|
---|
1775 |
|
---|
1776 | /*
|
---|
1777 | * Dividing by one? Quotient = dividend, no remainder.
|
---|
1778 | */
|
---|
1779 | if (pDivisor->cUsed == 1 && pDivisor->pauElements[0] == 1)
|
---|
1780 | return VINF_SUCCESS;
|
---|
1781 |
|
---|
1782 | /*
|
---|
1783 | * Dividend smaller than the divisor. Zero quotient, all divisor.
|
---|
1784 | */
|
---|
1785 | int iDiff = rtBigNumMagnitudeCompare(pDividend, pDivisor);
|
---|
1786 | if (iDiff < 0)
|
---|
1787 | return rtBigNumMagnitudeCopy(pRemainder, pDividend);
|
---|
1788 |
|
---|
1789 | /*
|
---|
1790 | * Since we already have done the compare, check if the two values are the
|
---|
1791 | * same. The result is 1 and no remainder then.
|
---|
1792 | */
|
---|
1793 | if (iDiff == 0)
|
---|
1794 | return VINF_SUCCESS;
|
---|
1795 |
|
---|
1796 | /*
|
---|
1797 | * Do very simple long division. This ain't fast, but it does the trick.
|
---|
1798 | */
|
---|
1799 | int rc = VINF_SUCCESS;
|
---|
1800 | uint32_t iBit = rtBigNumMagnitudeBitWidth(pDividend);
|
---|
1801 | while (iBit-- > 0)
|
---|
1802 | {
|
---|
1803 | rc = rtBigNumMagnitudeShiftLeftOne(pRemainder, rtBigNumMagnitudeGetBit(pDividend, iBit));
|
---|
1804 | AssertRCBreak(rc);
|
---|
1805 | iDiff = rtBigNumMagnitudeCompare(pRemainder, pDivisor);
|
---|
1806 | if (iDiff >= 0)
|
---|
1807 | {
|
---|
1808 | if (iDiff != 0)
|
---|
1809 | {
|
---|
1810 | rc = rtBigNumMagnitudeSubThis(pRemainder, pDivisor);
|
---|
1811 | AssertRCBreak(rc);
|
---|
1812 | }
|
---|
1813 | else
|
---|
1814 | rtBigNumSetUsed(pRemainder, 0);
|
---|
1815 | }
|
---|
1816 | }
|
---|
1817 |
|
---|
1818 | /* This shouldn't be necessary. */
|
---|
1819 | rtBigNumStripTrailingZeros(pRemainder);
|
---|
1820 | return rc;
|
---|
1821 | }
|
---|
1822 |
|
---|
1823 |
|
---|
1824 | RTDECL(int) RTBigNumModulo(PRTBIGNUM pRemainder, PCRTBIGNUM pDividend, PCRTBIGNUM pDivisor)
|
---|
1825 | {
|
---|
1826 | Assert(pRemainder != pDividend); Assert(pRemainder != pDivisor);
|
---|
1827 | AssertReturn(pRemainder->fSensitive >= (pDividend->fSensitive | pDivisor->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
1828 |
|
---|
1829 | int rc = rtBigNumUnscramble(pRemainder);
|
---|
1830 | if (RT_SUCCESS(rc))
|
---|
1831 | {
|
---|
1832 | RTBIGNUM_ASSERT_VALID(pRemainder);
|
---|
1833 | rc = rtBigNumUnscramble((PRTBIGNUM)pDividend);
|
---|
1834 | if (RT_SUCCESS(rc))
|
---|
1835 | {
|
---|
1836 | RTBIGNUM_ASSERT_VALID(pDividend);
|
---|
1837 | rc = rtBigNumUnscramble((PRTBIGNUM)pDivisor);
|
---|
1838 | if (RT_SUCCESS(rc))
|
---|
1839 | {
|
---|
1840 | RTBIGNUM_ASSERT_VALID(pDivisor);
|
---|
1841 |
|
---|
1842 | /*
|
---|
1843 | * The sign value of the remainder is the same as the dividend.
|
---|
1844 | */
|
---|
1845 | pRemainder->fNegative = pDividend->fNegative;
|
---|
1846 |
|
---|
1847 | rc = rtBigNumMagnitudeModulo(pRemainder, pDividend, pDivisor);
|
---|
1848 |
|
---|
1849 | if (pRemainder->cUsed == 0)
|
---|
1850 | pRemainder->fNegative = 0;
|
---|
1851 |
|
---|
1852 | rtBigNumScramble((PRTBIGNUM)pDivisor);
|
---|
1853 | }
|
---|
1854 | rtBigNumScramble((PRTBIGNUM)pDividend);
|
---|
1855 | }
|
---|
1856 | rtBigNumScramble(pRemainder);
|
---|
1857 | }
|
---|
1858 | return rc;
|
---|
1859 | }
|
---|
1860 |
|
---|
1861 |
|
---|
1862 |
|
---|
1863 | /**
|
---|
1864 | * Exponentiate the magnitude.
|
---|
1865 | *
|
---|
1866 | * All variables must be unscrambled. The sign flag is not considered nor
|
---|
1867 | * touched, this means the caller have to reject negative exponents.
|
---|
1868 | *
|
---|
1869 | * @returns IPRT status code.
|
---|
1870 | * @param pResult Where to return power.
|
---|
1871 | * @param pBase The base value.
|
---|
1872 | * @param pExponent The exponent (assumed positive or zero).
|
---|
1873 | */
|
---|
1874 | static int rtBigNumMagnitudeExponentiate(PRTBIGNUM pResult, PCRTBIGNUM pBase, PCRTBIGNUM pExponent)
|
---|
1875 | {
|
---|
1876 | Assert(pResult != pBase); Assert(pResult != pExponent);
|
---|
1877 | Assert(!pResult->fCurScrambled); Assert(!pBase->fCurScrambled); Assert(!pExponent->fCurScrambled);
|
---|
1878 |
|
---|
1879 | /*
|
---|
1880 | * A couple of special cases.
|
---|
1881 | */
|
---|
1882 | int rc;
|
---|
1883 | /* base ^ 0 => 1. */
|
---|
1884 | if (pExponent->cUsed == 0)
|
---|
1885 | {
|
---|
1886 | rc = rtBigNumSetUsed(pResult, 1);
|
---|
1887 | if (RT_SUCCESS(rc))
|
---|
1888 | pResult->pauElements[0] = 1;
|
---|
1889 | return rc;
|
---|
1890 | }
|
---|
1891 |
|
---|
1892 | /* base ^ 1 => base. */
|
---|
1893 | if (pExponent->cUsed == 1 && pExponent->pauElements[0] == 1)
|
---|
1894 | return rtBigNumMagnitudeCopy(pResult, pBase);
|
---|
1895 |
|
---|
1896 | /*
|
---|
1897 | * Set up.
|
---|
1898 | */
|
---|
1899 | /* Init temporary power-of-two variable to base. */
|
---|
1900 | RTBIGNUM Pow2;
|
---|
1901 | rc = rtBigNumCloneInternal(&Pow2, pBase);
|
---|
1902 | if (RT_SUCCESS(rc))
|
---|
1903 | {
|
---|
1904 | /* Init result to 1. */
|
---|
1905 | rc = rtBigNumSetUsed(pResult, 1);
|
---|
1906 | if (RT_SUCCESS(rc))
|
---|
1907 | {
|
---|
1908 | pResult->pauElements[0] = 1;
|
---|
1909 |
|
---|
1910 | /* Make a temporary variable that we can use for temporary storage of the result. */
|
---|
1911 | RTBIGNUM TmpMultiplicand;
|
---|
1912 | rc = rtBigNumCloneInternal(&TmpMultiplicand, pResult);
|
---|
1913 | if (RT_SUCCESS(rc))
|
---|
1914 | {
|
---|
1915 | /*
|
---|
1916 | * Exponentiation by squaring. Reduces the number of
|
---|
1917 | * multiplications to: NumBitsSet(Exponent) + BitWidth(Exponent).
|
---|
1918 | */
|
---|
1919 | uint32_t const cExpBits = rtBigNumMagnitudeBitWidth(pExponent);
|
---|
1920 | uint32_t iBit = 0;
|
---|
1921 | for (;;)
|
---|
1922 | {
|
---|
1923 | if (rtBigNumMagnitudeGetBit(pExponent, iBit) != 0)
|
---|
1924 | {
|
---|
1925 | rc = rtBigNumMagnitudeCopy(&TmpMultiplicand, pResult);
|
---|
1926 | if (RT_SUCCESS(rc))
|
---|
1927 | rc = rtBigNumMagnitudeMultiply(pResult, &TmpMultiplicand, &Pow2);
|
---|
1928 | if (RT_FAILURE(rc))
|
---|
1929 | break;
|
---|
1930 | }
|
---|
1931 |
|
---|
1932 | /* Done? */
|
---|
1933 | iBit++;
|
---|
1934 | if (iBit >= cExpBits)
|
---|
1935 | break;
|
---|
1936 |
|
---|
1937 | /* Not done yet, square the base again. */
|
---|
1938 | rc = rtBigNumMagnitudeCopy(&TmpMultiplicand, &Pow2);
|
---|
1939 | if (RT_SUCCESS(rc))
|
---|
1940 | rc = rtBigNumMagnitudeMultiply(&Pow2, &TmpMultiplicand, &TmpMultiplicand);
|
---|
1941 | if (RT_FAILURE(rc))
|
---|
1942 | break;
|
---|
1943 | }
|
---|
1944 | }
|
---|
1945 | }
|
---|
1946 | RTBigNumDestroy(&Pow2);
|
---|
1947 | }
|
---|
1948 | return rc;
|
---|
1949 | }
|
---|
1950 |
|
---|
1951 |
|
---|
1952 | RTDECL(int) RTBigNumExponentiate(PRTBIGNUM pResult, PCRTBIGNUM pBase, PCRTBIGNUM pExponent)
|
---|
1953 | {
|
---|
1954 | Assert(pResult != pBase); Assert(pResult != pExponent);
|
---|
1955 | AssertReturn(pResult->fSensitive >= (pBase->fSensitive | pExponent->fSensitive), VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
1956 |
|
---|
1957 | int rc = rtBigNumUnscramble(pResult);
|
---|
1958 | if (RT_SUCCESS(rc))
|
---|
1959 | {
|
---|
1960 | RTBIGNUM_ASSERT_VALID(pResult);
|
---|
1961 | rc = rtBigNumUnscramble((PRTBIGNUM)pBase);
|
---|
1962 | if (RT_SUCCESS(rc))
|
---|
1963 | {
|
---|
1964 | RTBIGNUM_ASSERT_VALID(pBase);
|
---|
1965 | rc = rtBigNumUnscramble((PRTBIGNUM)pExponent);
|
---|
1966 | if (RT_SUCCESS(rc))
|
---|
1967 | {
|
---|
1968 | RTBIGNUM_ASSERT_VALID(pExponent);
|
---|
1969 | if (!pExponent->fNegative)
|
---|
1970 | {
|
---|
1971 | pResult->fNegative = pBase->fNegative; /* sign unchanged. */
|
---|
1972 | rc = rtBigNumMagnitudeExponentiate(pResult, pBase, pExponent);
|
---|
1973 | }
|
---|
1974 | else
|
---|
1975 | rc = VERR_BIGNUM_NEGATIVE_EXPONENT;
|
---|
1976 |
|
---|
1977 | rtBigNumScramble((PRTBIGNUM)pExponent);
|
---|
1978 | }
|
---|
1979 | rtBigNumScramble((PRTBIGNUM)pBase);
|
---|
1980 | }
|
---|
1981 | rtBigNumScramble(pResult);
|
---|
1982 | }
|
---|
1983 | return rc;
|
---|
1984 | }
|
---|
1985 |
|
---|
1986 |
|
---|
1987 | /**
|
---|
1988 | * Modular exponentiation, magnitudes only.
|
---|
1989 | *
|
---|
1990 | * All variables must be unscrambled. The sign flag is not considered nor
|
---|
1991 | * touched, this means the caller have to reject negative exponents and do any
|
---|
1992 | * other necessary sign bit fiddling.
|
---|
1993 | *
|
---|
1994 | * @returns IPRT status code.
|
---|
1995 | * @param pResult Where to return the remainder of the power.
|
---|
1996 | * @param pBase The base value.
|
---|
1997 | * @param pExponent The exponent (assumed positive or zero).
|
---|
1998 | * @param pModulus The modulus value (or divisor if you like).
|
---|
1999 | */
|
---|
2000 | static int rtBigNumMagnitudeModExp(PRTBIGNUM pResult, PRTBIGNUM pBase, PRTBIGNUM pExponent, PRTBIGNUM pModulus)
|
---|
2001 | {
|
---|
2002 | Assert(pResult != pBase); Assert(pResult != pBase); Assert(pResult != pExponent); Assert(pResult != pModulus);
|
---|
2003 | Assert(!pResult->fCurScrambled); Assert(!pBase->fCurScrambled); Assert(!pExponent->fCurScrambled); Assert(!pModulus->fCurScrambled);
|
---|
2004 | int rc;
|
---|
2005 |
|
---|
2006 | /*
|
---|
2007 | * Check some special cases to get them out of the way.
|
---|
2008 | */
|
---|
2009 | /* Div by 0 => invalid. */
|
---|
2010 | if (pModulus->cUsed == 0)
|
---|
2011 | return VERR_BIGNUM_DIV_BY_ZERO;
|
---|
2012 |
|
---|
2013 | /* Div by 1 => no remainder. */
|
---|
2014 | if (pModulus->cUsed == 1 && pModulus->pauElements[0] == 1)
|
---|
2015 | {
|
---|
2016 | rtBigNumSetUsed(pResult, 0);
|
---|
2017 | return VINF_SUCCESS;
|
---|
2018 | }
|
---|
2019 |
|
---|
2020 | /* base ^ 0 => 1. */
|
---|
2021 | if (pExponent->cUsed == 0)
|
---|
2022 | {
|
---|
2023 | rc = rtBigNumSetUsed(pResult, 1);
|
---|
2024 | if (RT_SUCCESS(rc))
|
---|
2025 | pResult->pauElements[0] = 1;
|
---|
2026 | return rc;
|
---|
2027 | }
|
---|
2028 |
|
---|
2029 | /* base ^ 1 => base. */
|
---|
2030 | if (pExponent->cUsed == 1 && pExponent->pauElements[0] == 1)
|
---|
2031 | return rtBigNumMagnitudeModulo(pResult, pBase, pModulus);
|
---|
2032 |
|
---|
2033 | /*
|
---|
2034 | * Set up.
|
---|
2035 | */
|
---|
2036 | /* Result = 1; preallocate space for the result while at it. */
|
---|
2037 | rc = rtBigNumSetUsed(pResult, pModulus->cUsed + 1);
|
---|
2038 | if (RT_SUCCESS(rc))
|
---|
2039 | rc = rtBigNumSetUsed(pResult, 1);
|
---|
2040 | if (RT_SUCCESS(rc))
|
---|
2041 | {
|
---|
2042 | pResult->pauElements[0] = 1;
|
---|
2043 |
|
---|
2044 | /* ModBase = pBase or pBase % pModulus depending on the difference in size. */
|
---|
2045 | RTBIGNUM Pow2;
|
---|
2046 | if (pBase->cUsed <= pModulus->cUsed + pModulus->cUsed / 2)
|
---|
2047 | rc = rtBigNumCloneInternal(&Pow2, pBase);
|
---|
2048 | else
|
---|
2049 | rc = rtBigNumMagnitudeModulo(rtBigNumInitZeroTemplate(&Pow2, pBase), pBase, pModulus);
|
---|
2050 |
|
---|
2051 | /* Need a couple of temporary variables. */
|
---|
2052 | RTBIGNUM TmpMultiplicand;
|
---|
2053 | rtBigNumInitZeroTemplate(&TmpMultiplicand, pResult);
|
---|
2054 |
|
---|
2055 | RTBIGNUM TmpProduct;
|
---|
2056 | rtBigNumInitZeroTemplate(&TmpProduct, pResult);
|
---|
2057 |
|
---|
2058 | /*
|
---|
2059 | * We combine the exponentiation by squaring with the fact that:
|
---|
2060 | * (a*b) mod n = ( (a mod n) * (b mod n) ) mod n
|
---|
2061 | *
|
---|
2062 | * Thus, we can reduce the size of intermediate results by mod'ing them
|
---|
2063 | * in each step.
|
---|
2064 | */
|
---|
2065 | uint32_t const cExpBits = rtBigNumMagnitudeBitWidth(pExponent);
|
---|
2066 | uint32_t iBit = 0;
|
---|
2067 | for (;;)
|
---|
2068 | {
|
---|
2069 | if (rtBigNumMagnitudeGetBit(pExponent, iBit) != 0)
|
---|
2070 | {
|
---|
2071 | rc = rtBigNumMagnitudeCopy(&TmpMultiplicand, pResult);
|
---|
2072 | if (RT_SUCCESS(rc))
|
---|
2073 | rc = rtBigNumMagnitudeMultiply(&TmpProduct, &TmpMultiplicand, &Pow2);
|
---|
2074 | if (RT_SUCCESS(rc))
|
---|
2075 | rc = rtBigNumMagnitudeModulo(pResult, &TmpProduct, pModulus);
|
---|
2076 | if (RT_FAILURE(rc))
|
---|
2077 | break;
|
---|
2078 | }
|
---|
2079 |
|
---|
2080 | /* Done? */
|
---|
2081 | iBit++;
|
---|
2082 | if (iBit >= cExpBits)
|
---|
2083 | break;
|
---|
2084 |
|
---|
2085 | /* Not done yet, square and mod the base again. */
|
---|
2086 | rc = rtBigNumMagnitudeCopy(&TmpMultiplicand, &Pow2);
|
---|
2087 | if (RT_SUCCESS(rc))
|
---|
2088 | rc = rtBigNumMagnitudeMultiply(&TmpProduct, &TmpMultiplicand, &TmpMultiplicand);
|
---|
2089 | if (RT_SUCCESS(rc))
|
---|
2090 | rc = rtBigNumMagnitudeModulo(&Pow2, &TmpProduct, pModulus);
|
---|
2091 | if (RT_FAILURE(rc))
|
---|
2092 | break;
|
---|
2093 | }
|
---|
2094 |
|
---|
2095 | RTBigNumDestroy(&TmpMultiplicand);
|
---|
2096 | RTBigNumDestroy(&TmpProduct);
|
---|
2097 | RTBigNumDestroy(&Pow2);
|
---|
2098 | }
|
---|
2099 | return rc;
|
---|
2100 | }
|
---|
2101 |
|
---|
2102 |
|
---|
2103 | RTDECL(int) RTBigNumModExp(PRTBIGNUM pResult, PRTBIGNUM pBase, PRTBIGNUM pExponent, PRTBIGNUM pModulus)
|
---|
2104 | {
|
---|
2105 | Assert(pResult != pBase); Assert(pResult != pBase); Assert(pResult != pExponent); Assert(pResult != pModulus);
|
---|
2106 | AssertReturn(pResult->fSensitive >= (pBase->fSensitive | pExponent->fSensitive | pModulus->fSensitive),
|
---|
2107 | VERR_BIGNUM_SENSITIVE_INPUT);
|
---|
2108 |
|
---|
2109 | int rc = rtBigNumUnscramble(pResult);
|
---|
2110 | if (RT_SUCCESS(rc))
|
---|
2111 | {
|
---|
2112 | RTBIGNUM_ASSERT_VALID(pResult);
|
---|
2113 | rc = rtBigNumUnscramble((PRTBIGNUM)pBase);
|
---|
2114 | if (RT_SUCCESS(rc))
|
---|
2115 | {
|
---|
2116 | RTBIGNUM_ASSERT_VALID(pBase);
|
---|
2117 | rc = rtBigNumUnscramble((PRTBIGNUM)pExponent);
|
---|
2118 | if (RT_SUCCESS(rc))
|
---|
2119 | {
|
---|
2120 | RTBIGNUM_ASSERT_VALID(pExponent);
|
---|
2121 | rc = rtBigNumUnscramble((PRTBIGNUM)pModulus);
|
---|
2122 | if (RT_SUCCESS(rc))
|
---|
2123 | {
|
---|
2124 | RTBIGNUM_ASSERT_VALID(pModulus);
|
---|
2125 | if (!pExponent->fNegative)
|
---|
2126 | {
|
---|
2127 | pResult->fNegative = pModulus->fNegative; /* pBase ^ pExponent / pModulus; result = remainder. */
|
---|
2128 | rc = rtBigNumMagnitudeModExp(pResult, pBase, pExponent, pModulus);
|
---|
2129 | }
|
---|
2130 | else
|
---|
2131 | rc = VERR_BIGNUM_NEGATIVE_EXPONENT;
|
---|
2132 | rtBigNumScramble((PRTBIGNUM)pModulus);
|
---|
2133 | }
|
---|
2134 | rtBigNumScramble((PRTBIGNUM)pExponent);
|
---|
2135 | }
|
---|
2136 | rtBigNumScramble((PRTBIGNUM)pBase);
|
---|
2137 | }
|
---|
2138 | rtBigNumScramble(pResult);
|
---|
2139 | }
|
---|
2140 | return rc;
|
---|
2141 | }
|
---|
2142 |
|
---|